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We study the association and dissociation dynamics of weakly bound heteronuclear Feshbach
molecules using transverse RF-fields for expected parameters accessible through the microgravity
environment of NASA’s Cold Atom Laboratory (CAL) aboard the International Space Station,
including sub nanoKelvin temperatures and atomic densities as low as 108/cm3. We show that under
such conditions, thermal and loss effects can be greatly suppressed resulting in high efficiency in both
association and dissociation of Feshbach molecules with mean size exceeding 104a0, and allowing
for the coherence in atom-molecule transitions to be clearly observable. Our theoretical model
for heteronuclear mixtures includes thermal, loss, and density effects in a simple and conceptually
clear manner. We derive the temperature, density and scattering length regimes of 41K-87Rb that
allow optimal association/dissociation efficiency with minimal heating and loss to guide upcoming
experiments with ultracold atomic gases in space.

PACS numbers: 34.50.-s,34.50.Cx,67.85.-d,67.85.-d

I. INTRODUCTION

Association and dissociation of ultracold Feshbach
molecules have been enabling probes of fundamental
physics throughout the last decade [1, 2]. Produced near
Feshbach resonances where the atomic s-wave scattering
length a is magnetically tunable, these molecules have
large spatial extents and extremely weak binding ener-
gies. Feshbach molecules formed in Fermionic gases were
crucial for the exploration of BEC-BCS crossover physics
[3–12]. Their heteronuclear counterparts are important
ingredients for the creation of ultracold polar molecules
[13–23] and can be used to study universal few-body phe-
nomena [24–30]. Additionally, Feshbach molecules can be
used as sources of entangled states [31–41], or to test for
variations of fundamental constants with unprecedented
sensitivity [42–45].
Microgravity offers several fundamental advantages to

the study of cold atoms that has sparked a growing inter-
est [46–48] and high profile experimental efforts [49–51].
Most prominently, ultracold atoms released into micro-
gravity enable interrogation and observation times or-
ders of magnitude longer than their earthbound coun-
terparts, even in a compact setup, laying the foundation
for the next generation of space-based atom interferom-
eter sensors for both fundamental and applied physics
applications [52–54]. Secondly, the removal of a lin-
ear gravitational potential allows for enhanced delta-kick
cooling and adiabatic decompression to conserve phase
space density while lowering both temperature and den-
sity [55–58], opening the door to a new parameter regime
of ultralow densities and ultracold temperatures. Lastly,
microgravity negates the “gravitational sag” that gives
a mass-dependent displacement of ultracold gases from
their trap centers [60, 61], limiting the overlap of multi-
ple, distinct atomic species prepared at low temperatures

in a common trap. Eliminating this sag removes a dom-
inant systematic error in equivalence principle measure-
ments that use dual species atomic clouds as quantum
test masses [53, 54, 59]. Therefore, the unique environ-
ment of space provides a means to study high phase-
space densities of single- or multi-species gases in new
regimes of temperature and density held by vanishingly-
weak traps or even in extended free fall.

To this end, NASA’s Cold Atom Laboratory (CAL) is
scheduled for launch in 2017 as a multi-user facility to
the International Space Station (ISS) to study ultracold
atoms, dual-species mixtures, and/or quantum degener-
ate gases of bosonic 87Rb and 39K or 41K in persistent
microgravity [62]. CAL is designed as a simple, yet ver-
satile, experimental facility that features numerous core
technologies for contemporary quantum gas experiments
including tunable magnetic fields [steady state, radio fre-
quency (RF) and microwave] for atomic state manipu-
lation and access to homonuclear or heteronuclear Fes-
hbach resonances, Bragg beams for dual species atom
interferometry, and high-resolution absorption imaging
capabilities.

In this paper we develop a simple and intuitive descrip-
tion of the association and dissociation of heteronuclear
Feshbach molecules using oscillating magnetic fields.
We further apply this general treatment to 41K87Rb
molecules within the microgravity regime at CAL. Note
that our model does not explicitly incorporate many-
body effects as these corrections should not qualitatively
alter the results in the ultra-low temperature and den-
sity regimes relevant to CAL. However, our results high-
lights the coherent properties of association and disso-
ciation of Feshbach molecules and qualitatively includes
the effects of density, temperature, and few-body losses.
Our results are consistent with previous experiments per-
formed at the usual temperatures and densities relevant
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for terrestrial experiments [63, 64]. We find that the effi-
ciency of association and dissociation of extremely weakly
bound Feshbach molecules are greatly enhanced in the
CAL environment allowing for observation of their co-
herent properties with high accuracy and minimal inco-
herent effects associated with heating and losses. From
our analysis, we identify the conditions (in terms of the
experimentally relevant parameters) a system needs to
satisfy in order to achieve high efficiency for both associ-
ation and dissociation.

