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Abstract

We have developed an efficient approximation to describe the low-energy electron elastic scatter-

ing off an endohedral fullerene A@CN . It accounts for polarization of A@CN by incoming electrons

without reference to complicated details of the electronic structure of CN itself. The developed ap-

proach has permitted us to unravel spectacular A@CN -polarization effects in low-energy e+A@CN

elastic scattering, particularly the effects due to interelectron interaction between the electrons of

both CN and A. We show that contribution of a single atom A remains unscreened by the mul-

tiatomic CN despite the projectile’s wavelength is bigger than the size of the target. Inclusion of

A and CN polarizability interference leads to violation of the previously predicted phase additiv-

ity rule. The partial scattering cross sections acquire prominent Ramsauer-type minima which,

however, disappear in the total cross section. The study reveals notable trends in e + A@CN

elastic scattering versus the polarizability of an encapsulated atom. We also predict the existence

of certain negative ions A@C−

N . We chose Ne, Xe and Ba as atoms A, and C60 as the endohedral

CN , as the case study. The work focuses on a reasonable compromise between the qualitative and

quantitative aspects of the problem in general rather than on carrying out detailed calculations for

one particular system

PACS numbers: 31.15.ap, 31.15.V-, 34.80.Dp, 34.80.Bm
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I. INTRODUCTION

Electron elastic scattering off different quantum targets is an important fundamental

process that is of great significance to the basic and applied sciences and technologies.

Among targets of essential current interest are endohedral fullerenes A@CN that consist of

an atom A located inside the hollow interior of a molecule CN constructed from N ≫ 1

carbon atoms. To date, however, the knowledge on electron elastic scattering by such

quantum targets as A@CN is rudimentary. This is not accidental, since the comprehensive

description of electron scattering, especially in the low-energy region, by a multielectron

target is too challenging for theorists even with regard to a free atom, not to mention such a

complicated and multifaceted object as A@CN . This is the reason why so far there have been

only a few attempts undertaken by theorists [1–5] to advance into the world of low-energy

electron scattering off A@CN .

At first glance, the addition of a single relatively small atom inside a fullerene should not

affect essentially electron elastic scattering off the latter, since the presence of an additional

atom inside CN alters only negligibly the total size of the system under consideration. In

contrast, the earlier performed quantum-mechanical study [1] of this process, carried out

in the framework of a model static Hartree-Fock (HF) approximation, demonstrated that

the above assumption is incorrect. It appears that addition of an atom inside the hollow

space of a fullerene, exemplified by C60 (N = 60), leads to remarkable alterations of electron

scattering. Note that C60 is spherical, which makes it an ideal candidate for studies, for

which reason it is the most often discussed and investigated fullerene from the fullerenes’

CN family.

Quantum-mechanical exchange between the incoming and target’s electrons, as well as

target’s polarization caused by a projectile-electron is of importance to low-energy electron

elastic scattering off A@CN , just as it is to electron-atom collisions. Refs. [1–3] considered

exchange in the framework of a model static Hartree-Fock (HF) approximation. In addition,

Ref. [3] demonstrated the prominent role of the fullerenes polarizability upon low-energy

electron scattering by A@CN . Results of Refs. [1–3] demonstrated that, due to quantum

interference, the impact of the atom A on electron scattering off A@CN is, counterintuitively,

not screened at all, presenting new structures in corresponding differential and total electron

elastic-scattering cross sections. Furthermore, Refs. [2, 3] formulated the rule of scattering-
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phase additivity, where a role of the atom A in a e+A@C60 scattering process turns out to

be essential. The rule states that the scattering phase of a partial electronic wave ℓ scattered

off endohedral A@CN equals, to a good approximation, to the sum total of the scattering

phases of electrons scattered by the atom A and the CN fullerene itself. This rule has to

be valid for any weakly bound multiatomic target as well. Moreover, results of Refs. [1–3]

demonstrated that there exist certain regions of electron energy where scattering off free A

even dominates over scattering by A@C60.

The polarizability of a highly deformable object such as a fullerene has to affect the

e + A@C60 process. Ref. [3] suggested a method that permits to account for the CN po-

larizability in the scattering process by expressing the CN polarization potential via its

polarizability. This polarization potential is in addition to the static potentials of A and CN

in the Schrödinger equation for the incoming electron. The impact of the C60 polarization

on e + A@C60 scattering proved to be very important.

Ref. [4] unveiled a prominent influence of the polarizability of the encapsulated atom A

itself on the entire e + A@C60 scattering process. Unexpectedly, despite of the smallness

of A and its polarizability compared to those of C60, we found that the effect was far

from being negligible. To demonstrate both the existence and strength of the impact of the

polarizability of the encapsulated atom A itself on e+A@C60 elastic scattering, we regarded,

in Ref. [4] , the fullerene C60 as a non-polarizable target, but “unfroze” the encapsulated

atom A, i.e., treated as a polarizable object. Then, to account for the atomic polarizability,

we utilized the Dyson formalism [6, 7] for the self-energy part of the Green’s function of a

scattered electron to calculate the scattering phases and partial and total cross section of the

e+A@C60 reaction. Results of Refs. [3, 4] demonstrated that the account of polarizabilities

of A and C60 independently preserves the scattering phase additivity rule. On the other

hand, those studies demonstrated the necessity to take into account both polarizabilities

simultaneously. To meet the goal, i.e., to account for polarization of both the atom A and

C60, as well as to couple electron excitations of the atom A with electron excitations of C60,

the reference to complicated details of the electronic structure of C60 itself was thought to

be absolutely needed. It remained unclear how to overcome this drawback in an efficient

and yet physically transparent way.

