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We consider the ionization of neon induced by a femtosecond laser pulse composed of overlapping,
linearly polarized bichromatic extreme ultraviolet and infrared fields. In particular, we study the
effects of the infrared light on a two-pathway ionization scheme for which Ne 2s22p53s 1P is used as
intermediate state. Using time-dependent calculations, supported by a theoretical approach based
on the strong-field approximation, we analyze the ionization probability and the photoelectron
angular distributions associated with the different sidebands of the ionization spectrum. Complex
oscillations of the angular distribution anisotropy parameters as a function of the infrared light
intensity are revealed. Finally, we demonstrate that coherent control of the asymmetry is achievable
by tuning the infrared frequency to a nearby electronic transition.

PACS numbers: 32.80.Rm, 32.80.Fb, 32.80.Qk, 32.90.+a

I. INTRODUCTION

The coherent control of quantum phenomena by
light [1, 2] stands at the heart of future promising de-
velopments in a variety of scientific areas. Manipulat-
ing two-pathway quantum interferences in atomic ioniza-
tion is one way to achieve coherent control of the photo-
electron angular distribution (PAD) (for example [3–7]).
The principle consists of ionizing an atomic system using
the fundamental and second harmonic of a short laser
pulse, thereby producing two distinct ionizing pathways
characterized by one-photon and two-photon absorption.
The latter process, referred to below as ω + 2ω, was re-
cently studied experimentally in the extreme ultraviolet
(XUV) regime at the free-electron laser (FEL) FERMI
in Trieste [8] using two color femtosecond (fs) pulses for
the ionization of neon. The efficiency of the two-photon
ionization pathway was enhanced by choosing one of the
Ne 2p54s states with total electronic angular momen-
tum J = 1 as an intermediate stepping stone. Coherent
control of the PAD asymmetry was achieved by varying
the time delay, or the corresponding relative carrier en-
velope phase (CEP), between the two harmonics, to an
unprecedented precision of 3.1 attoseconds. A descrip-
tion of the ω + 2ω interference process in neon using
2p53s as intermediate state is presented in Ref. [9].

In this paper we theoretically analyze the effect of
an additional comparatively weak infrared (IR) field
(Keldysh parameter γ � 1) on the ω + 2ω ionization
process and discuss the potential of the IR field to pro-
vide an additional degree of freedom to control the PAD.

The presence of the IR field ultimately leads to the
well-known phenomenon of above-threshold ionization
(ATI) [10–14], resulting in sidebands in the photoelectron
spectrum associated with the absorption or stimulated
emission of one or several IR photons [15–17]. Many
studies, both experimental and theoretical, of the side-
band patterns in XUV + IR ionization have been per-
formed (for example [18–23]), including PADs of the
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FIG. 1: Scheme of the ω + 2ω + Ω0 process in neon in
the dipole approximation. The ionization is caused by the
fundamental and second harmonic (solid blue arrows) of an
XUV pulse whose fundamental frequency ω is tuned near the
2p → 3s transition. The overlapping IR field induces ATI
(small red arrows) transitions leading to sidebands in the
spectrum. Only s, p, and d-waves are displayed, although
higher partial waves can contribute. The dashed arrows repre-
sent additional paths created when the IR frequency is tuned
near the 3s→ 3p transition (see text).

sidebands [23–34]. Recently such experiments with cir-
cularly polarized XUV beams from FELs became feasi-
ble [35, 36].

We chose neon as target for the study, because it is one
of the atomic systems currently under investigation for
coherent control experiments at the seeded FEL FERMI.
We analyze ionization by a linearly polarized femtosecond
pulse whose electric field, taken along the z-axis, is given
by E(t) = EX(t) + EIR(t), where the XUV and IR com-
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ponents of the field are

EX(t) = ĒXf(t)[cos(ωt) + ηX cos(2ωt+ ϕX)] , (1)

EIR(t) = η0ĒXf(t) cos(Ω0t+ ϕ0). (2)

In the above equations, f(t) is a smoothly varying pulse
envelope, common to both XUV and IR fields, Ω0 is the
infrared frequency, ϕX and ϕ0 are the CEPs of the second
harmonic and the IR field, respectively, while the param-
eters ηX and η0 characterize their relative strength with
respect to the fundamental amplitude ĒX . In our case
the XUV pulse contains many optical cycles. Hence the
CEP of the fundamental frequency ω in Eq. (1) is unim-
portant, and we set it to zero.

