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Quantum amplifier channels are at the core of several physical processes. Not only do they model
the optical process of spontaneous parametric down-conversion, but the transformation correspond-
ing to an amplifier channel also describes the physics of the dynamical Casimir effect in superconduct-
ing circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities
of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem
for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited
amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited
amplifier channels for one of the most general communication tasks, characterized by the trade-off
between classical communication, quantum communication, and entanglement generation or con-
sumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off
between public classical communication, private classical communication, and secret key generation.
Third, we determine the capacity region for a broadcast channel induced by the quantum-limited
amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by
classical coherent detection strategies. In all three scenarios, we find that the capacities significantly
outperform communication rates achieved with a naive time-sharing strategy.

PACS numbers: 03.67.Hk, 03.67.Pp, 04.62.+v

I. INTRODUCTION

Shannon laid out the foundations of classical informa-
tion theory in his breakthrough 1948 paper [1], where he
determined the ultimate communication capabilities of
classical communication channels. In today’s telecommu-
nication networks, free-space or fiber-optic channels are
ubiquitous. These channels use electromagnetic waves as
the basis for propagating information, but the quantum-
mechanical nature of the electromagnetic field demands
that we should take quantum effects into account in or-
der to evaluate the capacities of optical channels [2]. To
meet this challenge, quantum Shannon theory was de-
vised in order to determine the ultimate communication
rates of quantum communication channels for various
information-processing tasks (see [3, 4] for reviews).

Much progress has been made in the study of quan-
tum communication over bosonic continuous systems [5].
Bosonic Gaussian channels have an elevated status in
quantum information because they model the most com-
mon noise processes in optical communication like atten-
uation, amplification, and phase conjugation of optical
signals [4, 5]. The quantum-limited amplifier channel
[6, 7] is also a fundamental building block of any such
bosonic Gaussian channel, given that it can be decom-
posed as the serial concatenation of a quantum-limited
attenuator followed by a quantum-limited amplifier or its
phase conjugate [4, 8].

Interestingly, the Bogoliubov transformation govern-
ing spontaneous parametric down-conversion in a nonlin-
ear optical system [9] also describes a variety of different

physical processes, such as the dynamical Casimir effect
[10], the Unruh effect [11] and Hawking radiation [12].
For example, the gain of a quantum amplifier channel
is directly related to the acceleration of an observer in
the setting of the Unruh effect. By employing Einstein’s
equivalence principle, the Unruh effect has a correspon-
dence in the setting of Hawking radiation, in which the
amplifier gain plays the role of the surface gravity of the
black hole. For a review on the close relationship between
the above phenomena, see Ref. [13]. Related, several pa-
pers have studied quantum communication in situations
where relativistic effects cannot be ignored [14, 15]. Thus,
the importance of quantum amplifier channels in various
different fields of physics suggests that studying its com-
munication capacities has both practical and theoretical
relevance.

In this paper, we first determine communication trade-
offs for a quantum-limited amplifier channel in which a
sender has access to the input of the amplifier and a re-
ceiver to its output. The information trade-off problem
is one of the most general information-processing tasks
that one can consider for a point-to-point quantum com-
munication channel. It allows the sender and receiver to
simultaneously generate or consume any of the three fun-
damental information resources: classical information,
quantum information, and shared entanglement. The
protocol from [16–18] (see also [19, Chapter 25]) estab-
lishes an achievable rate region, which yields remarkable
gains over the naive strategy of time sharing, as discussed
in [17, 18]. In this work we prove that this achievable rate
region is optimal, which establishes the capacity region
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for this setting. In order to do so, we establish some new
mathematical properties of the entropy of the bosonic
thermal state (see Appendix A), a function which is of
physical interest in a variety of contexts. We suspect that
these established properties could have application in the
analysis of other communication problems and in studies
of quantum thermodynamics, but this is more appropri-
ate to remain as the topic of future work.

We also consider the trade-off between public classical
bits, private classical bits, and secret key bits [20], and
we establish the capacity region in this setting as well.
This capacity region clearly has relevance when using a
channel for the communication of secret information in
addition to ordinary, public classical information.

Beyond the point-to-point setup, we also determine
the capacity region for the single-sender, two-receiver
broadcast channel induced by a unitary dilation of the
quantum-limited amplifier channel. We do so by first
giving a rate region achieved by inputting coherent states
[21] to a noisy amplifier channel. We find that this rate
region improves upon those achieved using traditional
strategies such as coherent homodyne or heterodyne de-
tection. We also prove that this rate region is optimal for
quantum-limited amplifier channels by employing similar
techniques that we use for the first two scenarios men-
tioned above. These techniques are different when com-
pared to those used in previous works [17, 22] for the
setting of the pure-loss channel.