The work [5] was the first step to overcome the drawback of Refs. [1–4]. It suggested a

rather simple way to take into account polarizabilities of both the atom A and C60 simul-
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taneously in the calculation of e + A@C60 scattering. Ref. [5] provided a hint on a possible

role of interference of polarizabilities by demonstrating that its account can lead to strong

effects in low-energy e + A@C60 scattering, including the violation of the scattering-phase

additivity rule.

The present paper elaborates, on the basis of results of Refs. [3–5] the approach that

accounts for the mutual impact of the polarizabilities of the atom A and C60 on e+A@C60

scattering both independently and via the interference of the polarizabilities. By choosing

Ne, Xe, and Ba as the encapsulated atoms, we study how the increase in the polarizability

of the atom A affects the entire process of e + A@CN scattering. We extrapolate the

calculated scattering phases to the zero electron energy in order to disclose the new bound

states that result in the emergence of certain fullerene anions A@C−

N . Entirely, we build,

in the present work, a theory of significant novelty that accounts for the important effects,

especially, we stress, for polarization effects due to coupling between the electrons of C60 and

A on e + A@CN scattering without the need to know complicated details of the electronic

structure of C60 itself. The theory employs certain reasonable simplifications that may

affect quantitative aspects of results. However, the primary focus of the work is more on a

qualitative aspect of the problem in general rather than on the performance of detailed

calculations for one particular system. This is why the present study is performed on

the basis of a reasonable compromise between qualitative and quantitative aspects of the

problem. Namely, we account as rigor as we can for the effects which we can address and

know they cannot be ignored, but employ a less quantitative approach to account for other

effects, albeit important as well, for which a ”detailed” theory is yet unavailable. Anyway,

in the absence of experimental data on low-energy e + A@C60 elastic scattering, which is a

present situation in the field, it would remain unverified how detailed would be a “detailed

calculation”, so that focusing on a “detailed” calculation is, most likely, premature, at

present.

We use atomic units (a.u.) throughout the text, assuming the electronic charge e, mass

m, and Planck’s constant h̄ are equal to unity: e = m = h̄ = 1.
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II. THEORETICAL CONCEPTS

To give the reader a heads-up on how the problem of e + A@C60 scattering is going to

be addressed in the present work, before indulging into details, the key points to mention

are as follows. As the first step, the C60 cage is approximated by an attractive square-well

(in the radial coordinate r) static potential Uc(r) of certain depth U0, inner radius r0, and

thickness ∆. As a second step, in order to account for the effect of polarization of C60 by an

incident electron, the C60 cage is modeled by a modified potential VC60
(r) = Uc(r) + Vs(r).

Here, Vs(r) is the long-range static polarization potential of C60: Vs(r) = −α/[2(r2 + b2)2],

where α is the static polarizability of C60 and b is a parameter of the order of r0. Next, the

wavefunctions of incident electrons and electrons of the encapsulated atom A are calculated

in the potential VA@C60
(r) which is the sum of VC60

(r) and the atomic Hartree-Fock potential

V HF
A (r): VA@C60

(r) = VC60
(r)+V HF

A (r). This is, of course, a simplification, because at the low

collision energies considered in this paper a full multielectron and nonlocal treatment of e+

C60 correlation/polarization effects is needed to obtain better quantitative results. However,

it is known from numerous research results on electron-atom scattering that accounting at

least for the static dipole polarizability of a highly-polarizable atom by incident electrons

is very important and it significantly improves (although not fully) the agreement between

theory and experiment. It is, therefore, reasonable to account for the impact of polarization

of C60 on electron scattering only in the framework of a C60-static dipole polarizability

as well, as the first step in exploring the rich variety of polarization effects, even though

the quantitative aspect of the problem itself might be affected. The thus found functions

are substituted into the Dyson’s equation for self-energy part of the one-electron Green

function Σ of an incident electron. In the present work, Σ is defined such that it accounts

for excitations of both atomic electrons and electrons of the C60 cage in the presence of

polarized C60. Then, the Dyson equation for Σ is solved with a reasonable assumption that

rp ≫ r0 ≫ rA. Here, rp is the electron-projectile distance from the enter of C60 and rA is the

radius of the encapsulated atom A. With the thus determined Σ, electron elastic-scattering

phase shifts upon electron collision with a fully polarizable A@C60 are found and, eventually,

the electron scattering cross sections are calculated, as the last step of the study.
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A. Model static HF approximation: “frozen” A@C60

In the present work, as in Refs. [1–5], the C60 cage is modeled by an attractive spherical

potential Uc(r):

Uc(r) =







−U0, if r0 ≤ r ≤ r0 +∆

0 otherwise.
(1)

Here, r0, ∆, and U0 are the inner radius, thickness, and depth of the potential well, respec-

tively.

The wavefunctions ψnℓmℓms
(r, σ) = r−1Pnl(r)Ylmℓ

(θ, φ)χms
(σ) and binding energies ǫnl of

atomic electrons are the solutions of a system of the “endohedral” HF equations:

[

−
∆

2
−
Z

r
+ Uc(r)

]

ψi(x) +
Z
∑

j=1

∫ ψ∗

j (x
′)

|x− x
′|

×[ψj(x
′)ψi(x)− ψi(x

′)ψj(x)]dx
′ = ǫiψi(x). (2)

Here, n, ℓ, mℓ and ms is the standard set of quantum numbers of an electron in a central

field, σ is the electron spin variable, Z is the nuclear charge of the atom, x ≡ (r, σ), and the

integration over x implies both the integration over r and summation over σ. Eq. (2) differs

from the ordinary HF equation for a free atom by the presence of the Uc(r) potential in there.

This equation is first solved in order to calculate the electronic ground-state wavefunctions

of the encapsulated atom. Once the electronic ground-state wavefunctions are determined,

they are plugged back into Eq. (2) in place of ψj(x
′) and ψj(x) in order to calculate the

electronic wavefunctions of scattering-states ψi(x) and their radial parts Pǫℓ(r) ≡ Pǫiℓi(r) in

Eq. (2).