The ionization scheme of the ω + 2ω + Ω0 process is
presented in Fig. 1. We use the single active electron
(SAE) approximation to label neon electronic states, and
the dipole approximation is employed throughout this
study. The scheme consists of tuning the fundamental
frequency near the 2p6 1S0 → 2p53s 1P1 excitation en-
ergy of neon, which is associated with the one-electron
transition 2p→ 3s. This results in a resonant two-photon
ionization pathway, which produces mostly p-wave photo-
electrons. On the other hand, the second harmonic ion-
izes neon via nonresonant one-photon absorption, pro-
ducing s-wave and d-wave photoelectrons. These distinct
pathways produce photoelectrons with partial waves of
different parity, thereby leading to an asymmetric PAD.

The superimposed IR field creates equally spaced side-
bands around the mainline (ML). This is illustrated in
Fig. 2 for an IR frequency Ω0 = 0.55 eV. The sidebands
are labeled as SB±n according to the minimum number
of IR photons absorbed or emitted in the ATI process,
and n > 0 is the band order. By definition, ML is the
0th order band.

Although only s, p, and d-waves are shown in Fig. 1,
higher partial waves also contribute increasingly with
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FIG. 2: Example of a photoelectron spectrum showing the
different sidebands associated with the minimum number of
absorbed or emitted photons.

higher IR intensity. The differences in the relative con-
tributions of partial waves lead to distinct PADs at the
different sidebands. Such dissimilarities may become par-
ticularly pronounced in the extreme situation where the
IR frequency is tuned to a nearby electronic state. Such
a situation is shown in Fig. 1 when the IR frequency
is set in resonance with the 3s → 3p one-electron tran-
sition, thus creating a pathway to ML and enhancing
a “non-ATI” pathway for ionization towards the lowest
high-energy sideband. As will be shown below, this path-
way can provide additional control on the PADs at dif-
ferent electron kinetic energies.

The weak field (η0 � 1) characteristics of the different
sidebands can be obtained from lowest-order perturba-
tion theory [37, 38]. Describing the process at larger in-
tensities requires further expansion of the ionization am-
plitude into a Born series including higher-order terms.
However, such an expansion would necessitate the com-
putation of free-free transition dipole moments, which
are notoriously difficult to evaluate [39–41]. On the
contrary, the Keldysh-Faisal-Reiss theory [42–45] in the
strong-field approximation (SFA) can be used to evaluate
characteristics of the ionization amplitude at the differ-
ent sidebands, as recently demonstrated by Kazansky et
al. [46] and also described by Bauer [47, 48] for strong-
field photoionization by a circularly polarized laser field.
Therefore, we use the SFA to describe the ATI process
in the following development.

The next section provides a description of the nu-
merical approach employed to solve the time-dependent
Schrödinger equation (TDSE) and the SFA theoretical
framework. In Sec. III, we present our theoretical and
numerical results and discuss the principal outcomes of
the study. Section IV is devoted to our conclusions.

Unless otherwise indicated, atomic units are used
throughout this manuscript.

II. THEORY

Within the dipole approximation, the PAD is axially
symmetric with respect to the direction of linear polar-
ization and is of the general form

dW

dΩ
=
W0

4π

[
1 +

∞∑
k=1

βkPk(cos θ)

]
, (3)

where dΩ represents the solid-angle element for a photo-
electron emitted into the direction defined by (θ, φ), W0

is the angle-integrated ionization probability, Pk(cos θ)
are Legendre polynomials, and βk are anisotropy param-
eters. Although not explicitly shown in Eq. (3), the an-
gular distribution, ionization probability, and anisotropy
parameters depend on the electron kinetic energy ε. One
can obtain anisotropy parameters associated with a given
band by computing their averaged value P−1

∫
βkW0dε

over the energy range spanned by the band, with its ion-
ization probability given by P =

∫
W0dε.
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The left-right asymmetry is defined as

A(0◦) =
W (0◦)−W (180◦)