This paper is organized as follows. In Section II, we
review the main result of [23], which establishes a min-
imum output-entropy theorem essential for our develop-
ments here. In Section III, we consider the communi-
cation trade-off for a quantum-limited amplifier channel.
After briefly reviewing the characterization of the trade-
off capacity region and the achievable rate region estab-
lished in [18], we prove that this rate region is optimal.
We then show that the trade-off capacity region outper-
forms that achievable with a naive time-sharing strategy.
We also find that capacities decrease with increasing am-
plifier gain. We then consider the unitary dilation of the
quantum-limited amplifier channel as a quantum broad-
cast channel in Section IV. In the first part of Section IV,
we determine an achievable rate region for two receivers
by using coherent-state encoding. In the second part of
Section IV, we prove that this achievable rate region is
optimal. In the third part of Section IV, we show that
the capacity region outperforms those achieved by using
homodyne and heterodyne detection. In Section V, we
consider the trade-off between public and private classi-
cal communication. We determine these trade-off capac-
ities for quantum-limited amplifier channels by employ-
ing techniques similar to those from Sections III and IV.
Finally, we discuss the relationship between entropy con-
jectures and capacities of bosonic Gaussian channels in
Section VI. We conclude in Section VII with a summary
and some open questions.

II. MINIMUM OUTPUT-ENTROPY THEOREM

All of our converse proofs in this work rely on the fol-
lowing minimum output-entropy theorem, which holds
for a single-mode, phase-insensitive quantum-limited am-
plifier (and its weak conjugate [24]) channel with a given
input entropy constraint [23]. We restate this result as
the following theorem:

Theorem 1 ([23]) Consider a single-mode, phase-
insensitive amplifier channel NA→B. Let H0 > 0
be a positive constant. For any input state ρA such
that H(ρA) ≥ H0, the output von Neumann entropy
H(NA→B(ρA)) is minimized when ρA is a thermal state
with mean photon number g−1(H0), where

g(x) ≡ (x+ 1) log2(x+ 1)− x log2 x . (1)

is the entropy of a thermal state with mean photon num-
ber x. The same is true for the quantum-limited weak
conjugate amplifier [25] (the complementary channel of
NA→B [24]).

Theorem 1 provides lower bounds for certain terms
in the capacity regions in (4)–(6) and (40)–(41), which
are crucial for our converse proofs. Due to additivity is-
sues of capacity regions in quantum information theory,
proofs of converses generally require a multi-mode ver-
sion of the results in [23]. However, a quantum-limited
amplifier channel, the complementary channel of which is
entanglement-breaking, is a Hadamard channel [26, 27].
It is known that the capacity regions of both the infor-
mation trade-off and broadcast problems are single-letter
for Hadamard channels [20, 28–30].

III. TRADING QUANTUM AND CLASSICAL
RESOURCES

Our first result concerns the transmission (or consump-
tion) of classical bits, quantum bits, and shared entan-
glement along with the consumption of many indepen-
dent uses of a quantum-limited amplifier channel. The
communication trade-off is characterized by rate triples
(C,Q,E), where C is the net rate of classical commu-
nication, Q is the net rate of quantum communication,
and E is the net rate of entanglement generation. The
triple trade-off capacity region of a quantum channelN is
the regularization of the union of regions of the following
form [29] (see also [19, Chapter 25]):

C + 2Q ≤ H(N (ρ)) +
∑
x

pX(x) [H(ρx)−H(N c(ρx))] ,

Q+ E ≤
∑
x

pX(x) [H(N (ρx))−H(N c(ρx))] ,

C +Q+ E ≤ H(N (ρ))−
∑
x

pX(x)H(N c(ρx)), (2)
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where the union is with respect to all possible input en-
sembles {pX(x), ρx} and ρ ≡

∑
x pX(x)ρx. Here N c is

the complementary channel of N [19].
For a quantum-limited amplifier channel with gain pa-

rameter κ ∈ [1,+∞), the input-output transformation in
the Heisenberg picture is given by the following equation:

b̂ =
√
κâ+

√
κ− 1ê† , (3)

where â, b̂, and ê are the field-mode annihilation oper-
ators corresponding to the sender’s input mode, the re-
ceiver’s output mode, and an environmental input in the
vacuum state, respectively. In order to have a meaningful
and practical communication task, we assume that the
mean photon number of the input state is constrained
to be no larger than NS ∈ (0,+∞) for each use of the
channel.