Corresponding electron elastic-scattering phase shifts δℓ(k) are then determined by refer-

ring to Pkℓ(r) at large r:

Pkℓ(r) →

√

2

π
sin

(

kr −
πℓ

2
+ δℓ(k)

)

. (3)

Here, Pkℓ(r) is normalized to δ(k− k′), where k and k′ are the wavenumbers of the incident

and scattered electrons, respectively. The total electron elastic-scattering cross section σel(ǫ)

is then found in accordance with the well-known formula for electron scattering by a central-

potential field:

σel(k) =
4π

k2

∞
∑

ℓ=0

(2ℓ+ 1) sin2 δℓ(k). (4)
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This approach solves the problem of e+A@C60 scattering in a static approximation, i.e.,

without account for polarization of the A@C60 system by incident electrons.

In the literature, some inconsistency is present in choosing the magnitudes of ∆, U0 and

r0 of the model potential Uc(r) for C60, for example: r0 = 5.8, ∆ = 1.9 and U0 = 0.302 a.u.

[8, 11] (and references therein), or r0 = 6.01, ∆ = 1.25 and U0 = 0.422 a.u. [9, 10], or

r0 = 5.262, ∆ = 2.9102, and U0 = 0.2599 a.u. [1–5, 12] (originally suggested in [12]).

A better choice of the parameters with an eye on e + C60 scattering was investigated in

Refs. [4, 13]. The made conclusion was in favor of the latter set of parameters: r0 = 5.262,

∆ = 2.9102, and U0 = 0.2599 a.u. This is because the chosen set of parameters leads to a

better agreement between some of the most prominent features of e+C60 elastic scattering

predicted by the described model and the sophisticated ab initio static multiconfigurational

Hartree-Fock approximation [12]. Correspondingly, in the present work, Uc(r) potential is

defined by ∆ = 2.9102, r0 = 5.262, and U0 = 0.2599 a.u.

B. Polarizable A@C60

1. Polarizable A but “frozen” C60

Let us first account for the impact of dynamical polarization of only an atom A, encap-

sulated inside frozen C60, on e + A@C60 elastic scattering. This should help, later in the

paper, to appreciate the importance of the effect of C60 polarization, in addition to that of

A, on e + A@C60 scattering, to finalize the study.

In the present work, as in Ref. [4], the impact of polarization of A on e+A@C60 scattering

(where the C60 cage is “frozen”) is accounted on the first-principle basis by utilizing the

concept of the self-energy part of the Green’s function of an incident electron [6, 7]. In

the simplest second-order perturbation theory in the Coulomb interelectron interaction V

between the incident and atomic electrons, the irreducible self-energy part of the Green’s

function Σ(ǫ) of the incident electron is depicted with the help of Feynman diagrams in

Fig. 1.

The diagrams of Fig. 1 illustrate how a scattered electron “ǫℓ” polarizes a j-subshell of

the atom by causing j → m excitations from the subshell and couples with these excited

states itself via both the Coulomb direct [diagrams (a) and (b)] and exchange [diagrams
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 (a)  (b)  (c)  (d) 

FIG. 1. The irreducible self-energy part Σ(ǫ) of the Green function of a scattering electron in the

second-order perturbation theory in the Coulomb interaction, referred to as the SHIFT approxi-

mation (see text). Here, a line with a right directed arrowhead denotes either scattered states |ǫℓ〉

and |ǫ′ℓ′〉, or atomic excited states |m〉, a line with a left directed arrowhead denotes the states

〈j| and 〈i| of a vacancy (hole) in the atom , and a wavy line denotes the Coulomb interelectron

interaction V .

(c) and (d)] interactions. Numerical calculations of electron elastic-scattering phase shifts,

in the framework of this approximation, are performed with the help of the computer code

from Ref. [7] labeled as “SHIFT”. Correspondingly, the authors refer to this approximation

as the “SHIFT” approximation everywhere in the present paper.

A fuller account of the effect of the encapsulated-atom polarization in e+A@C60 elastic

scattering is determined by the reducible Σ̃(ǫ) part of the self-energy part of the electron’s

Green function [7]. The matrix element of the latter are represented diagrammatically in

Fig. 2.

The above diagrammatic equation for Σ̃ can be written in an operator form [7], as follows:

ˆ̃Σ = Σ̂− Σ̂Ĝ(0) ˆ̃Σ. (5)

Here, Σ̂ is the operator of the irreducible self-energy part of the Green’s function calculated

in the framework of SHIFT (Fig. 1), Ĝ(0) = (Ĥ(0) − ǫ)−1 is the electron Green’s function

provided Ĥ(0) is the Hamiltonian of an incident electron in a HF approximation (in the

presence of the C60 confinement). Clearly, the equation for Σ̃ accounts for an infinite series of

diagrams by coupling the diagrams of Fig. 1 in various combinations. Numerical calculation

of electron elastic-scattering phase shifts in the framework of this approximation is performed

with the help of the computer code from Ref. [7] labeled as “SCAT”. Correspondingly, this
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FIG. 2. The matrix element of the reducible self-energy part Σ̃(ǫ) of the Green’s function of a

scattering electron, where Σ is the irreducible self-energy part of the Green’s function depicted

in Fig. 1. This approximation is referred to as the SCAT approximation (see text). Note, when

calculating 〈ǫℓ|Σ̃|ǫℓ〉 analytically, the summation over unoccupied discreet and integration over

continuum excited states (marked as ǫ′′ℓ′′) along with the summation over the occupied states in

the atom marked as Enℓ′ must be performed.

approximation is referred to as “SCAT” everywhere in the present paper. SCAT works well

for the case of electron scattering off free atoms [7]. This gives us confidence in that SCAT is

a sufficient approximation for pinpointing the impact of correlation/polarization of A@C60

electrons on e + A@C60 scattering as well.