W (0◦) +W (180◦)
, (4)

where W (θ) is the ionization signal in the θ direction.
The left-right asymmetry can readily be expressed in
terms of the anisotropy parameters as [49]

A(0◦) =

∑∞
k=0 β2k+1

1 +
∑∞
k=1 β2k

. (5)

One clearly sees that only the odd-rank anisotropy
parameters are responsible for the asymmetry of the
PAD. In second-order time-dependent perturbation the-
ory (PT), the PAD (3) is expressed as

dW

dΩ
=

∑
Mf=0,±1

|U (1)
k,Mf

+ U
(2)
k,Mf
|2, (6)

where we introduced the first- and second-order ioniza-
tion amplitudes for a photoelectron with asymptotic mo-
mentum k. In Eq. (6), the residual ion has orbital angu-
lar momentum Lf = 1 and magnetic quantum number
Mf . Here we limit our consideration to an atom with
zero initial angular momentum.

In the following we employ the approach of [46, 50] to
develop the SFA for the ω + 2ω + Ω0 process, however,
we use the Coulomb-Volkov (CV) approximation [51–54].
The first-order ionization amplitude for one XUV photon
absorption with the electronic wave function “dressed” in
the IR field takes the form

U
(1)
k,Mf

= −i
∫ tM

0

EX(t)〈Ψfψ
CV
k | d̂z |Ψ0〉e−iε2ptdt , (7)

where ε2p < 0 is the binding energy of the 2p electron
and tM indicates the end of the pulse that started at

t = 0. Furthermore, d̂z =
∑
j zj is the component of the

electric dipole operator, where the sum is taken over all
atomic electrons, Ψ0 is the neon ground state, Ψf is the
final ionic state of Ne+, and ψCVk denotes the Coulomb-
Volkov wave function [52]:

ψCVk (r) = ϕ−k (r) exp

(
iA(t) · r − i

2

∫ t

∞
dt′[k + A(t′)]2

)
.

(8)
In the above equation, A(t) =

∫∞
t

EIR(t′) dt′ is the vec-

tor potential of the IR field while ϕ−k is an incoming
eigenstate of the field-free SAE Hamiltonian. Since in
the present situation k � A(t), and A(t) · r � 1 over
the extent of the 2p orbital of neon, we can approximate
ϕ−k (r) exp (iA(t) · r) ≈ ϕ−k (r) in (8) when evaluating (7).
Within the single-configuration model, the matrix ele-
ment in (7) is reduced to a one-electron matrix element.
Expanding the continuum function ϕ−k in partial waves
and considering the electron initially in a p-orbital, the
amplitude (7) can be cast into the form

U
(1)
k,Mf

= −i
[
A(1)
εs,mFs,m(k) +A(1)

εd,mFd,m(k)
]
, (9)

where m = −Mf ,

F`,m(k) = ηX ĒX
∫ tM

0

dt f(t)Y`m(θ, φ)

× exp

[
−i
∫ ∞
t

dt′
(

1

2
[k + A(t)]2 − (2ω + ε2p)

)]
,(10)

Y`m(θ, φ) are spherical harmonics, and

A(1)
ε`,m = i−`eiδ`〈ε`m | z | 2p,m〉 . (11)

Here we separated out the phase factor i−`eiδ` from the
continuum wavefunction with δl as the scattering (po-
tential plus Coulomb) phase, ε = k2/2 is the asymptotic
electron energy, and (θ, φ) are the detection angles asso-
ciated with k.

The integral in brackets of Eq. (10) can be evaluated
analytically for an infinitely long “pulse” (steady-state
excitation) [46], i.e., assuming that f(t) is a smooth func-
tion, equal to unity for most time, and tending to zero
for t→∞, such that A(t) ≈ −

(
η0ĒX/Ω0

)
sin (Ω0t+ ϕ0).

