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Topological matter is a hot topic in both condensed matter and cold atom research. In the past
decades, a variety of models have been identified with fascinating topological features. Some, but
not all, the models can be found in materials. As a fully controllable system, cold atoms trapped
in optical lattices provide an ideal platform to simulate and realize these topological models. Here
we present a proposal for synthesizing topological models in cold atoms based on a one-dimensional
(1D) spin-dependent optical lattice potential. In our system, features such as staggered tunneling,
staggered Zeeman field, nearest-neighbor interaction, beyond-near-neighbor tunneling, etc. can be
readily realized. They underlie the emergence of various topological phases. Our proposal can be
realized with current technology and hence has potential applications in quantum simulation of
topological matter.

I. INTRODUCTION

Topological materials have attracted intensive atten-
tion in recent years. They are characterized by topologi-
cal protected edge states, which emerge as gapless excita-
tions localized at material boundaries. A series of inves-
tigations on topological materials have shed new light on
the research of a new classification paradigm based on
the topological order [1–3], and promises potential ap-
plications such as topological quantum computation [4].
However, many interesting topological models cannot be
readily found in natural materials. As a result, the real-
ization of topological models in a well-controlled system
is highly desirable.

Compared with conventional solid state systems, cold
atoms offer a perfectly clean platform with great con-
trollability to study topological models. It possesses the
following important advantages: (i) Feshbach resonance
makes it possible to manipulate atomic interactions by
external magnetic or optical fields [5]. (ii) Laser fields
that couple hyperfine states of atoms can synthesize ef-
fective physical fields, such as Zeeman fields, and spin-
orbital couplings [6]. The strengths of those synthetic
fields are determined by the laser beams and hence are
tunable. (iii) The configuration of an optical lattice
can be designed via several counter-propagating lasers.
For example, the current technique has realized spin-
dependent lattice systems [7, 8] and various unconven-
tional lattice potentials [9, 10].

In this paper, we propose a scheme for synthesizing
topological models in cold atoms. Following our ear-
lier work [11], the key idea in this proposal relies on
a spin-dependent optical lattice potential consisting of
two sublattices with spatial offset. Our proposal can ex-

∗hpu@rice.edu
†xbz@ustc.edu.cn

hibit the topological transition via tunable experimen-
tal parameters, and thus provides a versatile platform to
study their intrinsic topological properties. In our previ-
ous work [11], we focused on realizing nearest neighbor
effective p-wave interaction in a system of s-wave inter-
acting fermions. In the present work, we focus instead
on manipulating single-particle physics in such a system.
The paper is organized as follows. In Sec. II, we

describe the general spin-dependent lattice model, and
show its realization via current experimental techniques.
Sec. III shows the topologically nontrivial properties of
our lattice potential, which demonstrates our lattice po-
tential as a promising candidate to realize a wide variety
of topological models. The measurement of the topolog-
ical invariant is discussed in Sec. IV. In Sec. V, we study
the edge states associated with the topological phase, and
give an explanation to the boundary effect. In Sec. VI,
we extend the idea of our proposal to synthesize arti-
ficial magnetic field using the laser-assistant tunneling
technique. In Sec. VII, the extension in the presence of
interactions is discussed.

II. 1D LATTICE MODEL

We start from a degenerate Fermi gas with two hyper-
fine states denoted as pseudo-spins (↑ and ↓) trapped in
a one-dimensional (1D) optical lattice as illustrated in
Fig. 1. The two spin states experience different lattice
potentials, which are given by

V↑(x) = V↑ cos
2(kLx) , V↓(x) = V↓ sin

2(kLx+ φ) . (1)

Here kL = π/a, with a being the lattice constant for each
sublattice. One way to realize such a spin-dependent lat-
tice potential is to employ two counter-propagating laser
beams, which are linearly polarized with the two polar-
ization vectors form a angle π/2−φ with respect to each
other, to form the so-called lin ∠ lin configuration [12].
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FIG. 1: (Color online) Optical lattice configuration: the
empty/solid circles represent the spin ↑ / ↓ atoms. The black
solid lines describe the conventional tunneling with the am-
plitude t. The blue and red solid wavy lines describe the rf-
induced tunneling with the amplitude J1 and J2, respectively.
The inter-sublattice tunneling marked by the grey dashed line
is considered to be negligible.