In the framework of SHIFT or SCAT, the electron elastic-scattering phase shifts ζℓ are

determined as follows [7]:

ζℓ = δHF
ℓ +∆δℓ. (6)

Here, ∆δℓ is the correlation/polarization correction term to the calculated HF phase shift

δHF
ℓ [7]:

∆δℓ = tan−1
(

−π
〈

ǫℓ|Σ̃|ǫℓ
〉)

. (7)

The mathematical expression for
〈

ǫℓ|Σ̃|ǫℓ
〉

is cumbersome. The interested reader is referred

to [7] for details. The matrix element
〈

ǫℓ|Σ̃|ǫℓ
〉

becomes complex for electron energies
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exceeding the ionization potential of the atom-scatterer, and so does the correlation term

∆δℓ and, thus, the phase shift ζℓ as well. Correspondingly,

ζℓ = δℓ + iµℓ, (8)

where

δℓ = δHF
ℓ + Re∆δℓ, µℓ = Im∆δℓ. (9)

The total electron elastic-scattering cross section σel is then given by the expression

σel =
∞
∑

ℓ=0

σℓ, (10)

where σℓ is the electron elastic-scattering partial cross section [7]:

σℓ =
2π

k2
(2ℓ+ 1)(cosh 2µℓ − cos 2δℓ)e

−2µℓ . (11)

2. Polarizable A and C60: approximation of “uncoupled” polarizabilities

We now account for the effects of polarization of C60 by an incoming electron in addition

to the encapsulated atom polarization. This is done in a simple approximate way, as is

often done in atomic physics [14]. Namely, the long-range polarization potential of C60 is

approximated by a static dipole polarization potential Vp(r):

Vp(r) = −
α

2(r2 + b2)2
. (12)

Here, α is the static dipole polarizability of C60 and b is the “cut-off” parameter of the order

of the radius of C60, r0.

In the present work, the C60 effective potential V eff
C60

(r), “felt” by an incident electron,

is approximated by the sum of the short-range potential Uc(r), Eq. (1), and the long-range

polarization potential Vp(r), Eq. (12):

V eff
C60

(r) = Uc(r) + Vp(r). (13)

In the given approximation, the wavefunctions of the ground and excited states of the

atom A are calculated with the help of Eq. (2), where the potential Uc(r) is replaced by

V eff
C60

(r). Such defined wavefunctions are used in calculations of e+A@C60 elastic-scattering

phase shifts with account for dynamical polarization of the atom A in the presence of po-

larizable C60. This is done in the framework of the above described Dyson formalism for
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the self-energy part of the Green function of an incident electrons, Eqs. (5)-(11). The deter-

mined phase shifts are plugged into Eqs. (5) and (7) to meet the goal of the study, that is

to account for the impact of both dipole static polarization of C60 (in the model approxima-

tion) and dynamical polarization of the encapsulated atom A (on the first-principle basis)

on e + A@C60 scattering.

In the developed approximation, the polarizabilities of C60 and A are, obviously, not

coupled with each other (no interelectron interaction between the electrons of A and C60).

This approximation is referred to as the approximation of “uncoupled” polarizabilities of C60

and A in the present paper.

3. Polarizable A and C60: approximation of “coupled” polarizabilities

In the present paper, the term “coupled polarizabilities” of A and C60 means coupling

between excited configurations of A and C60, both of which are caused by an incident

electron. The corresponding correction to e + A@C60 scattering is in addition to the above

discussed effect of “uncoupled” polarizabilities of A and C60. In the present work, this is

done, first, by adding some specific third order terms of perturbation theory in Coulomb

interaction to the irreducible Σ(ǫ) (Fig. 1). Then, thus re-defined Σ(ǫ) is substituted into

the equation for the reducible part of the Green function Σ̃(ǫ) [Eq. (5) and/or Fig. 2]. The

third order terms in question are depicted with the help of Feynman diagrams in Fig. 3.

Strictly speaking, to calculate the terms depicted in Fig. 3, one needs to calculate wave-

functions of the ground and excited states of the multielectron fullerene cage C60. In the

present paper, we bypass this difficulty by employing a simple and yet reasonable approx-

imation. It is consists in the following. First, it takes into account that the radius r0 of

the C60 cage is bigger than the radius rA of an encapsulated atom A: r0 > rA. Second, it

exploits the fact that, at large distances rp from the target (where rp > r0 > rA), the impact

of the polarization potential of C60 on electron scattering is accounted, to a good approx-

imation, by the static dipole polarization potential, Eq. (12), whereas the polarization of

C60 at smaller distances is approximately accounted by the phenomenological short-range

square-well potential, Eq. (1), itself. Note, the latter being phenomenological, accounts only

on the average for various virtual excitations of multiple low-energy resonances from the

”sea” of the detached electrons of C60. This potential, thus, cannot by itself predict those
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FIG. 3. The multielectron processes accounting for the interaction between excited configurations

of C60 and A brought about by an incident electron. Lines marked as “C60”and “m′” denote the

core and excited stated of the fullerene cage C60, respectively. Other notations are the same as in

Fig. 1.

resonances. This leads to obvious limitation of the present theory. Hence, rp > r0, rp being

the important electron-projectile distance from the center of C60. Next, as a not too strong

exaggeration, let us regard that rp ≫ r0 ≫ rA. Then, the Coulomb interaction between the

incident electron and C60’s electrons, V (rp, rC) ∝ |rp − rC|
−1, and that one between the

C60’s electrons and electrons of the encapsulated atom A, V (rA, rC) ∝ |rA − rC|
−1, turn,
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approximately, into the long-range dipole potentials:

V (rp, rC) ∝
rprC

r
3
p

, V (rA, rC) ∝
rArC

r
3
C

. (14)

Hence, the exact Coulomb interactions, represented by the first and second wavy lines in the

diagrams of Fig. 3, can now be replaced by their approximate values defined by Eqs. (14).