Neglecting the term proportional to A2 in (10) and using
the Jacobi-Anger expansion, one obtains

F`,m(k) = ηX ĒX
∞∑

n=−∞
inJn(q)e−i(ϕX+nϕ0)

×
∫ tM

0

dt f(t)Y`m(θ, φ)ei(ε−εn)t , (12)

where εn = 2ω + ε2p + nΩ0, q = (η0kA/Ω0) cos θ, Jn(q)
is the nth Bessel function of the first kind. Rearranging
the terms in the sum we obtain (for ` = 0 and ` = 2)

F`,m(k) =

∞∑
n=−∞

F (n)
`,m(k)T (1)

n , (13)

with

F (n)
`,m(k) = inJn(q)Y`m(θ, φ) , (14)

and in the rotating-wave approximation,

T (1)
n = ηX ĒXe−i(ϕX+nϕ0)

∫ tM

0

f(t)ei(ε−εn)tdt . (15)

The process of two-photon resonant absorption is
dominated by the pathway 2p → 3s → εp, thus pro-
ducing a p-wave photoelectron with m = 0. Therefore,
we neglect the contribution of other intermediate states.
The second-order ionization amplitude is deduced from
similar considerations and takes the form

U
(2)
k,Mf

= i2A(2)
εp,mFp,m(k), (16)

where

Fp,m(k) =

∞∑
n=−∞

F (n)
p,m(k)T (2)

n , (17)
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with

T (2)
n = Ē2

Xe
−inϕ0

∫ tM

0

f(t)ei(ε−εn−∆ω)t

∫ t

0

f(t′)ei∆ωt
′
dt′,

(18)
where ∆ω = ε3s − ε2p − ω and

A(2)
εp,m = δm,0 ie

iδp〈εp,m | z | 3s,m〉〈3s,m | z | 2p,m〉.
(19)

If the XUV pulse contains many cycles, the functions

T
(1)
n and T

(2)
n will be narrow peaks centered at the energy

position εn of SBn, turning into a δ-function in the limit
of continuous radiation. Consequently, one can describe

the ionization at SBn by ignoring all terms but F (n)
`,m(k)

in Eqs. (13) and (17).
Note that the CEP ϕ0 is factored out as exp[inϕ0] in

the total photoionization amplitude into the SBn side-
band (see Eqs. (15) and (18)). Therefore, the observable
quantities do not depend on the CEP of the overlapping
IR pulse. This feature was confirmed to high accuracy by
our numerical calculations. It is an important property
since, in contrast to the relative CEP ϕX between the
XUV harmonics, which can be experimentally controlled
to high precision [8], ϕ0 is hardly controllable and mostly
chaotic. Hereafter, we set ϕ0 = 0.

Using Eq. (6) and collecting Eqs. (7), (13), (14), (16),
and (17), we obtain the angular distribution at SBn and
ML in the form

dW (n)

dΩ
= J2

n(q)
(∣∣∣A(1)

εs,0Y00(θ, φ)T (1)
n

+A(1)
εd,0Y20(θ, φ)T (1)

n − iA(2)
εp,0Y10(θ, φ)T (2)

n

∣∣∣2
+2
∣∣∣A(1)

εd,1Y21(θ, φ)T (1)
n

∣∣∣2) (20)

≈ J2
n(q)

dW (0)

dΩ
(21)

The form (21) is typical for the SFA within the “soft-
photon approximation” [23] (see also [36]). The ioniza-
tion probability and anisotropy parameters at SBn are,
respectively, given by

W (n) =

∫
dW (n)

dΩ
dΩ , (22)

β
(n)
k =

2k + 1

W (n)

∫
dW (n)

dΩ
Pk(cos θ)dΩ. (23)

In the limit η0 → 0, calculating β
(0)
k in Eq. (23) and using

J0(0) = 1, one can recover the lowest-order PT expres-
sions for the anisotropy parameters (see Eqs. (7)−(11) of
Ref. [9]), when including only the contribution from the
3s intermediate state.

The elements A(i)
`,mT

(i)
n , i = 1, 2 in Eq. (20) are ex-

tracted below from the ionization amplitude computed in
the TDSE approach in the absence of the IR field. The
latter elements carry information on the ω + 2ω process
at ML for η0 = 0, while the SFA predicts the effect of

the IR field on the characteristics of the different bands
(ML + SB±n) as a function of η0.