A. Achievable rate region

The achievability part of the capacity theorem for the
quantum-limited amplifier channel was already estab-
lished in [17, 18]. The coding strategy is to employ an
input ensemble of Gaussian-distributed phase-space dis-
placements of the two-mode squeezed vacuum. We re-
state this result as the following theorem, which is given
as Theorem 3 in [18]:

Theorem 2 An achievable rate region for a quantum-
limited amplifier channel with amplifier gain κ ≥ 1 is
given by the union of regions of the following form:

C + 2Q ≤ g(λNS) + g(κNS + κ̄)− g(κ̄[λNS + 1]) ,
(4)

Q+ E ≤ g(κλNS + κ̄)− g(κ̄[λNS + 1]) , (5)

C +Q+ E ≤ g(κNS + κ̄)− g(κ̄[λNS + 1]) , (6)

where λ ∈ [0, 1] is a photon-number-sharing parameter
and g(x) is defined in (1). The parameter κ̄ ≡ κ − 1
denotes the mean number of photons generated by the
channel when the vacuum is input.

B. Outer bound for the capacity region

Our contribution here is to prove that the rate region
in Theorem 2 is equal to the capacity region.

Theorem 3 The triple trade-off capacity region for a
quantum-limited amplifier channel with amplifier gain
κ ≥ 1 is equal to the rate region given in Theorem 2.

Proof. We first recall that the capacity region of a quan-
tum limited amplifier channel is single-letter [28] due to
the fact that a quantum-limited amplifier channel is a
Hadamard channel [26, 27]. Thus, there is no need to con-
sider the regularization of (2). To give an upper bound on
the single-letter capacity region of the quantum-limited

amplifier channel, we prove that for all input ensembles
{pX(x), ρx} there exists a λ ∈ [0, 1] such that the follow-
ing four inequalities hold

H(N (ρ)) ≤ g(κNS + κ− 1) , (7)∑
x

pX(x)H(ρx) ≤ g(λNS) , (8)∑
x

pX(x)H(N (ρx)) ≤ g(κλNS + κ− 1) , (9)∑
x

pX(x)H(N c(ρx)) ≥ g((κ− 1)(λNS + 1)) . (10)

We start by establishing the inequality in (7):

H(N (ρ)) ≤ g(κNS + κ− 1) . (11)

This inequality follows from the facts that the output
state has mean photon number no larger than κNS+κ−1
when the input mean photon number is no larger thanNS
and because the thermal state of mean photon number
κNS+κ−1 realizes the maximum entropy at the output.

We now argue the inequalities in (8) and (9). Consider
that concavity of entropy and that the thermal state re-
alizes the maximum entropy imply the following bound:∑

x

pX(x)H(ρx) ≤ H(ρ) ≤ g(NS) . (12)

Since g(x) is monotonically increasing, there exists a λ′ ∈
[0, 1] such that∑

x

pX(x)H(ρx) = g(λ′NS) . (13)

From concavity of entropy and (11), we find that∑
x

pX(x)H(N (ρx)) ≤ H(N (ρ)) (14)

≤ g(κNS + κ− 1) . (15)

Due to the fact that the vacuum-state input realizes the
minimum output entropy for any phase-insensitive quan-
tum Gaussian channel [27], the following lower bound
applies

H(N (ρx)) ≥ g(κ− 1) . (16)

Since g(x) is monotonically increasing and since we have
shown that

g(κ− 1) ≤
∑
x

pX(x)H(N (ρx)) ≤ g(κNS + κ− 1), (17)

there exists λ ∈ [0, 1] such that∑
x

pX(x)H(N (ρx)) = g(λκNS + κ− 1) . (18)

However, λ and λ′ are different in general. But we can
use Theorem 8 in Appendix A to establish that λ′ ≤ λ.
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To use it we need to know the entropy of the input state.
Supposing that the mean photon number of ρx is NS,x,
we have that

H(ρx) ≤ g(NS,x) . (19)

Therefore there exists λ′x ∈ [0, 1] such that

H(ρx) = g(λ′xNS,x) . (20)

Now employing Theorem 1 for the quantum-limited am-
plifier channel, we have that

H(N (ρx)) ≥ g(κλ′xNS,x + κ− 1) , (21)

which in turn implies that

g(λκNS + κ− 1)