The spin-dependent AC stark shift gives rise to the po-
tential described in Eq. (1). When φ = 0, the two sublat-
tices are completely out of phase; whereas when φ = π/2,
the two sublattices are identical. As we will show, this
angle φ, which characterizes the spatial offset between the
two sublattices, is an important control parameter, and,
without loss of generality, we will restrict |φ| ∈ [0, π/4]
in our discussion.
In such a lattice potential, two types of tunnelings are

at present in general. The first one is the intra-sublattice
tunneling, which originates from the atom kinetic energy.
The second is the inter -sublattice tunneling, which can
be induced by an additional radio-frequency (rf) field
that drives a transition between the two spin states. This
rf-induced inter-sublattice tunneling occurs between two
adjcent sites, each from two different sublattices. The
Hamiltonian that describes our lattice model can be ex-
pressed in the following form,

H =
∑

j

[
∆
(
c†j↑cj↑ − c†j↓cj↓

)
−
( ∑

σ=↑↓

tσc
†
jσcj+1,σ

+ J1c
†
j↓cj↑ + J2c

†
j↓cj+1,↑ +H.c.

)]
, (2)

where {cj, c
†
j} are annihilation and creation operators of

atoms on the jth lattice site, ∆ is the frequency detuning
of the rf field from the bare transition frequency between
the two spin states, tσ is the intra-sublattice tunneling
amplitude for each spin. To make our discussion more
focused, we consider the situation where the two sublat-
tices have equal amplitude, i.e., V↑ = V↓ ≡ VL in Eq. (1),
which leads to equal intra-sublattice tunneling amplitude
with t↑ = t↓ ≡ t. In Hamiltonian (2), the inter-sublattice
tunneling amplitudes along opposite directions are de-
noted as J1 and J2, whose relative magnitude can be con-
trolled by the offset angle φ. For φ = 0, we have J1 = J2;
for other values of φ, they differ from each other, yielding
a staggered inter-sublattice tunneling. More specifically,

we have

J1 = Ω

∫
dxW ∗(x+ a/2 + φ/kL)W (x) ≡ J1(φ) ,

J2 = Ω

∫
dxW ∗(x− a/2 + φ/kL)W (x) ≡ J2(φ) .

(3)

Here Ω represents the rf field strength, and W (x) is the
Wannier wave function of each sublattice.
The spin-dependent lattice model described by Hamil-

tonian (2) underlies rich topological phenomena. We
shall show and discuss them in the following sections.
The recoil energy is defined as ER = ~

2/2ma2, and will
be chosen as the energy unit in the following.

III. TOPOLOGICAL FEATURES

Hamiltonian (2) features topologically nontrivial prop-
erties. We firstly consider a case that the detuning ∆ = 0.
Under this situation, our Hamiltonian describes the gen-
eralized Su-Schrieffer-Heeger (SSH) model [13]. The SSH
model was first proposed in the study of 1D polymer
chains. In its original form, the intra-sublattice tunnel-
ing t is absent [14, 15]. This can be easily achieved by a
deep lattice trap. In the past decades, the SSH model has
attracted tremendous interest because of its rich topo-
logically nontrivial features such as topological solitons
[16], and fractionally charged excitations [17]. The SSH
model has been successfully realized in a cold atom sys-
tem trapped in a superlattice potential where each lattice
site takes the form of a double-well potential [18, 19].
Different from it, our proposal provides an alternative
simple route taking advantages of the sublattice spatial
offset. To show the topologically nontrivial properties of
the lattice model, we diagonalize Hamiltonian (2) in the
presence of nonzero t into the form

H̃ =
∑

η

(
Eηα

†
ηαη −

1

2

)
+ const . (4)

Here we perform the calculation with the open boundary
condition by taking each sublattice to be of equal length
with 100 sites. We shall discuss in Sec. V the case that
the two sublattices possess different number of sites. In
Fig. 2(a), we plot the energy spectrum for different φ
values. As long as φ 6= 0, hence J1 6= J2 (see Fig. 2(b)),
there exists a two-fold degenerate zero-energy mode be-
tween the gapped bulk states. By examining the wave
functions associated with the zero-energy modes, which
is shown in Fig. 2(c), we can identify them as the two
topological edge states localized near the boundaries of
the system.
To understand the origin of the topological features, we

transform Hamiltonian (2) into the momentum space,

H(kx) =

(
−2t cos(kxa) J1 + J2e

−ikxa

J1 + J2e
ikxa −2t cos(kxa)