The general procedure to numerically solve the TDSE
for linearly polarized electric field was described at length
in Ref. [56] for the case of atomic hydrogen. For a multi-
electron system, similar to [9], we solve the TDSE using
the SAE approximation in an averaged electronic poten-
tial computed to reproduce as accurately as possible the
energy levels of the neon excited states. The 2p→ 3s ex-
citation energy and the neon ionization energy obtained
in our potential are, respectively, 16.36 eV and 21.16 eV
in the SAE approach, whereas the experimental values
are 16.85 eV and 21.56 eV [57, 58]. The fine-structure
splitting between the atomic states is not included in
our nonrelativistic approach. Since the LS-purity of the
Ne(2p53s)1P1 state is about 93% [59], we neglect the 3P
component of this configuration. In this case, the SAE
model should work reasonably well.

In the SAE approximation, the one-electron wavefunc-
tion is initially propagated from the (2p,m) orbital of
neon. At the end of the pulse, the wavefunction is pro-
jected onto continuum distorted-wave functions of Ne+.
All physical observables, such as the ionization probabil-
ity and the PAD with its associated anisotropy param-
eters, can then be computed in a straightforward way.
In order to represent an unpolarized atomic target, we
propagated the three projections of the initial angular
momentum m of the 2p orbital independently and subse-
quently average the results. We included ` ≤ 14 in order
to ensure the numerical convergence of our predictions.

III. RESULTS AND DISCUSSION

The numerical simulations in this work were
performed using pulse envelopes of the form
f(t) = sin2 Ωt (Ω = ω/2N, 0 ≤ t ≤ tM ), where N is
the number of XUV cycles. Hereafter, we take a pulse
with N = 300 cycles, corresponding to a FWHM of the
intensity ∼ 27 fs. The amplitude ratio ηX = 0.1 is fixed
at a value producing a significant ω + 2ω interference.
The intensity of the fundamental is chosen relatively
low, 1012W/cm2, to ensure the applicability of the PT
approach in describing the ω + 2ω process.

In order to minimize processes involving absorption or
emission of IR photons prior to ionization, we choose
a low IR frequency, Ω0 = 0.55 eV (corresponding to
≈ 2.25µm) in the mid-infrared range. The IR field spans
N0 = 10 cycles in order to completely overlap with the
XUV pulse. For such a low IR frequency, pathways of
the form ~ω± ~Ω0 + ~ω have a negligible effect, since no
intermediate bound states are reachable by less than the
absorption or emission of four IR photons. Multiphoton
ionization of the form ~ω+n~Ω0 is also an inefficient pro-
cess at such low IR intensity, because the system should
absorb n ≥ 9 photons to ionize from the 3s state.
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A. General Appearance of Sidebands

The angle-integrated photoelectron spectra computed
in the TDSE approach are shown in Fig. 3 at different
amplitude ratios η0. Without the IR field, only ML ap-
pears in the spectrum. As the IR intensity is increased,
SB±1 are first created as a result of a single IR pho-
ton emission or absorption. Turning to larger intensities,
SB±n with n ≥ 2 appear as a consequence of multiphoton
processes. The general tendencies for variations of the
spectrum in the XUV + IR ionization are well established
and are directly applicable in our case of ω+2ω+nΩ0 ion-
ization, since the interference between the amplitudes of
even-photon and odd-photon ionization vanishes in the
angle-integrated photoelectron spectra. The ionization
probability redistribution, and its dependence as a func-
tion of the IR field intensity, can be successfully modeled
by the SFA approach [23]. For η0 ≥ 0.3, nearby sidebands
acquire an additional structure, which actually becomes
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FIG. 3: TDSE results for the ionization probability (in units
of 10−3eV−1) as a function of the photoelectron energy for
different IR field amplitude ratios η0. The fundamental XUV
intensity is I = 1012W/cm2, ηX = 0.1, and the infrared fre-
quency is Ω0 = 0.55 eV.
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FIG. 4: Ionization probability associated with the different
bands calculated in the TDSE (solid lines) and the SFA
(dashed lines) approaches as a function of the IR field am-
plitude ratio η0.

a “double-peak” at higher intensities. Its origin can be
attributed to the ponderomotive energy and AC Stark
shifts [60–63].

In the present study, we focus on the characteristics
of ML and SBn for |n| ≤ 2. Since SBn and SB−n are
formed, for small n, from approximately the same transi-
tion matrix elements, they exhibit similar characteristics
within negligible differences. Thus, we will only show re-
sults for ML, SB1 and SB2 in the following development.
Similar results would be found for SB−1 and SB−2, re-
spectively.