This is equivalent to accounting for the impact of only dipole polarization of C60 on electron

scattering. The impact can be expressed via the known dipole polarizability α of C60, similar

to how it has been done in Ref. [15]. One can show that this is equivalent to making simple

replacements

|V |2 → |V [1− α(ǫℓ − ǫ′ℓ)/r
3
0]|

2 (15)

in the diagrams (a) and (c) of Fig. 1, and

|V |2 → |V [1− α(ǫℓ − ǫ′ℓ)/r
3
0]

×V [1− α(ǫℓ − ǫm)/r
3
0]|. (16)

in the diagrams (c) and (d) of Fig. 1. Next, the re-calculated Σ(ǫ) (Fig. 1) is substituted into

Eq. (5) for Σ̃(ǫ). The latter concludes the problem of e+A@C60 scattering in the framework

of the approximation of coupled polarizabilities of C60 and A.

III. RESULTS AND DISCUSSION

A. Preliminary notes

First, in order the modeling of the C60 cage by the homogeneous spherical potential Uc(r),

Eq. (1), made sense, the wavelength λ of an incident electron must exceed greatly the bond

length D ≈ 1.44 Å between the carbon atoms in C60. In the present work, therefore, the

maximum energy of an incident electron is capped at approximately 4 eV. Up to this energy,

λ >∼ 6 Å, so that, indeed, λ≫ D.

Second, given that the outer radius of C60 is approximately 8 a.u., one can easily estimate

that the maximum contribution to electron scattering comes from the first five electron

partial waves with ℓ ranging from 0 to 4. Correspondingly, in the present work, the maximum

value of ℓ is capped at ℓ = 4.
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Third, when accounting for multipolar excitations of the electronic subshells of an en-

capsulated atom A by an incident electron, the performed calculations accounted for the

monopole, dipole, quadrupole, and octupole excitations of outer subshells of the atoms. For

the chosen in the present paper set of encapsulated atoms, these are the 6s2 and 5p6 subshells

in Ba, 5p6 in Xe, and 2p6 in Ne.

Fourth, since one of the main goals of this study is to explore how both the size of an

atom and its dynamical polarizability might affect electron scattering off polarizable A@C60,

the study is run along the path from the most compact to the most diffuse encapsulated

atom: e +Ne@C60 → e+Xe@C60 → e + Ba@C60.

Finally, in order to facilitate the reader to cope with various abbreviations for the utilized

approximations, adopted in the present paper, these are as follows:

• HF stands for the model static HF approximation, where both the encapsulated atom

A and the fullerene cage C60 are regarded as non-polarizable targets (see subsection

A above).

• SCAT(A@) marks the approximation, which accounts for polarization of only the

encapsulated atom A (see subsection 1 of subsection B).

• SCAT(A) designates the approximation as the above one, but in relation to a free

atom A.

• SCAT(UP) labels the approximation of uncoupled polarizabilities of C60 and A (see

subsection 2 of subsection B).

• SCAT(CP) stands for the approximation of coupled polarizabilities of C60 and A (see

subsection 3 of subsection B).

B. e+Ne@C60 scattering

Based on our previous HF calculated data for e + A@C60 scattering [1–3], it is known

that the encapsulation of Xe into the C60 cage practically does not change electron elastic

scattering off e+A@C60 compared to scattering by empty C60 calculated within the model

static approximation. This is because the Xe atom is compact. Obviously, one can expect

the same for even smaller compact atoms, like the Ne atom. In addition, the Ne atom
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has a smaller polarizability α than that of Xe or Ba. For example, experimental values

of the static dipole polarizabilities of the ground states of Ne, Xe, and Ba are as follows:

α(Ne) ≈ 2.67, α(Xe) ≈ 27.34, and α(Ba) ≈ 269 a.u. [16]. Therefore, the study of e+Ne@C60

scattering makes a particular sense in two respects. First, it allows to understand better

how accounting for polarization of only C60 affects electron elastic scattering off C60 doped

with a compact static atom. Second, the study can shed light on whether the coupling

between the weak polarizability of a compact atom A with the large polarizability of C60

(α ≈ 850 a.u. [15]) can have a noticeable effect on e + A@C60 scattering compared to that

calculated in the SCAT(UP) approximation. Common sense suggests that the effect should

be negligible. However, as one of key findings of the present work, such intuitive perception

turns out to be not entirely correct.

Calculated HF, SCAT(A@), SCAT(A), SCAT(UP), and SCAT(CP) data for the real

parts δℓ(ǫ) of phase shifts, as well as the partial σℓ(ǫ) and total σel(ǫ) cross sections of a

e+Ne@C60 elastic collision are displayed in Fig. 4.

One can see that the difference between calculated model static HF data and SCAT(@A)

data for all partial electronic waves is negligible. This agrees with common sense, in view

of insignificant polarizability of Ne. The data also demonstrate that the polarizability of

a free small-sized compact atom, like Ne, remains small upon its encapsulation inside C60.

Indeed, in the opposite case, the difference between calculated static HF and SCAT(A@)

data would have been noticeable.