II. MOLECULAR ASSOCIATION AND

DISSOCIATION

The use of RF fields for association and dissociation of
Feshbach molecules [65–67], as well as for the control of
interatomic interactions [68–71], is today one of the most
widely applied tool in ultracold atomic and molecular
gases since it provides an exquisite accuracy to reveal de-
tails of the interactions and dynamics [1, 2]. The scheme
we employ for Feshbach molecule association and disso-
ciation uses an oscillating RF magnetic-field (transversal
to the direction of the main Feshbach field) which cou-
ples atomic hyperfine states whose ∆mf = ±1, where
mf is the azimuthal component of the hyperfine angular
momentum f . Provided that the magnetic field modula-
tion frequency, ω/2π, is resonant with a single hyperfine
transition for one of the species (i.e., no other hyperfine
states are nearby), the interaction that defines the cou-
pling between the relevant states can be stated as

W (t) =
~Ω

2

(

|α〉〈α′|+ |α′〉〈α|
)

cosωt, (1)

where Ω/2π is the atomic Rabi-frequency while |α〉 ≡
|fαmfα〉 and |α′〉 ≡ |fα′mfα′

〉 are the two hyperfine states
satisfying the condition ∆mf = mfα −mf ′

α
= ±1. One

interesting aspect of this scheme is that it allows for
choosing the free-atom initial state in a weakly interact-
ing spin state at magnetic fields near the Feshbach res-
onance, avoiding large three-body losses that otherwise
arise for resonantly interacting Bosonic gases. Relevant
to CAL, an initial weakly interacting mixture of Rb and
K atoms in the |10〉 and |11〉 states, respectively, would be
available to access Feshbach molecules in the |11〉 atomic
states of both species at magnetic fields near the broad
resonance at 39.4 Gauss [64, 72–74]. However, we will
keep our theoretical model general.
Our model for molecular association and dissociation is

derived from the Floquet formalism [75], appropriate for
time-periodic Hamiltonians, and assumes zero-range in-
teratomic interactions [76]. Although more sophisticated
theoretical models exist [1, 2], the use of zero-range in-
teractions will allow us to extract the important param-
eters controlling the various aspects of molecular associ-
ation and dissociation relevant for experiments. Within
our framework, the Floquet Hamiltonian for two atoms
in the presence of an external field (periodic in time) is

written as

HF = H + |β〉W (t)〈β| − i~
∂

∂t
(2)

where H is the bare, time-independent, two-atom Hamil-
tonian whose eigenstates are ψν with energies Eν , and
|β〉 is the internal state for the spectator atom, i.e.,
the atom not affected by the external field. We seek
for the solutions of the Floquet Schrödinger equation,
HFΨF = εΨF , with quasi-eigenenergy ε and quasi-
eigenstate

ΨF (~r, t) =
∑

nν

cnνψν(~r)e
inωt. (3)

In the above equation, ~r is the interparticle vector, and
n is the photon number. Considering only s-wave inter-
actions, the bare wavefunction can be written as

ψν(~r) =
1

2

√

1

π

fν(r)

r
|Sν〉 (4)

where |Sν〉 = {|αβ〉, |α′β〉} represents the two-atom spin
states and fν is their corresponding radial wave function.
Now, using Eqs. (3) we can write the Floquet Schrödinger
equation, after projecting out the base ψν(~r)e

inωt, as

∑

n′ν′

[

Eνδnn′δνν′ +
~Ων

ν′

2

(

δn,n′+1 + δn+1,n′

)

+(n~ω − ε)δnn′δνν′

]

cn
′

ν′ = 0, (5)

where

Ων
ν′ = Ω

∫

∞

0

f∗

ν (r)fν′ (r)dr, (6)

defines the two-atom Rabi-frequency. Note that Ων
ν′ is

non-zero only for values of ν 6= ν′ satisfying the se-
lection rules (∆mf = ±1) imposed by the form of the
atom-external field coupling in Eq. (1). The solutions of
Eq. (5) fully determine the time-evolution of the atomic
and molecular states coupled by the external field. In
practice, for values of ~Ων

ν′ ≪ |Eν − Eν′ |, only states
with |n| = 0 and 1 are necessary to accurately describe
the system.
For our present study, atoms in the spin state |αβ〉

are unbound while atoms in the |α′β〉 state are bound
in the Feshbach molecule. (Note that we will denote the
corresponding states for atoms in spins |αβ〉 and |α′β〉 as
ν ≡ k and ν ≡ m, respectively.) In that case, the two-
atom Rabi-frequency (6) is determined from the wave
functions

fk(r) =

√

2µǫr
π~2k

sin(kr − ka′), (7)

fm(r) =

√

2

a
e−r/a, (8)

where µ is the two-body reduced mass, k2 = 2µE/~2 (E
is the collision energy), and a and a′ are the scattering
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lengths for atoms in the |α′β〉 and |αβ〉 spin states, re-
spectively. Note that in Eq. (7) we have introduced an
arbitrary energy scale, ǫr. Our primary motivation in
writing the collisional wavefunction as in Eq. (7) is that
it preserves the usual energy normalized form of a scat-
tering state and, therefore, leads to scattering properties
obeying their proper Wigner threshold laws. In our ap-
proach, the necessity of the introduction of a new energy
scale originates from a simple inspection of Eq. (6) —
fk needs to have units of 1/length1/2 and that can be
accomplished by introducing εr. We set ǫr = ǫRb + ǫK
where ǫi = ~