The ionization probability associated with the differ-
ent bands is presented in Fig. 4 as a function of η0. Since
at high IR intensity the spectrum becomes strongly dis-
torted, we only show the results for η0 ≤ 0.7. The TDSE
predictions are compared with the SFA results obtained
using Eqs. (20) and (22). Overall good agreement is ob-
tained between the two sets of results. Ionization at ML
decreases monotonically with growing η0, whereas the
weak-field ionization of SB1 and SB2 increases as η2

0 and
η4

0 , respectively, in accordance with lowest-order (non-
vanishing) PT predicting an η2n

0 dependence. However,
as the IR intensity is increased, the validity of PT breaks
down rapidly. The ionization probability in the sidebands
reaches a maximum and gradually decreases as a function
of intensity. The positions of the maxima of SB1 and SB2

at η0 ≈ 0.2 and η0 ≈ 0.3, respectively, are similar in the
TDSE and SFA results. On the other hand, oscillations
predicted by the SFA are hardly apparent in the TDSE
calculations.

B. Angular Distribution of Sidebands

Calculations of the anisotropy parameters βk for k ≤ 6
as function of η0 in the TDSE and SFA approaches are
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depicted in Fig. 5. A first prominent feature consists
of nonzero values of odd-rank βk, which are the result
of interference between ionization paths involving even
and odd numbers of photons. Interestingly, for weak IR
fields, the absolute values of odd-rank βk systematically
increase with increasing n. The ML anisotropy parame-
ters β5 and β6 vanish at η0 = 0, because only one- and
two-photon absorption can occur at the ML in the ab-
sence of an IR field. Note also that β4 associated with
ML is zero without an IR field in a simplified version of
the second-order PT with only one resonant 3s interme-
diate state. Since SB1 and SB2 are, respectively, formed
from absorption of at least one XUV and one or two addi-
tional IR photons, they exhibit nonvanishing values of β5

and β6 as long as the sidebands can be seen at small η0.
The good agreement between TDSE and SFA at ML for
η0 = 0 is not surprising since the parameters in Eq. (20)

were extracted from the TDSE code in the absence of IR
field. The small remaining discrepancies, apparent for β1

and β3, are due to the fact that the PT only includes s,
p, and d-waves, whereas more partial waves are included
in the TDSE calculations.

The results from both calculations, TDSE and SFA,
clearly exhibit oscillations, although their amplitudes are
significantly larger in the SFA approach. Nevertheless,
the positions of the maxima and minima, the sign of cur-
vatures, and the limiting values of the anisotropy pa-
rameters for η0 � 1 are in correspondence in the two
approaches. These oscillations should be experimentally

observable. Similar oscillations in β
(1)
2 and β

(1)
4 were ob-

tained within SFA [36] for ionization of helium by cir-
cularly polarized XUV and IR radiation. Such a compli-
cated intensity dependence is determined by the interplay
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of Bessel functions, weighted by the Legendre polynomi-
als, and the denominator in expression (23). Within the
TDSE approach, the oscillations are due to the contribu-
tion of many partial waves originating from absorption
and emission of multiple photons.

The origin of the discrepancies between the TDSE and
SFA results can be attributed to several factors. First,
the SFA approach neglects the dynamical atomic polariz-
ability, which becomes important at strong IR fields and
should perturb the two-photon pathway through the AC-
Stark shifted 3s state. More importantly, in the SFA, it
is assumed that the field is stationary (N →∞), whereas
the pulse used in the TDSE calculations is still relatively
short with N = 300 cycles. The fact that the pulse en-
velope f(t) is different in the SFA and TDSE models
might explain most of the observed discrepancies. In ad-
dition, for large η0 ≥ 0.4, the absorption of four photons
is likely to occur (see Fig. 3). In this situation, interme-
diate bound states, and even Rydberg states, might play
a significant role in the ionization process, however, they
are not accounted for in the SFA approach.