Let us now explore the calculated data for the p-, d-, f -, and g-partial electronic waves

scattered off Ne@C60. One can conclude that simultaneous accounting for polarization of

both Ne and C60 by the scattered electron [SCAT(UP) and SCAT(CP) approximations; dash

and solid lines, respectively] has a huge effect on the corresponding cross sections compared

to when only polarization of Ne is accounted [SCAT(A@), dash-dot line]. This was expected

in view of a large polarizability of C60. Yet, details of how the polarization of C60 affects

e + A@C60 scattering have been cleared up only in the present study, to the authors’ best

knowledge. Next, one can also see that the effect of coupling between the polarizabilities of

Ne and C60 [SCAT(CP) approximation, solid line] on scattering of these partial electronic

waves off e + Ne@C60 is insignificant. Indeed, the calculated SCAT(CP) and SCAT(UP)

(dash line) data are practically identical. This, again, fits common sense, in view of a small

polarizability of Ne.
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FIG. 4. (Color online) Main panels: Calculated partial σℓ(ǫ) and total σel(ǫ) cross sections (a.u.)

for electron elastic scattering off Ne@C60. Insets: Real parts δℓ(ǫ) of the phase shifts (in units of

radian); imaginary parts µℓ = 0 in this energy region. The used styles of the plotted lines mark

results obtained in different approximation utilized in the present work, as follows: dash-dot-dot,

HF; dash-dot, SCAT(A@); dots, SCAT(A) (free Ne); dash, SCAT(UP); solid, SCAT(CP) (the

most complete approximation). Note, the calculated SCAT(A@) and HF data for p-, d-, and, for a

better part of f -partial cross sections are so close to each other that one can hardly tell one from

the other.
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However, the study finds that s-scattering behaves quite differently compared to the

above case of scattering of waves with higher ℓs. In contrast to the above case, we found

both big quantitative and qualitative differences between calculated σSCAT(UP)
s (dash line)

and σSCAT(CP)
s (solid line). Indeed, σSCAT(UP)

s is seen to monotonically increase, whereas,

in contrast, σSCAT(CP)
s develops a strong maximum with decreasing electron energy ǫ. The

reason for the different behavior of σSCAT(CP)
s versus σSCAT(UP)

s becomes clear upon exploring

the corresponding phase shifts. One can see that the phase shift δSCAT(CP)
s (solid line on

inset) crosses the value of modulo π/2 at ǫ→ 0, whereas δSCAT(UP)
s (dash line on inset) does

not. Correspondingly, the cross section σSCAT(CP)
s develops a resonance at low ǫ, in opposite

to σSCAT(UP)
s , whereas the already existed Ramsauer minimum shifts towards higher energy.

Note, the behavior of the phase shift δSCAT(CP)
s speaks to the fact that the binding potential

of e + Ne@C60 gets stronger when the polarizabilities of Ne and C60 are coupled. This

results in the emergence of an additional bound s-state in the field of e+Ne@C60 (compared

to the approximation on uncoupled polarizabilities), thereby pushing δSCAT(CP)
s to a larger

value than that of δSCAT(UP)
s , at ǫ→ 0. This is in accordance with the well known Levinson

theorem: δℓ → nℓπ at ǫ → 0, nℓ being the total number of bound ℓ-states in the system

(valid when projectile-target electron exchange is neglected, as in the present work).

Another interesting effect relevant to s-scattering is that coupling between polarizabilities

of C60 and Ne is found to largely cancel out the strong polarization impact of C60 on σ
Ne@C60

s

in a broad energy region to the right of the maximum in σSCAT(CP)
s (solid line). Indeed, there,

σSCAT(CP)
s differs only somewhat from both σHF

s (dash-dot-dot line) and σSCAT(A@)
s (dash-dot

line), but it differs significantly from σSCAT(UP)
s (dash line). We, thus, have unraveled an

interesting effect. Namely, it is found that coupling of the large polarizability of C60 with the

considerably smaller polarizability of a compact encapsulated atom can have a significant

impact on scattering of at least some of electronic partial waves off A@C60. This, in turn,

affects the total electron elastic scattering cross section σA@C60

tot as well, in the corresponding

region of electron energies (cp. dash and solid lines in the right bottom panel of Fig. 4).

Next, we comment on one more interesting finding related to scattering of a g-partial

electronic wave. The g-wave is seen to induce a strong narrow resonance in the g-partial

scattering cross section σg of e +Ne@C60 scattering. The resonance is predicted by each of

the utilized approximation: HF, SCAR(@A), SCAT(UP), and SCAT(CP). The origin of this

resonance in g-scattering was established earlier in Refs. [4, 12], where it was shown that
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this is a shape resonance. One can see that the resonance in the cross section σg, calculated

both in SCAT(UP) and SCAT(CP) approximations, emerges at noticeably lower energies

and becomes significantly narrower than that in σg calculated in the framework of HF or

SCAT(@A). The emphasized difference is interesting. The fact that the g-resonance emerges

at the lowest energy and is the most narrow when calculated in the SCAT(CP) framework

means that coupling between polarizabilities of C60 and A can result in a much stronger

binding potential of A@C60 than that calculated otherwise.

Lastly, the performed calculations demonstrate that accounting for polarization of A@C60

by a scattered electron results in the emergence of near-zero minima in all partial cross

sections σℓs. We refer to these minima as the Ramsauer minima by analogy with the known

Ramsauer minima in electron elastic-scattering cross sections of some of free atoms (e.g., Xe).

The presence of Ramsauer minima in all σℓs for e+Ne@C60 scattering might prompt one to

conclude that the total scattering cross section σNe@C60

tot could be so small that it might fall

below the electron elastic-scattering cross section of free Ne, σNe
tot, at some electron energy.

This, however, does not happen, because Ramsauer minima in the partial cross sections

σNe@C60

ℓ for different ℓs emerge at somewhat different energies. Therefore, the minimum

value of the total cross section σNe@C60

tot remains far greater than the cross section σNe
tot. In

the present case, σNe@C60

tot

∣

∣

∣

min
≈ 60 a.u. at ǫ ≈ 1.4 eV, whereas the electron elastic-scattering

cross section of free Ne is one order of magnitude smaller, σNe
tot ≈ 6 a.u., at 1.4 eV (cp. a

solid or a dash line with a dot line in right bottom panel of Fig. 4).