2(6π2ni)
2/3/2mi is the Fermi energy (char-

acterizing the average local energy of the gas), with ni

and mi being the density and mass for the atomic species
i, respectively. This allows our model to qualitatively ac-
count for density effects in a physically meaningful way.
[For instance, one can show that setting ǫr this way the
integral of f2

k up to the average interatomic distance

(n−1/3) is proportional to n1/3/k, i.e., the ratio between
the de Broglie wavelength and the average interatomic
distance.] Similar ways to qualitatively account for den-
sity effects have been successfully used in few-body mod-
els [77–81] in order to explain molecular formation and
other important properties relevant for ultracold gas ex-
periments.
Having established the form of the wavefunction for

the relevant states, we can now substitute Eqs. (7) and
(8) into Eq. (6), in order to obtain the molecular Rabi-
frequency Ωm ≡ Ωk

m,

Ωm(k) = Ω

√

4µǫr
π~2

(a− a′)

(1 + k2a2)
(ka)1/2. (9)

We obtained this result within the limit of ka′ ≪ 1, as-
sumed for a weakly interacting scattering state in Eq. (7),
and neglecting corrections of the order of (ka′)2. As one
can see, due to the dependence on ǫr, the molecular Rabi
frequency is also density dependent (Ωm ∼ n1/3). In
Fig. 1 we show the ratio of the molecular to atomic
Rabi frequencies (Ωm/Ω) as a function of both scatter-
ing length and energy (inset), and indicate the low- and
high-energy behavior, i.e., ka ≪ 1 [Ωm ∝ a(ka)1/2] and
ka≫ 1 [Ωm ∝ a/(ka)3/2], respectively.
We now have defined all elements necessary to solve

Eq. (5). As mentioned above, in the regime of small
~Ωm, we need only to consider states with |n| = 0 and 1.
Therefore, including only the states {ν, n} = {k, 0} and
{m,−1}, the eigenvalue equation (5) reduces to

(

Ek
~Ωm

2
~Ωm

2
Em − ~ω

)(

c0k
c−1
m

)

= ε

(

c0k
c−1
m

)

, (10)

which is formally equivalent to a two-level system in the
presence of an external field within the Rotating Wave
Approximation (RWA), whose solutions are well known
[82]. The solutions are expected to be accurate provided
~Ωm ≪ |Ek −Em| (see Fig. 2 for a schematic representa-
tion of the level scheme considered), therefore, covering
the parameter regime explored in our studies. As we will
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FIG. 1. Molecular Rabi-frequency Ωm/2π (in units of the
atomic Rabi-frequency, Ω/2π) as a function of scattering
length. For this calculation we used nRb = nK = 108/cm3,
a′ = 100a0, and E/kB = 100pK. In the inset we show the
energy dependence of Ωm/Ω assuming a = 105a0.

see next, the fact that these levels now represent a bound
molecular state and two-atom continuum state, makes it
important to include thermal and loss effects in order to
determine the time evolution process leading to associa-
tion and dissociation of weakly bound molecules. We also
note that our effective two-level model [bound and a sin-
gle continuum state, Eqs. (8) and (7), respectively] incor-
porates effects of other continuum states only to the ex-
tent that our results are thermally averaged. As a result,
our model should be valid for times shorter than 2π/Ωm

—all our studies were performed within this regime—
and does not describe energy shifts of the dressed molec-
ular state [1]. Such shifts, however, should not affect
our studies of the coherent properties of association and
dissociation and the determination of the relevant pa-
rameter regime in which they are most pronounced.

The molecular association scheme, which couples
atomic and molecular states with different mf , is il-
lustrated in Fig. 2 (a). Here, Ek = E and Em =
∆E − Eb − i~γ/2, where Eb = ~

2/2µa2 is the binding
energy of the molecular state and ~γ is its corresponding
width, introduced here to account for the finite lifetime of
the molecular state due to collisions with other atoms and
molecules. This model is valid for times shorter than 1/γ.
Assuming that at t = 0 the atoms are unbound (ν = k),
the probability to find the atoms in the molecular state
(ν = m) at later times, t = τ , is given by the probability
associated to the linear combination of the eigenstates
of Eq. (10), including the corresponding phase evolution
e−iεt/~, satisfying the initial condition at t = 0. In this
case, we obtain

Pm(E, τ) = e−γτ/2

(

Ωm

Ωm
eff

)2
∣

∣

∣
sin

(

eiθm
Ωm

effτ

2

)

∣

∣

∣

2

,(11)
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(association) (dissociation)

FIG. 2. Schematic representation for our present level scheme
for (a) molecular association and (b) molecular dissociation.
Here, ∆E is the energy difference between the relevant two-
atom thresholds, |αβ〉 and |α′β〉, Eb = ~

2/2µa2 is the molec-
ular binding energy, γ is the molecular lifetime (see text) and
E is the energy of the two atoms in the |αβ〉 state. Atomic
and molecular states are coupled via an external field with
frequency ω/2π (with detuning δ) and Rabi-frequency Ω/2π.
EK and Em are given in Eq. (10).

where

Ωm
eff = [γ2 (δ + E

~
)2 + (Ω2

m + (δ + E
~
)2 − γ2

4
)2]

1

4 , (12)

θm =
1

2
tan−1[

(δ + E
~
)γ

Ω2
m + (δ + E

~
)2 − γ2

4

]. (13)