)
, (5)
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FIG. 2: (Color online) (a) Energy spectrum of the general-
ized SSH model. The blue solid line shows energy of the edge
states. (b) Inter-sublattice-tunneling amplitudes J1 (blue
solid line) and J2 (red dashed line) as functions of the phase
φ. (c) The spatial distributions of two degenerate edge states
at φ = 0.2π. In our calculation, we set 100 sites for each
sublattice. The trap depth is set as VL = 9.0ER with the
intra-sublattice-tunneling amplitude t = 0.0242ER. The rf
field strength Ω = 2.0ER.

where we have chosen the base Ψkx
≡ (ckx↑, ckx↓)

T .
We first make a unitary transformation Ψ′

kx
= UΨkx

with U = exp(iT̂ t), to eliminate the kinetic energy term

T̂ ≡ −2t cos(kxa), which does not change the topological
properties of the system [20]. Thus in the rotating frame,
the effective Hamiltonian becomes identical to that of the
original SSH model

HSSH(kx) = UH(kx)U
−1 − iU∂tU

−1

=

(
0 J1 + J2e

−ikxa

J1 + J2e
ikxa 0

)
. (6)

It is not difficult to see that the Hamiltonian (6) re-
spects the time-reversal symmetry ΘHSSH(kx)Θ

−1 =
HSSH(−kx) with Θ = K, and the chiral symmetry
ΠHSSH(kx)Π = −HSSH(kx) with Π = σz . Here K is
the complex conjugate operator and σi (i = x, y, z) are
Pauli matrices. Moreover, Hamiltonian (6) preserves
the inverse symmetry, which implies σxHSSH(kx)σx =
HSSH(−kx). Therefore, just like the SSH model, the
topological features of the generalized SSH model can be
described by a topological insulator belonging to the BDI
class [1–3], even though Hamiltonian (5) itself does not
obey the chiral symmetry. The topological transition can
be characterized by the Zak phase, which is measurable
in recent experiments [19]:

ϕZak = i

∫ kL

−kL

dkx 〈Ψ̃±(kx)|∂kx
|Ψ̃±(kx)〉 (7)

Here |Ψ̃±(kx)〉 are wave functions of the higher (+) and
lower (−) bands after diagonalizing Hamiltonian (6). We
can easily obtain ϕZak = π/2 for J1 > J2, yielding a
gapped topologically trivial phase, while ϕZak = −π/2
for J1 < J2, yielding a topologically nontrivial phase that
hosts two degenerate edge states with a gapped bulk [19].
In our proposal, φ is a tunable parameter in experiments
and controls the inter-sublattice tunneling J1 and J2, see
Eqs. (3) and their amplitudes in Fig. 2 (b). Tuning φ
induces a topological phase transition at φ = 0.
We remark that, in a more general case, the intra-

sublattice tunneling tσ can be made spin-dependent if
V↑ 6= V↓ in Eq. (1). This will break the inverse symmetry,
as discussed in Ref. [13]. However, the topological edge
modes are robust against such a broken symmetry, only
resulting into two split branches.

FIG. 3: (Color online) Energy spectrum of the lattice model
for (a) φ = π/5 and (b) φ = 0. We set 100 sites for each
sublattice. Other parameters are the same as in Fig. 2, and
the corresponding values of J1,2 at a given φ can be inferred
from Fig. 2(b).

Figure 3 illustrates the energy spectrum when the de-
tuning ∆ 6= 0. The system remains topological as long
as J1 < J2. With the increase of ∆, the degeneracy of
the edge modes is broken and split into two branches,
as shown in Fig. 3(a). In order to better understand
the topological properties of the system, we redefine the
fermion operator index with the following mapping,

cj↑ → a2j = al , cj↓ → a2j+1 = al+1 , (8)

where al represents the annihilation operator for a ficti-
tious spinless fermion on the lth lattice site [11]. In the
new index representation, the original 1D spin-1/2 lattice
is mapped into a chain of spinless fermions. The spin in-
dex ↑ / ↓ of the original lattice system corresponds to the
even/odd site in the new model, which is illustrated in
Fig. 4. Hamiltonian (2) is thus mapped into the following
form,