C. e+Xe@C60 scattering

We next explore changes in e + A@C60 scattering with increasing size and polarizability

of an encapsulated atom A which, however, is still a relatively compact atom of moderate

polarizability. To meet the goal, we study e+Xe@C60 scattering. Corresponding calculated

data are displayed in Fig. 5.

Overall important similarities in, and difference between e +Xe@C60 and e+Ne@C60

scattering surface upon comparison of Fig. 5 with Fig. 4.

We start focusing on similarities in e+Xe@C60 and e +Ne@C60 scattering. The overall

impact of polarization of Xe@C60 by an incident electron on e +Xe@C60 scattering remains

significant. It results in the corresponding partial and total cross sections that differ strongly
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from those calculated without regard for the polarization effect. Next, similar to s-scattering

off Ne@C60, the effect of coupled polarizabilities of Xe and C60 [SCAT(CP) approximation]

impacts strongly the s-scattering cross section. Indeed, this impact results in a strong shape

resonance in σSCAT(CP)
s (solid line) below 1 eV of the electron energy. Furthermore, when

coupling between polarizabilities of Xe and C60 is accounted in the calculation of s-scattering,

it largely cancels out the overall polarization impact of Xe@C60 on s-scattering in a broad

energy region to the right of the maximum in σSCAT(CP)
s (solid line). Indeed, there, the

s-cross section becomes about the same as the one calculated in the SCAT(A@) and HF

approximations (dash-dot and dash-dot-dot lines). The emergence of the noted cancelation

effect in two independent calculations – s-scattering off Xe@C60 and off Ne@C60 – speaks to

the fact that the discovered effect is not accidental. Next, coupling between polarizabilities

of Xe and C60 results in the emergence of Ramsauer minima in corresponding σℓs. Lastly,

similar to e +Ne@C60 scattering, the total cross section σ
Xe@C60

tot exceeds noticeably that for

electron scattering off free Xe (note, the cross section of electron elastic scattering off free

Xe has its own low-energy Ramsauer minimum as well, in contrast to that for Ne).

The most striking differences between e+Xe@C60 and e+Ne@C60 scattering consist in

the following. First, in contrast to a d-wave scattering off Ne@C60, the d-wave scattering

off Xe@C60 is subject to a particularly strong impact of coupled polarizabilities of Xe and

C60. Indeed, in the present case, the d-scattering cross section σ
SCAT(CP
d (solid line) devel-

ops the intense shape resonance below of 1 eV and differs qualitatively and quantitatively

from calculated data obtained in the frameworks of the SCAT(UP) (dash line) and other

utilized approximations. Second, the overall differences between calculated SCAT(UP) and

SCAT(CP) electron scattering cross sections (both partial and total) are noticeably stronger

in the case of e +Xe@C60 scattering than in e+Ne@C60 scattering.

In summary, the highlighted differences between e +Xe@C60 and e+Ne@C60 underpin

the effect of a bigger size and greater polarizability of a compact encapsulated atom A on

e+ A@C60 scattering.

D. e+ Ba@C60 scattering

In the earlier study of e+ Ba@C60 scattering [4], the impact of the polarization of only

encapsulated Ba on the scattering process was accounted in the calculations [the SCAT(A@)
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approximation]. This impact was found to be considerable, due to a large value of the Ba

polarizability. The e+ Ba@C60 scattering, therefore, stands out of the cases of e+Ne@C60

and e+Xe@C60 scattering. It sheds light on features of the impact of coupled polariz-

abilities of a highly-polarizable atom and highly-polarizable C60 on e + A@C60 scattering.

Corresponding calculated data for e + Ba@C60 scattering are displayed in Fig. 6.

An interesting feature, which caught our attention in the first head, is a cancelation effect

of a new quality in the scattering process, compared to electron scattering off Ne@C60 and

off Xe@C60 cases. Namely, the account for the effect of coupled polarizabilities of Ba and

C60 in the calculation has practically annihilated the overall polarization impact of Ba@C60

on the s-, p-, and d-partial cross sections above approximately 1.4 eV of the electron energy.

This follows clearly from the comparison of calculated σ
SCAT(CP)
ℓ (solid lines) and σHF

ℓ (dash-

dot-dot lines) for ℓ = s, p, and d. There, indeed, σ
SCAT(CP)
ℓ ≈ σHF

ℓ . For a p-cross section,

this is true even for energies down to approximately 0.4 eV, to a good approximation. For

higher ℓs, especially for the g-cross section, as well as for the total cross section σtot above

about 1.6 eV, calculated SCAT(CP) data are noticeably closer to HF data than to cross

sections calculated by accounting for polarization of only Ba (dash-dot line) or C60 (dash

line).

The reader can spot a number of other impressive differences between σℓs, or between

σtots for e+ Ba@C60 scattering calculated in each of the utilized approximations, and/or

between calculated data for e + Ba@C60 scattering, on the one hand, and e+Ne@C60 and

e+Xe@C60 scattering, on the other hand.

In summary, similar to the earlier commentary on the differences between electron scat-

tering off Ne@C60 and Xe@C60, the highlighted features of electron scattering off Ba@C60

underpin, on a bigger scale, the effect of a greater size and polarizability of a compact

encapsulated atom A on e+ A@C60 scattering.

IV. CONCLUSION

The present work provides researchers with the physically transparent, relatively simple,

and reasonably complete approximation applicable to the problem of low-energy electron

elastic scattering off endohedral fullerenes A@CN . One of the important elements, inherent

to the developed approximations, is the ability to account for coupling between the electrons
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of CN and atom A without reference to complicated details of the electronic structure of CN

itself. As of today, the present study provides the most complete information about features

of low-energy e+A@C60 elastic scattering brought about by the confinement-related, static

related, and polarization-related impacts of the individual and coupled “members” of A@C60

on electron elastic scattering off this complex target. Each of them brings specific features

into e+A@C60 scattering. Spectacular effects in the scattering process, primarily associated

with polarization of A@C60 by an incident electron, have been unraveled, scrutinized, and

thoroughly detailed both quantitatively and qualitatively in a physically transparent manner.