Here, ~δ is the energy detuning from the molecular tran-
sition in Fig. 2 (a). Note that even for δ = 0 —when
one would expect the system to be on resonance— finite
energy and molecular decay effects can lead to an effec-
tive detuning through Eqs. (12) and (13). Note also that
dPm/dτ in the limit τ → 0 is related to the transition
rate derived in Ref. [65] based on the Fermi’s Golden
rule. It is important to emphasize here that for the pro-
cess of molecular association, since there exist a thermal
distribution of initial states [66], the transition probabil-
ity needs to be thermally averaged accordingly to

〈Pm(T, τ)〉 =
2

π
1

2

∫

∞

0

Pm(E, τ)

(kBT )
3

2

E
1

2 e
−

E
kBT dE. (14)

Here we will define the fraction of molecules formed (as-
suming an equal number of initial atoms of different
species), after a square-pulse of duration τ to be given
simply by

Nm

Na
= 〈Pm(T, τ)〉. (15)

We note that, after the association pulse is applied, dy-
namical effects can arise due to photon recoil of the atoms
and molecules leading to additional molecular association
and heating [83]. However, in contrast to photoassocia-
tion, this effect should be negligible for our scheme as the
RF photon recoil energies are many orders of magnitude
smaller than even the picoKelvin temperature regime rel-
evant to near-term studies in microgravity.
For molecular dissociation, our scheme is represented

in Fig. 2(b), leading us to set Ek = 0 and Em = E +

∆E − Eb − i~γ/2 in Eq. (10). Therefore, similarly to
association, we now consider the solutions of Eq. (10)
and assume that the system is found in the molecular
state (ν = m) at t = 0. The probability to find the
system in the unbound state (ν = k) at later times, τ , is

Pk(δ, τ) = e−γτ/2

(

Ωm

Ωk
eff

)2
∣

∣

∣
sin

(

eiθk
Ωk

effτ

2

)

∣

∣

∣

2

, (16)

where

Ωk
eff = [γ2δ2 + (Ω2

m + δ2 − γ2

4
)2]

1

4 , (17)

θk =
1

2
tan−1[

δγ

Ω2
m + δ2 − γ2

4

]. (18)

Here, we note that the energy of the dissociated atoms is
given by the energy detuning ~δ [see Fig. 2 (b)]. As
a result, for dissociation the k dependence of Ωm in
Eq. (9) needs to be replaced by the wavenumber asso-
ciated with the energy detuning, k2δ = 2µδ/~, i.e., the
relevant Rabi-frequency is now dependent on the detun-
ing, Ωm ≡ Ωm(δ). We also note that, for molecular
dissociation, thermal effects can only be introduced via
the Doppler effect, i.e., molecules with different velocities
will experience a different external field frequency, ω/2π.
However, the fact that we assume low temperatures and
low frequency transitions effectively negates the effects
of Doppler-broadening in dissociation (see Section III B).
In that case, the fraction of atoms formed after a square-
pulse of duration τ is given simply by

Na

Nm
= Pk(δ, τ). (19)

Among the conditions for the validity of the above ap-
proach, the requirement that the system is found in the
dilute regime, i.e., na3 ≪ 1 and na′3 ≪ 1, is of crucial
importance. If such conditions are not satisfied, nontriv-
ial finite density effects have to be considered which are
beyond the capability of our current model. Our model
also requires ~Ωm/Eb ≪ 1 in order to avoid free-to-free
transitions during both association and dissociation as
well as multi-photon effects. Although our model could
be extended in order to properly include such effects, it
is of experimental interest to restrict to parameters in
which ~Ωm/Eb ≪ 1 since this is the regime in which
one can associate or dissociate Feshbach molecules more
efficiently and without generating significant heating.

III. RESULTS AND DISCUSSION

The focus of this study is to explore association and
dissociation of heteronuclear Feshbach molecules in the
parameter regime relevant for CAL, i.e., we consider tem-
peratures at or below 1nK and atomic densities as low
as nK = nRb = 108/cm3. We will show that this low-
temperature and low-density regime makes it possible to
observe efficient association and dissociation as well as
their corresponding coherent properties. For our present
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FIG. 3. Molecular association efficiency [Eq. (15)] for a = 104a0 (Eb/h = 642.94Hz), n = 108/cm3, Ω/2π = 0.2kHz, and
different values of T and, consequently, Ωm, as indicated in the figure. For each panel (a)-(d) we display a density plot showing
the pulse length, τ , dependency of the molecular fraction as a function of the detuning, δ, and a figure for a π-pulse (τ = π/Ωm),
displaying both the thermally averaged results [red-solid curves given by Eq. (14)] and the non-averaged results [dashed-green
curves given by Eq. (11), setting E = kBT ]. In the figure we indicate the values for the ratio kBT/~Ωm characterizing the
thermal regime as well as the association linewidth, ∆/2π, which ultimately sets the temperature of cloud after the pulse. The
values for T/Tc in the panels above are (a) T/Tc,Rb ≈ 25.3 and T/Tc,K ≈ 11.4, (b) T/Tc,Rb ≈ 6.33 and T/Tc,K ≈ 2.84, (c)
T/Tc,Rb ≈ 2.53 and T/Tc,K ≈ 1.14, and (d) T/Tc,Rb ≈ 0.25 and T/Tc,K ≈ 0.11. The validity of the model as the system is
cooled into the quantum-degenerate regime (T/Tc < 1) is discussed in Section III A.

studies, we consider fields which are far-detuned from the
atomic transition, i.e., ~Ω/Eb ≪ 1. Ensuring that ~Ω/Eb

is small prevents single-atom spin-flip transitions, which
can reduce the number of atoms in the initial state for
association —for the parameters used here for the atomic
Rabi-frequency and detunings we estimate a 4% proba-
bility for this effect (see Section IIIA).