H =
∑

l

∆(−1)la†l al −
∑

l

{[
J + δ(−1)l

]
a†l al+1

+ ta†lal+2 +H.c.
}
, (9)

where detuning ∆ corresponds to an effective staggered
Zeeman field, J = (J1+J2)/2, and δ = (J1−J2)/2 char-
acterize the staggered nearest-neighbor tunneling, and
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t describes the next-nearest-neighbor tunneling. When
t = 0, Hamiltonian (9) describes the Rice-Mele (RM)
model [19, 21–23]. Similar to the SSH model, the RM
describes a conducting polymers with nontrivial topology
and has been realized in cold atom systems confined in
superlattice potential [22, 23]. Its topological properties
have been well studied in earlier works [24]. The presence
of finite t does not change qualitatively the topological
features [20].

FIG. 4: Site index mapping from the 1D spin-1/2 model (up-
per panel) to the 1D spinless chain model (lower panel).

IV. MEASUREMENT OF TOPOLOGICAL

INVARIANT

From Sec. III we know that the topological property
of the 1D lattice system can be characterized by the Zak
phase. If the lattice offset angle φ is treated as a syn-
thetic dimension, the Zak phase in fact describes the
Berry phase picked up by a particle moving in closed
trajectories across the first Brillouin zone [25]. In our
1D lattice model, the system remains unchanged under
the transformation φ → φ + π. It indicates that in the
synthetic dimension φ, the system is periodic and should
therefore respect the Bloch theorem. Thus in the kx-φ
space, the Berry phase for the (±)-band of Hamiltonian
(5) can be given by [26]

γ± =
1

π

∫ φ0+π

φ0

∫ kL

−kL

Ω±(kx, φ) dkxdφ , (10)

where the Berry curvature is expressed as

Ω±(kx, φ) = Im
[ 〈Ψ̃±|∂φH |Ψ̃∓〉〈Ψ̃∓|∂kx

H |Ψ̃±〉

[E±(kx)− E∓(kx)]2

− (φ ↔ kx)
]
. (11)

Here E±(kx) is the dispersion of the (±)-band. If we
adiabatically change φ with a period π, our system will
thus behave like a Thouless quantum pump, as has been
detected in recent experiments [22, 23]. We want to
point out that, in these previous cold atom experiments
[22, 23], the SSH and the RM models were realized

using spinless atoms confined in a superlattice poten-
tial. As such, the hopping coefficients J1, J2 and ∆ are
not independently tunable. In our realization with the
spin-dependent lattice, by contrast, the relative magni-
tude of J1 and J2 (or more specifically, their difference
J1 − J2), and ∆ are independently controllable. It pro-
vides the possibility to study the Thouless pump evolving
along various trajectories of the (J1−J2)-∆ plane, as we
demonstrate below.

FIG. 5: (Color online) (a) Three paths of the quantum pump
progress: (i) blue solid line, ∆ = 0; (ii) red dashed line, ∆ =
0.5ER; (iii) green dash-dotted line, ∆ = 0.5 cos(2φ)ER. The
dependence of J1 − J2 on φ has been given in Eq.(3). The
initial states of each pump trajectory are marked by the empty
diamonds. After φ evolves a π period from −π/4 to 3π/4, the
system returns to each initial state. The arrows describe the
direction along each pump trajectory in the (J1−J2)-∆ plane.
(b) Evolution of the averaged Berry curvature 〈Ω−(φ)〉 along
the three trajectories in (a), respectively. The Berry curvature
of the other branch is given by 〈Ω+(φ)〉 = −〈Ω−(φ)〉.

In Fig. 5 we show specific examples of the pump pro-
cesses. The system is initially prepared in the state
marked by the empty diamonds of Fig. 5(a). In order
to detect the Berry phase of both (±)-bands, the atoms
are initially loaded to occupy the two branches, which
can be prepared by controlling the atom number den-
sity of the system. After varying φ by π, the system
returns to the initial state so that a pump cycle is closed.
Here we consider three types of closed paths, shown in
Fig. 5(a): (i) ∆ remains at zero, i.e. the pump of the SSH
model; (ii) ∆ is a nonzero constant that is independent
from φ, i.e. the pump of the RM model; (iii) ∆ evolves
as ∆ ∼ cos(2φ). In Fig. 5(b), we plot the evolution of
the averaged Berry curvature 〈Ω−(φ)〉 =