We accounted for five scattering partial waves with ℓ ranging from 0 to 4 in the cal-

culations (as was stressed in the paper, this number of electronic waves is adequate for

the description of electron scattering in the considered electron-energy region), and demon-

strated that almost each partial cross section has a deep Ramsauer-type minimum in the

e+A@C60 scattering cross sections. It is important to emphasize that the revealed effect in

e+A@C60 scattering is much more interesting than the similar effect in low-energy electron

scattering off a free atom, because it permits to separate the contribution of different partial

ℓ-electronic waves in the angle-differential scattering cross section, since the position of a

minimum depends on the scattering angle.

A practical application of the developed in the present work formalism to the calculation

of e + A@C60 scattering is getting increasingly complicated with increasing number of the

partial electronic ℓ-waves included into the calculation. Nevertheless, to cover a broader

region of electron energies with the aim to get a deeper insight into general features of

e + A@C60 scattering, we accounted for scattering electronic waves up to a g-wave in the

performed calculations. The contribution of this wave proved to be rich in structure.

One of the results of significant novelty is that not only the individual impacts of polar-

ization of the atom A and C60 on e + A@C60 scattering are generally important, but the

correction term to e+A@C60 scattering, brought about by interference of polarizabilities of

the atom A and C60, is essential. The significance of the impact of interference of polarizabil-

ities of C60 and A on electron scattering increases essentially with increasing polarizability

of the atom A. The interference of polarizability leads to a strong violation of the phase

additivity rule.

The results of this paper demonstrate that the interference of polarizabilities is a well

observable strong effect. A good example proved to be Ba@C60 where this effect modifies
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considerably, both quantitatively and qualitatively, the partial cross sections for e+Ba@C60

scattering at lower energies, but largely annihilates the whole polarization impact on scat-

tering of s-, p-, d-, and f -partial waves at higher energies.

Lastly, in the present work, we performed the numeric calculations of scattering phases

δℓ(ǫ) down to very low incoming energies ǫ of about 0.001 Ry. By considering the trend

of scattering phases at these electron energies and extrapolating their values to the zero

energy, we now make the prediction of the existence of negative ions A@C60
− of different

total angular momenta. To do so, let us refer to the well-known Levinson theorem in

scattering theory [17]. In its generalized form, the Levinson theorem can be written as

δℓ(ǫ)|ǫ→0 → (Nnℓ
+ qℓ)π. Here, Nnℓ

is the number of closed subshells with given ℓ in the

ground-state configuration of the encapsulated atom, whereas qℓ is the number of additional

empty bound states with the same ℓ in the field of A@C60. By comparing the final values of

calculated phases (solid lines in Figs. 4-6) at ǫ→ 0 with the characteristic values of Nnℓπ for

Ne, Xe, and Ba, one can easily conclude about the existence of fullerenes anions Ne@C−

60,

Xe@C−

60, and Ba@C−

60 where the attached electron resides either in the state s, or p, or d,

or f .

The authors hope that the present work will prompt other theorists to perform more

rigorous calculations of e + A@C60 scattering. We urgently need experimental data on this

process. We do hope that the result of this paper will stimulate experimentalists to perform

corresponding measurements.

V. ACKNOWLEDGEMENTS

V.K.D. acknowledges the support by NSF Grant No. PHY-1305085.

22



0

200

400

600

 

 

 

σσσσ
s

0

200

400

600
σσσσ

f

  

 

 

0

1000

2000

3000

4000 σσσσ
p

 

0

500

1000

1500 σσσσ
g

  

 

0 1 2 3 4

0

500

1000

1500 σσσσ
d

 

0 1 2 3 4

0

1000

2000

3000

SCAT(A) (free Xe)

HF

SCAT(A@)

SCAT(UP)

SCAT(CP) σσσσ
tot

Electron energy (eV)

e
 +

 X
e
 @

 C
6
0
  e

la
s
ti
c
-s

c
a
tt

e
ri
n
g
 c

ro
s
s
 s

e
c
ti
o
n

  

0 1 2 3 4

16

18

20

22  δδδδ
s

 

 

0 1 2 3 4

0

2

4  δδδδ
f

 

 

0 1 2 3 4

14

16
 δδδδ

p

 

 

 

0 1 2 3 4

0

2

4  δδδδ
g

 

 

 

0 1 2 3 4

8

10

12
 δδδδ

d

 

 

 

FIG. 5. (Color online) Main panels: Calculated partial σℓ(ǫ) and total σel(ǫ) cross sections (in

atomic units) for electron elastic scattering off Xe@C60. Insets: Real parts δℓ(ǫ) of the phase shifts

(in units of radian); µℓ = 0 in this energy region. The used styles of the plotted lines mark results

obtained in different approximation utilized in the present work, as follows: dash-dot-dot, HF;

dash-dot, SCAT(A@); dots, SCAT(A) (free Xe); dash, SCAT(UP); solid, SCAT(CP) (the most

complete approximation).
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FIG. 6. (Color online) Main panels: Calculated partial σℓ(ǫ) and total σel(ǫ) cross sections (in

atomic units) for electron elastic scattering off Ba@C60. Insets: Real parts δℓ(ǫ) of the phase shifts

(in units of radian); µℓ = 0 in this energy region. The used styles of the plotted lines mark results

obtained in different approximation utilized in the present work, as follows: dash-dot-dot, HF;

dash-dot, SCAT(A@); dash, SCAT(UP); solid, SCAT(CP) (the most complete approximation).
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