In the following, we study the case where an RF field
is applied to a heteronuclear mixture of 87Rb and 41K
initially in the |10〉 and |11〉 states, respectively, with
Ω/2π = 0.2kHz for Rb. Molecular association and dis-
sociation are thereby induced at a = 104a0 (Eb/h =
642.94Hz), assuming a′ = 100a0 for the initial atomic
state. Therefore, we are assuming bosonic heteronuclear
Feshbach molecules which are about 10 times larger (and
100 times more weakly bound) than previously studied
[63, 64]. Here, three-body losses that can play an im-
portant role at such large scattering lengths [24, 25], will
be greatly suppressed in the low-density, low tempera-
ture regimes available on CAL. In fact, a detailed analy-

sis of Refs. [84–86], along with some of the experimental
data from Refs. [26, 27], allow us to set γ = 500mHz
for this mixture, implying a molecular lifetime of about
2 seconds. This leaves plenty of time to associate and
dissociate Feshbach molecules with minimal effects from
loss.

A. Molecular Association

Figure 3 shows our results for molecular association
efficiency [Eq. (15)] after a RF-pulse of duration τ , for
temperatures ranging from 1nK to 10pK. For each panel
of Fig. 3 we display a density plot showing the pulse
length dependence of the molecular fraction as a func-
tion of the detuning, δ, and a plot for the corresponding
result for a π-pulse (square with τ = π/Ωm). Note that,
in Fig. 3, we show both the thermally averaged results for
molecular association efficiency (solid red curve) and the
non-averaged results (dot-dashed green curve) in order to
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emphasize the importance of finite temperature effects.
As one can see, the Rabi-oscillation line shape is almost
completely washed-out at high temperatures, while it is
recovered in the low temperature regime. In fact, for
temperatures of 10pK [Fig. 3 (d)], atom-molecule coher-
ences can be clearly seen, along with high association
efficiency.
In Fig. 3, the dimensionless quantity kBT/~Ωm, i.e.,

the ratio between thermal energy and the energy as-
sociated with molecule-photon coupling, helps to define
the regimes in which thermal effects are important. For
kBT/~Ωm > 1 one would expect strong thermal ef-
fects since the atoms’ motions are significant over the
timescales for association. This behavior is clear from
Fig. 3 where one can see that whenever kBT/~Ωm > 1
[Figs. 3(a) and (b)] the linewidth, ∆/2π, is mainly de-
termined by the temperature while for kBT/~Ωm < 1
[Figs. 3(c) and (d)] it is determined by the molecular
Rabi frequency. In fact, for kBT/~Ωm < 1, one can show
from Eq. (11), neglecting loss effects, that the linewidth
is approximately given by,

∆

2π
≈ 2

(

2

π

)1/2
Ωm

2π
. (20)

Note that ~∆ will ultimately set the temperature of the
molecular cloud after the pulse. Therefore, besides en-
abling higher efficiency for association, it is also of experi-
mental interest to keep Ωm small so that minimal heating
is introduced in the system. By doing so, however, it im-
plies that longer π-pulses are necessary for association,
which must be balanced with the time scales associated
with losses.
One needs to combine low thermal broadening and

minimal atomic losses to realistically observe efficient
molecular association and atom-molecule coherent ef-
fects. These conditions are given by

kBT

~Ωm
≈

0.54

α

[

µ3/4a1/2(kBT )
3/4

~3/2n1/3

]

≪ 1, (21)

πγ

2Ωm
≈

0.85

α

[

γ̃~1/2n2/3a3/2

(kBT )1/4µ1/4

]

≪ 1, (22)

where we assumed ka ≪ 1 and ~Ω/Eb = α in Eq. (9),
with α < 1 as required for suppression of spin-flip tran-
sitions For the 87Rb-41K system considered, α ≈ 0.31,
leading to a 4% probability of loss from spin-flips. In
Eq. (22) we define the loss rate as γ = γ̃(~na/µ) with γ̃
given in terms of the few-body physics controlling atomic
and molecular losses [25] —in our case, γ = 500mHz
which leads to γ̃ ≈ 4.2. Note that, in the limit of low
losses, Eq. (22) relates to the fraction of atoms remain-
ing after a π-pulse, exp(−πγ/2Ωm) [see Eq. (11)]. There-
fore, Eqs (21) and (22) can be used as a guide in order
to understand the complex parameter regime that leads
to the suppression of thermal effects combined with long
lifetimes. In fact, based on our numerical calculations,
we notice that systems with the same value for kBT/~Ωm

and πγ/2Ωm share the same degree of thermal and loss
effects.
The optimal set of parameters will, however, be de-