∫
Ω−(φ, kx)dkx

along the three trajectories. The Berry curvature of the
other branch is given by 〈Ω+(φ)〉 = −〈Ω−(φ)〉 [26]. For
the path (i), 〈Ω−(φ)〉 vanishes during a pump period,
indicating that such a pump will not provide any infor-
mation of the topological invariant of the system. For
the paths (ii) and (iii), 〈Ω−(φ)〉 changes with φ. As the
velocity of the atom current is determined by the Berry
curvature Ω±(kx, φ) [22, 23, 26–29], the center-of-mass
position of the atom cloud will split into two branches
and move along opposite directions. The displacement
between the two branches during a pump cycle is pro-
portional to γ+ − γ−. For the path (ii), we find that
γ± = 0. Therefore, this pump progress cannot detect the
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topological invariant of the RM model. In contrast, for
the path (iii), the evolution of 〈Ω−(φ)〉 leads to γ± = ∓π.
As it has been discussed in Sec. III, (J1 − J2,∆) = (0, 0)
is the degeneracy point where the band gap closes, see
Fig. 2(a). Only the trajectory that encircles this degen-
eracy point, i.e. the critical point of the topological tran-
sition, can detect a quantized number [22], which is the
topological invariant of the SSH model. Therefore, the
pumping process, along any trajectory that encloses the
degeneracy point, can facilitate the measurement of the
topological invariant of the SSH model.

V. BOUNDARY EFFECT

In Sec. III, we have shown that J1 < J2 if the offset
angle φ > 0, and J1 > J2 if φ < 0, and the lattice system,
described by the generalized SSH model, is topologically
nontrivial in the former case, and trivial in the latter.
However, we note that we take the number of sites to
be equal in both sublattices in our previous discussion.
Here we consider a situation where the number of sites
are different for the two sublattices. Specifically, we take
the number of sites for the spin-up sublattice to be L,
and that for the spin-down sublattice to be L + 1 as
shown in Fig. 6(a). The energy spectrum as a function
of φ is plotted in Fig. 6(b), from which we see that as
long as φ 6= 0 (i.e., J1 6= J2), the system is topologically
nontrivial with a finite bulk gap and a non-degenerate
zero-energy edge mode.

FIG. 6: (Color online) Effects of unequal numbers of sublat-
tice sites on the topological properties. We set L = 100. (a)
Optical lattice configuration for different φ: the empty/solid
circles represent the spin ↑ / ↓ atoms. (b) Energy spectrum
of the system as a function of φ. The system is topologically
nontrivial with a single non-degenerate edge mode as long as
φ 6= 0, i.e., J1 6= J2. (c) The spatial wave function of the edge
mode at φ = ∓0.1π for the upper/lower panel. Here the edge
mode is localized at opposite ends of the chain for the sign of
φ. Other parameters are the same as in Fig. 2.

That the edge mode is non-degenerate can be explained
as follows. Here we have an odd number of total lattice
sites 2L+1. Following the discussion in Sec. III, we firstly
make the unitary transformation with U = exp(iT̂ t)

where T̂ ≡
∑

jσ

(
tσc

†
jσcj+1,σ +H.c.

)
, to eliminate the T̂ -

term in the Hamiltonian (2), as this term does not change
the topological properties of the system. Thus the gen-
eralized SSH Hamiltonian (2) with ∆ = 0, becomes that
of the original SSH model,

HSSH =
∑

j

∑

σ=↑↓

(
J1c

†
j↓cj↑ + J2c

†
j↓cj+1,↑ +H.c.

)
, (12)

whose form in the momentum space has been given in
Eq. (6). The system, described by the Hamiltonian (12),
respects the chiral symmetry, implying that for each
eigenstate αη of the Hamiltonian (12) with energy Eη,

we can obtain another state Ûαη with the opposite en-

ergy −Eη via a unitary transformation Û [3]. Therefore,
the spectrum of the Hamiltonian (12) hosts L sets of en-
ergy pairs {Eη,−Eη}, leaving a single zero-energy mode
EL+1 = 0 as the edge mode. For the original Hamil-

tonian which includes the T̂ term, the above analyses
are still valid, as T̂ only results in an energy shift to
the energy spectrum, see Fig. 6(b). Therefore, the single
zero-energy mode is robust unless the chiral symmetry
of the Hamiltonian (12) is broken. Further examination
shows that this edge mode is localized at the right (left)
end of the chain if φ < 0 (φ > 0), as shown in Fig. 6(c).
As |φ| −→ 0, the edge mode becomes less localized as its
spatial width increases. At φ = 0, the bulk gap closes,
the edge mode dissolves into the bulk, and the system
becomes topologically trivial. Therefore, in this situa-
tion, φ = 0 remains as a critical point for the topological
phase transition. However, unlike the situation depicted
in Fig. 2, here the system is topologically nontrivial at
both sides of this critical point, with the corresponding
edge state localized at opposite ends of the chain.