It is interesting to evaluate the variation of the left-
right asymmetry A(0◦), Eq. (4), as a function of the IR
intensity, since it is an indicator for interference between
the amplitudes of odd-photon and even-photon ioniza-
tion. Figures 6(a,b) compare the subtracted and summed
right (θ = 0) and left (θ = π) emission probabilities
calculated in the TDSE and SFA approaches. To ob-
tain converged results at large IR intensity, we included
anisotropy parameters βk up to k ≤ 24. The TDSE and
SFA results agree reasonably well over the intensity range
covered. On the other hand, the asymmetries (Fig. 6(c)),
i.e., the relative difference between these results, behave
differently in each approach as function of the IR field
amplitude ratio η0. In the SFA, the asymmetry is pre-
dicted to have a constant value independent of both the
band and the IR intensity. This feature is inherent to the
SFA and follows directly from Eq. (21); the electron in
the IR field carries any initial asymmetry created in the
ML (n = 0) by the ω + 2ω process over to the different
sidebands. On the contrary, the TDSE results exhibit
oscillations of the asymmetry whose amplitude increases
as a function of the relative IR intensity.

Additional information on the asymmetry can be ob-
tained by analyzing its variation as a function of the rela-
tive CEP between the harmonics. The left-right asymme-
try An(η0, ϕX) = an(η0) cos[ϕX + ϕn(η0)] at each band
has a sinusoidal form, where (at fixed ηX) the functions
an(η0) and ϕn(η0) depend on the IR intensity only. The
variation of the asymmetry as a function of the relative
CEP at η0 = 0.2 is presented in Fig. 7(a). Although the
amplitude of the oscillations is about 30-40% larger for
SB1 and SB2 than for ML, the phase-shift ϕn ≤ 0.5 rad
remains small. Consequently, the asymmetry at the dif-
ferent sidebands depicts close-lying values at all values
of ϕX . Experimentally, this means that an independent
control of the asymmetry at the different bands as a func-
tion of the relative CEP and IR intensity might only be

possible for sufficiently short pulses, while only a common
control of all bands can be achieved for long pulses.

C. Coherent Control of the Sidebands

The asymmetry is known to strongly vary in situations
when one of the pathways involves an intermediate reso-
nance. Varying the XUV fundamental frequency near the
intermediate 3s state leads to a Fano-like profile of the
asymmetry at ML [9, 49], which would be transferred to
the sidebands by a sufficiently long IR pulse. To produce
a selected control of the bands’ asymmetry, an additional
resonant path with nonequivalent effects on the different
bands should be created. Such a scheme could be real-
ized by creating an ionizing path different from ω + 2ω,
for example by tuning the IR frequency near the 3s→ 3p
transition (Ω0 = 1.88 eV in the SAE model), as shown in
Fig 1. The PAD associated with SB1 is then expected to
strongly reflect the opening of the new pathway. Since
our SFA model cannot take into account the 3s → 3p
transition, we only present TDSE predictions below.

Results for the asymmetry at ML and SB1 as a func-
tion of the IR frequency are presented for η0 = 0.2 and
η0 = 0.3 in Fig. 7(b). The onset in that panel shows
the spectrum at Ω0 = 1.88 eV for an IR field covering

0.0 1.0 2.0 3.0 4.0 5.0 6.0
 X (rad)

-0.5

0.0

0.5

A
(0

o )

ML

SB1

SB2

(a)

1.6 1.7 1.8 1.9 2.0 2.1
1
0
(eV)

-0.5

0.0

0.5

A
(0

o )

9 10 11 12 13 14
Photoelectron energy (eV)

0

2

4

6

ML

SB1

ML

SB1
SB-1

(b)

FIG. 7: (a) Left-right asymmetry A(0◦) for ML (black solid
line), SB1 (red dashed line) and SB2 (blue dotted line), as a
function of ϕX at Ω0 = 0.55 eV and η0 = 0.2. (b) Left-right
asymmetry A(0◦) as a function of the IR frequency Ω0 at
η0 = 0.2 (dashed lines) and η0 = 0.3 (solid lines). The inset
shows the corresponding ionization probability spectrum (in
units of 10−3 eV−1) at η0 = 0.3.
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N0 = 30 cycles to overlap with the XUV pulse at this
frequency. Since one can barely see SB−1 and only the
signals at ML and SB1 are visible for the chosen pulse pa-
rameters, we present the asymmetry at just ML and SB1.