termined from the combination of low temperatures and
densities resulting on how strong thermal and loss effects
are on these parameters. For instance, from Eq. (21), it
is clear that thermal effects are more sensitive to temper-
ature than density. [The opposite is true for loss effects
from Eq. (22).]. In order to illustrate how to achieve
an optimal set of parameters we start from typical val-
ues for ground-based experiments [63, 64]: T=100nK,
n=1012/cm3, a=800a0, and Ω=50kHz. In this case,
although losses are not so drastic, πγ/2Ωm ≈ 0.05
(γ=400Hz [84–86]), thermal effects can be significant
since kBT/~Ωm ≈ 1. Although reducing the temperature
to 1nK strongly reduces thermal effects, kBT/~Ωm ≈
0.03, losses now can be important, πγ/2Ωm ≈ 0.15,
but not drastically important. If now the density is
also decreased by a factor 10, both thermal and loss
effects should be suppressed (kBT/~Ωm ≈ 0.07 and
πγ/2Ωm ≈ 0.03). We note, however, that such regime
can only be achieved for these temperatures and den-
sities because the assumed scattering length (a=800a0)
is not so large. As shown in our results in Fig. 3, and
according to Eqs. (21) and (22), as one assumes larger
values of a, high efficiency can only be accomplished by
reducing temperatures and densities drastically. It is in-
teresting to note that since ∆ ∝ Ωm [see Eq. (20)] one
can increase a, and provided that all other relevant pa-
rameters are such that kBT/~Ωm remains the same, the
relative heating, ~∆/kBT will also be the same.
The effects of quantum degeneracy might also be im-

portant at such low temperatures for parameters used
in our calculations (a=104a0 and n=108/cm3) given in
Fig. 3. The critical temperature for condensation is
about Tc,Rb ≈ 40pK and Tc,K ≈ 90pK for 87Rb and
41K respectively [see specific values for T/Tc (Tc ≈
3.31~2n2/3/m) in the caption of Fig. 3]. In the con-
text of molecular association, this means that atoms in
the initial state will have a narrower energy distribution
than a simple thermal cloud. As a result, the thermal
effects displayed in our calculations for when T/Tc < 1
should be minimized, thus improving molecular conver-
sion efficiency. For instance, the thermally averaged re-
sults [see Eq. (14)] in Fig. 3 (c) and (d), should ap-
proach the non-averaged results [see Eq. (11)] as the sys-
tem enters into the quantum degenerate regime. This
expected improvement of molecular association in the
quantum degenerate regime has been verified experimen-
tally in Refs. [87–89] and analyzed in Refs. [66, 90]. To
emphasize the importance of quantum degeneracy, we
can recast the results in Eqs. (21) and (22) in terms of
T/Tc = T/Tc,K = (mK/mRb)T/Tc,Rb, leading to

kBT

~Ωm
≈

1.33

α

[

(T/Tc)
3/4(na3)1/6

(mK/µ)3/4

]

≪ 1, (23)

πγ

2Ωm
≈

0.63

α

[

γ̃(na3)1/2

(µ/mK)1/4(T/Tc)1/4

]

≪ 1, (24)
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and showing the reduction of thermal effects as the T/Tc
decreases, while keep loss effects under control due to
the weaker dependence in Eq. (24) on T/Tc. We also
look for possible mean-field effects that can lead to colli-
sional frequency shifts. In our case, however, collisional
frequency shifts nU0/h (where U0 = 2π~2a′/µ, assuming
a′ = 100a0) is about 0.001Hz and according to the results
in Fig. 3 this would lead to small effects —that is also to
be compared to the local energy ǫr/h ≈ 5.9Hz, as deter-
mined from the discussion preceding Eq. (9) as well as
the thermal energy, kBT/h ≈ 0.2Hz (for kBT = 10pK).
More generally, one can assume that whenever na3 ≪ 1
many-body effects should be suppressed. (In our studies
we have na′3 ≈ 10−11 and na3 ≈ 10−5.) Nevertheless, it
would be interesting to investigate many-body phenom-
ena, such as rogue dissociation [91–94], in the realm of
RF association here employed. (However, we expect such
effects to be small within the parameter regime available
at CAL.) In this case, a more sophisticated model for
a dual specie condensate would be required and thus a
precise analysis of such effects falls beyond the scope of
our present study.

B. Molecular Dissociation

Figure 4 shows results for molecular dissociation ef-
ficiency [Eq. (19)], also assuming densities of 108/cm3,
scattering length of 104a0 and Rabi-frequency Ω/2π =
0.2kHz. In Fig. 4(a) the density plot shows both the pulse
length, τ , and detuning, δ, dependency of the fraction
of atoms created after the dissociation pulse, with Rabi
oscillations characterizing the coherent aspects of such
process. In Figs. 4(b)-(c), we show the fraction of disso-
ciated atoms for a fixed pulse length τ = 25ms, 100ms,
and 250ms respectively. The asymmetric profile for of
the dissociation lineshape is result of the dependence of
Rabi-frequency Ωm/2π on δ [see discussion followed by
Eq. (16)]. As indicated in Figs. 4(b)-(c), this dependence
causes the dissociation probability in Eq. (19) to vanish
as δ1/2 for small δ and as δ7/2 for large δ, resulting in a
asymmetric lineshape.
It is important to note that, while for association

one expect to obtain maximum efficiency for a π-pulse
(τ = π/Ωm) at δ ≈ 0, for dissociation (due to the depen-
dence of Ωm on δ) one now wants to know what is the
detuning leading to maximum dissociation for a given
pulse length as well as the corresponding width of the
dissociation lineshape, since that will ultimately deter-
mine the energy of the dissociated atomic pair. As one
can see from Fig. 4 (a), there is a characteristic pulse
length, τc, beyond which dissociation becomes efficient
and the corresponding linewidth becomes narrow. [See
horizontal dashed line in Fig. 4 (a).] One can show that
this characteristic time scale is given by