VI. ARTIFICIAL MAGNETIC FIELD

Recent experiments have demonstrated the creation of
artificial magnetic field in optical lattice systems using
the technique of laser-assisted tunneling [30, 31]. This
technique can be implemented in our system, and the
resulting model describes an effective 2D triangular lat-
tice. To see this, we first suppress the conventional intra-
sublattice tunneling by introducing a tilt along the lat-
tice direction (for simplicity, we assume the tilt is spin-
independent, hence the two sublattices are tilted in the
same way.). This can be achieved, for example, by in-
cluding gravity along the same direction, or by adding
a magnetic gradient field. Subsequently, we restore the
intra-sublattice tunneling by two laser beams with differ-
ent wave number k1 and k2 along the lattice direction,
and with a frequency difference ω1 − ω2 matching the
energy different between adjacent lattice sites with the
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same sublattice. Here we consider a simple setup with
offset angle φ = 0. After time averaging over the rapidly
oscillating terms, we obtain a complex intra-sublattice
tunneling amplitude: t exp

(
i · (2j − 1)θ

)
for spin ↑ and

t exp
(
i·2jθ

)
for spin ↓ with θ ≡ (k1−k2)·a/2, as shown in

Fig.7 (a). The inter-sublattice tunneling is still induced
by the rf field.

FIG. 7: (Color online) (a) Optical lattice configuration:
Raman-assisted tunneling in each linear tilted sublattice with
an energy offset hosts a spatial dependent phase. Grey tri-
angles along the chain denote the tilted directions. (b) Hof-
stadter butterfly: energy spectrum Eη versus the particular
flux θ. Eη is in unit of t and we set J = t.

For this situation, if we exploit the fermion operator
index mapping (8) again, the Hamiltonian is expressed
as

H = −
∑

l

(
Ja†lal+1 + teilθa†l al+2

)
, (13)

where we assume J1 = J2 = J . From Hamiltonian (13),
the lattice system indeed mimics a magnetic field with a
tunable flux θ around each triangular plaquette as shown
in Fig. 7 (a). Different from the conventional magnetic
field, the flux in each triangular cell induced by the syn-
thetic magnetic field is staggered, rather than homoge-
neous [32]. The corresponding energy spectrum as a func-
tion of θ is plotted in Fig. 7 (b). We can clearly find a
fractal pattern if θ = πp/q (p, q are prime integers),
which is known as the Hofstadter butterfly as a feature
of the synthetic magnetic field [33]. If periodic bound-
ary condition is implemented, the energy band for each
flux θ = πp/q is splitted into q subbands. Therefore, our
lattice model provides an alternative route to synthesize

the magnetic fields in a 1D system, and can be utilized
in studying various intriguing effects [32–36].

We note that similar artificial magnetic field can be
realized in our model by keeping the intra-sublattice tun-
neling conventional, but induce the inter-sublattice tun-
neling with a pair of Raman beams instead of an rf field.
In this way, J1 and J2 become complex.

VII. DISCUSSION

In summary, we have proposed a protocol to realize
a wide variety of topological models, based on a spin-
dependent optical lattice potential. We have shown how
unconventional tunneling, staggered Zeeman field, and
artificial staggered magnetic flux can be readily engi-
neered with our platform. In this realization, many of
the key parameters can be independently controlled, and
various boundary conditions can be constructed. There-
fore this realization allows us to explore a variety of exotic
lattice models that are difficult to be realized in conven-
tional condensed matter systems.

In the present work, we have focused on the single-
particle physics. If we introduce the s-wave interaction
between the two spin states, we can have effective p-wave
interaction as was demonstrated in our earlier work [11].
For nonzero offset angle, the strength of this effective in-
teraction becomes staggered, which may give rise to un-
conventional phases. The interaction effects, combined
with the single-particle manipulation covered here, rep-
resent a very interesting line of research, which we will
undertake in the near future.
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