The asymmetry at SB1 exhibits a broad and steady
increase, starting from about −0.45 at Ω0 = 1.60 eV
and ending at almost 0.80 at Ω0 = 2.20 eV. As seen
in Fig. 7(b), this variation depends only weakly on the
IR intensity, as opposed to the asymmetry at ML, which
clearly shows an asymmetric resonance profile whose am-
plitude increases as a function of the IR intensity. We
have checked that the asymmetry remains the same to
negligible differences if one uses a gaussian instead of a
sine-squared envelope. The cause of the resonance pro-
file at ML is actually indirect: as the IR frequency Ω0

approaches the resonance, a transfer of population from
3s → 3p occurs, thereby decreasing the two-photon ion-
ization pathway and ultimately modifying the value of
the asymmetry. Consequently, one can control the asym-
metry amplitudes by varying the IR intensity and fre-
quency. The latter effect could, for instance, be exploited
experimentally to control the resonance profile without
having to vary the amplitude ratio between the XUV
harmonics, which is a difficult task to achieve in prac-
tice. Nevertheless, a complication arises in the present
situation due to the fact that the system only needs to
absorb two IR photons to ionize from the 3p excited state
of neon. As a result, near-threshold ionization might be-
come important for large IR intensities and could hinder
good statistics of the experimental data. Thus, it seems
preferable to use this scheme on a more strongly bound
electronic state, for which multiphoton ionization would
remain negligible.

Finally, note that for large IR frequencies in Fig. 7(b),
the asymmetries in ML and SB1 differ significantly. It
might then be possible, by appropriately varying ϕX , to
create a situation when the asymmetries of ML and SB1

have opposite signs, i.e., a situation in which electrons
of two different lines have opposite preferred emission di-
rections with a resolvable energy difference. This strong
difference in the asymmetry between ML and SB1 contra-
dicts the SFA prediction. The difference is most probably
due to the ~ω + ~Ω0 + ~ω and ~ω + 2~Ω0 + ~ω − ~Ω0

pathways to SB1, which cannot be adequately described
in the SFA approach.

IV. CONCLUSION

We have presented a detailed investigation of above-
threshold ionization effects induced by an infrared field
on two-pathway interference between a nonresonant one-
photon and resonant two-photon ionization of neon. The
characteristics of the sidebands in the photoelectron spec-

trum were analyzed at several infrared laser intensities
by numerically solving the time-dependent Schrödinger
equation. The numerical results were qualitatively sup-
ported by analytical formulas derived from a model based
on the strong-field approximation.

The ionization probability and the anisotropy param-
eters characterizing the angular distribution at each
band agree well with each other in both models. The
anisotropy parameters of the photoelectron angular dis-
tribution exhibit oscillations, which should be measur-
able experimentally.

An important result of our study is that for long pulses
the left-right asymmetry at each sideband should not de-
part strongly from the asymmetry created at the main
photoelectron line in the absence of infrared field. As the
infrared intensity is increased, variations of the asymme-
try are shown to become significant for relatively strong
fields, where the ionization signal at each band should
be harder to detect. In fact, in the strong-field approx-
imation, the asymmetry is predicted to be constant, in-
dependent of the sideband order and the infrared pulse
intensity, i.e., the infrared field transfers the asymmetry
of the main photoelectron line to the different sidebands.

An interesting situation may occur if the infrared fre-
quency is set in resonance with a nearby optically allowed
electronic state. In such a case, the infrared field can play
an active role in the ionization process. We have shown
that the pumping of population from 3s to 3p results in
a resonance profile of the asymmetry at the mainline as
a function of the infrared frequency. Furthermore, the
amplitude of the resonance profile at the main line in-
creases with growing infrared intensity. The asymmetry
of the lowest high-energy band exhibits the most inter-
esting variation, since it changes significantly with the
infrared frequency in a monotonic fashion. On the other
hand, it merely varies as a function of the infrared inten-
sity. Initial experiments to reveal some of the features
provided by the infrared field were already performed at
the FERMI free-electron laser facility in Trieste (Italy),
and future experiments could use such effects to improve
control of the photoelectron angular distribution.
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