τc =
~
5/3π5/3

4[a2(a− a′)4ǫ2rµ
3Ω4]1/3

≈
1.11

α4/3

(

µ a2/3

~ n4/9

)

,(25)

where we assumed α = ~Ω/Eb < 1 in order to ensure the
suppression of spin-flip transitions. (For the parameters
used in our calculations in Fig. 4 we obtain τc ≈ 93ms.)
For long pulses, i.e., for τ ≫ τc, the value of the detuning
in which the dissociation probability is maximized and
the corresponding linewidth are given, respectively, by

δmax

2π
≈

~
5π5

64a2(a− a′)4ǫ2rµ
3Ω4

1

τ4

≈
1.33

α4

µ3a2

~3n4/3

(

1

τ4

)

, (26)

∆

2π
≈ 5

δmax

2π
≈

6.63

α4

µ3a2

~3n4/3

(

1

τ4

)

. (27)

It is interesting noting that for τ ≫ τc the linewidth ∆ ∼
1/τ4 rapidly decreases as a function of the pulse length.
In contrast, for shorter pulses, i.e., for h/Eb ≪ τ ≪ τc,
the dissociation probability is drastically, reduced and
with lineshape parameters given by:

δmax

2π
≈

2

τ

(

3

5

)1/2

and
∆

2π
≈

1

4

(

5

3

)1/2
δmax

2π
.(28)

Therefore, for short pulses, since ∆/2π ∼ 1/τ , one would
expect broad lineshapes and, consequently, substantially
more heating than for long pulses. We note that both our
results for long and short pulses lead to ∆/2π ∼ δmax/2π,
which is in agreement with the experimental findings in
Refs. [31]. We also note that although our longest (τ =
250ms) and shortest (τ = 25ms) pulse lengths are not
strongly in the τ ≫ τc and τ ≪ τc regimes, we still obtain
a reasonable agreement between our numerical results for
δmax/2π and ∆/2π and the ones from Eqs. (26)-(28).
Based on this analysis, it is clear that the conditions

for efficient dissociation relies on the pulse length as well
as the time scale for molecular losses. These conditions
can be expressed as

τc
τ

≈
1.11

α4/3

(

µ a2/3

~ n4/9

)

1

τ
≪ 1, (29)

γτ

2
≈
τ

2

(

nγ̃
~a

µ

)

≪ 1, (30)

For instance, from the above equations we can see that
although increasing the density improves the condition
for long pulses [Eq. (29)] it can lead to stronger losses
[Eq. (30)]. In fact, based on the different dependences on
the experimentally relevant parameters in Eqs. (29) and
(30) one can draw general conclusions concerning disso-
ciation efficiency in different regimes. For high densities,
for instance, Eqs. (29) and (30) indicate that efficient dis-
sociation can only be achieved for small values of a, in or-
der to minimize loss effects. On the other hand, Eqs. (29)
and (30) also indicates that dissociation of very weakly
bound Feshbach molecules (large a) can only be efficient
if one now considers the regime of both low density and
long pulses. We note that, differently than association,
increasing a could in principle lead to a broader linewidth
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FIG. 4. Molecular dissociation efficiency [see Eq. (19)] as
a function of the pulse duration and detuning, (a), and for
a fixed pulse duration, (b)-(c). For longer pulses we obtain
high efficiency and a narrow linewidth, ∆/2π.

(∆/2π ∼ a2) [see Eq. (27)], resulting in dissociated atoms
with higher kinetic energy ~∆ [31]. However, due to the
strong dependency of ∆/2π on τ , it turned out to be
much easier to obtain narrow linewidths for dissociation
than association.
As mentioned in Section II —the discussion follow-

ing Eq. (16)— thermal effects in molecular dissociation
can only be introduced via the Doppler effect. For the
parameters relevant to our problem, however, doppler-
broadening, ∆ω = ω(kBT/mc

2)1/2, is found to be negli-
gible. For instance, for 87Rb the resonant frequency ω/2π
for the transition |10〉-|11〉 is less than 30 MHz for fields
below 40 Gauss which corresponds to Doppler widths be-
low 0.05 mHz at T = 1nK. Nevertheless, for dissociation
one could expect very narrow linewidths for long pulses
(τ ≫ τc), the Doppler-broadening will, at some point, be
the main factor determining the linewidth for molecular
dissociation. Similar to the case of association, molecular
dissociation could also be sensitive to mean-field shifts
(estimated above to be of the order of 0.1Hz). In the

regime of long dissociation pulses, τ ≫ τc, leading to
very narrow linewidths (see Fig. 4), mean-field shifts can
in fact become important in determining the value of the
detuning in which dissociation is maximum. However, in
order to more precisely determine these mean-field shifts
one would need to explore in details the nature of the
molecule-molecule interactions and their universal prop-
erties [95, 96], a task beyond the scope of our present
study.

IV. SUMMARY

We have developed a simple theoretical model capa-
ble of describing association and dissociation of weakly
bound heteronuclear Feshbach molecules with oscillating,
state-changing fields. Our model accounts for coherent
Rabi oscillations within times scales smaller than 2π/Ωm

(which, incidentally, would be damped on one side of
the resonance by the coupling to the continuum) and
also qualitatively includes incoherent phenomena asso-
ciated with atomic and molecular losses. Our analysis
shows that the ultralow temperature and density regimes
expected on CAL are beneficial for studies of associa-
tion and dissociation of Feshbach molecules as well as
the coherent properties of such processes. Hence, not
only is the typical utility of Feshbach molecular physics
enhanced in space, but new applications also emerge.
Notably, heteronuclear Feshbach molecules can be used
to achieve exquisite control over the initial density and
momentum states of dual-species atomic and molecular
gases for space-based fundamental physics research [97].
We note that, in most of our calculations, the effects of
the losses are suppressed due to the low-density regime
accessible on CAL. Nevertheless, it would be interesting
to explore experimentally the regime in which losses are
important [64] in order to observe possible shifts on the
association/dissociation linewidth due to losses, as pre-
dicted by Eqs. (11) and (16).
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[45] M. Gacesa and R. Côté, J. Mol. Spectrosc. 300, 124
(2014).

[46] Committee for the Decadal Survey on Biological and
Physical Sciences in Space; National Research Council.
Recapturing a Future for Space Exploration: Life and

Physical Sciences Research for a New Era. The National
Academies Press (2011).

[47] S. G. Turyshev, U. E. Israelsson, M. Shao, N. Yu, A.
Kusenko, E. L. Wright, C. W. F. Everitt, M. Kase-
vich, J. A. Lipa, J. C. Mester, R. D. Reasenberg, R. L.
Walsworth, N. Ashby, H. Gould, and H. J. Paik, Int. J.
Mod. Phys. D 16, 1879 (2007).

[48] D.A. Binns, N. Randoa, and L. Cacciapuoti, Adv. Space
Res. 43, 1158 (2009).

[49] H. Muntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S.
Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N.
Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W.
Hansch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari,
S. Kleinert, C. Lammerzahl, W. Lewoczko-Adamczyk,
J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp,
J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M.
Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T.
Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Wind-
passinger, W. Zeller, T. van Zoest, W. Ertmer, W. P.
Schleich, and E. M. Rasel, Phys. Rev. Lett. 110, 093602



10

(2013).
[50] T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr,

S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari,
S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel,
K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M.
Schiemangk, T. Schuldt, A. Peters, T. Konemann, H.
Muntinga, C. Lammerzahl, H. Dittus, T. Steinmetz, T.
W. Hansch, and J. Reichel, Science, 328, 1540 (2010).

[51] G. Stern, B. Battelier, R. Geiger, G. Varoquaux, A.
Villing, F. Moron, O. Carraz, N. Zahzam, Y. Bidel, W.
Chaibi, F. P. Dos Santos, A. Bresson, A. Landragin and
P. Bouyer, Eur. Phys. J. D 53, 353 (2009).

[52] N. Yu, J. M. Kohel, J. R. Kellogg, and L. Maleki, Applied
Physics B 84, 647 (2006).

[53] T. Schuldt, C. Schubert, M. Krutzik et al., Experimen-
tal Astronomy 39,167 (2015); D. N. Aguilera, H. Ahlers,
B. Battelier, et al., Classical and Quantum Gravity 31,
115010 (2014).

[54] J. R. Williams, S.-w. Chiow, H. Müller, and N. Yu, New
J. Phys., 18, 025018 (2016).

[55] S. Chu, J. E. Bjorkholm, A. Ashkin, J. P. Gordon, and
L. W. Hollberg, Opt. Lett. 11, 73 (1986).

[56] H. Ammann and N. Christensen, Phys. Rev. Lett. 78,
2088 (1997).

[57] S. H. Myrskog, J. K. Fox, H. S. Moon, J. B. Kim, and A.
M. Steinberg, Phys. Rev. A 61 053412 (2000).

[58] A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek,
Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle,
Science 301, 1513 (2003).

[59] Sheng-wey Chiow, J. R. Williams, N. Yu, and H. Müller,
”Gravity gradient suppression in spaceborne atomic tests
of the equivalence principle”, in preparation.

[60] A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jami-
son, B. Plotkin-Swing, R. J. Roy, and S. Gupta, Phys.
Rev. A, 87, 013615 (2013).

[61] M. J. Davis and C. W. Gardiner, J. Phys. B: At. Mol.
Opt. Phys. 35, 733 (2002).

[62] R. J. Thompson, Science Envelope Requirements Docu-
ment (SERD) for Cold Atom Laboratory, JPL Technical
Report (2013).

[63] C. Klempt, T. Henninger, O. Topic, M. Scherer, L. Kat-
tner, E. Tiemann, W. Ertmer, and J. J. Arlt, Phys. Rev.
A 78, 061602R (2008).

[64] C. Weber, G. Barontini, J. Catani, G. Thalhammer, M.
Inguscio, and F. Minardi, Phys. Rev. A 78, 061601(R)
(2008).

[65] C. Chin and P. S. Julienne, Phys. Rev. A 71 012713
(2005).
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