=
∑
x

pX(x)H(N (ρx)) (22)

≥
∑
x

pX(x)g(κλ′xNS,x + κ− 1) . (23)

Together with
∑
x pX(x)g(λ′xNS,x) = g(λ′NS), and using

Theorem 8 in Appendix A with q = κ we find that∑
x

pX(x)g(κλ′xNS,x + κ− 1)

≥ g(κλ′NS + κ− 1) , (24)

which, by combining (23) and (24), implies that

g(λκNS + κ− 1) ≥ g(κλ′NS + κ− 1) . (25)

Since g is monotonically increasing and it has a well-
defined inverse function, we find that

λ ≥ λ′ , (26)

which, after combining with (13) and the monotonicity
of g(x), implies that∑

x

pX(x)H(ρx) ≤ g(λNS) . (27)

This concludes the proof of the inequalities in (8) and (9).
To prove the last bound in (10), by (16) and

H(N (ρx)) ≤ g(κNS,x + κ− 1) , (28)

we can conclude that there exists λx ∈ [0, 1] such that
the following equality holds

H(N (ρx)) = g(λxκNS,x + κ− 1) . (29)

The quantum-limited amplifier channel N is degrad-
able [24], and its degrading channel DB→C is the weakly-
conjugate channel of the quantum-limited amplifier with
κ′ = (2κ− 1)/κ [24]. The main property of this degrad-
ing channel that we need is that an input thermal state
of mean photon number K leads to an output thermal

state of mean photon number (κ′−1)(K+1). Theorem 1
applied to this case gives that for given input entropy
g(K), the minimum output entropy of DB→C is equal to
g((κ′ − 1)(K + 1)). By applying it, we find that∑

x

pX(x)H(N c(ρx))

≥
∑
x

pX(x)g((κ′ − 1)(λxκNS,x + κ)) (30)

=
∑
x

pX(x)g((κ− 1)λxNS,x + κ− 1). (31)

Since
∑
x pX(x)g(κλxNS,x + κ − 1) = g(λκNS + κ − 1),

using Theorem 7 in Appendix A with q = (κ− 1)/κ and
C = (κ− 1)/κ, we find that∑

x

pX(x)H(N c(ρx))

≥ g(q(λκNS + κ− 1) + (κ− 1)/κ) , (32)

= g((λNS + 1)(κ− 1)) . (33)

This concludes our proof for the four bounds in (7)–(10).
Together with the achievability part in [18] (recalled as
Theorem 2), this concludes the proof that the union of
regions given by (4)–(6) is equal to the quantum dynamic
capacity region for the quantum-limited amplifier chan-
nel.

Returning to our discussion from the introduction, we
note that Theorem 3 completely characterizes the com-
munication abilities of any phase-insensitive quantum-
limited amplifier channel, particular examples of this
channel occurring in a number of scenarios of phys-
ical interest, including spontaneous parametric down-
conversion in a nonlinear optical system [9], the dynam-
ical Casimir effect [10], the Unruh effect [11], and Hawk-
ing radiation [12]. That is, if one desires to use any such
channel for sending classical and quantum information
along with the assistance of shared entanglement, then
Theorem 3 sets the ultimate limits for such a task. The-
orem 3 thus subsumes and places a capstone on much
previous literature in quantum information having to
do with capacities of phase-insensitive, quantum-limited
amplifier channels.

C. Comparison with time-sharing strategy and
large κ limit

Figure 1 displays two special cases of the capacity re-
gion in (4)–(6). We consider a quantum-limited amplifier
channel with gain κ = 2 and choose the mean input pho-
ton number to be NS = 200. In Figure 1(a), we plot
the trade-off between classical and quantum communi-
cation without entanglement assistance. The maximum
quantum transmission rate is log2(κ/κ̄) = 1 qubits per
channel use, established jointly in [31, 32] (see discussion
in [33]). This result also follows from the results of the
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FIG. 1. We consider a quantum-limited amplifier channel
with κ = 2 and mean photon number constraint NS = 200. In
(a), we plot the (C,Q) trade-off. The maximum quantum ca-
pacity is equal to log2(2)− log2(1) = 1 qubit per channel use.
A trade-off coding strategy shows an improvement compared
to time sharing, wherein we see that the classical data rate
can be boosted while still maintaining a high quantum trans-
mission rate. In (b) we plot the (C,E) trade-off. The sender
and the receiver share entanglement, and the sender would
like to transmit classical information while minimizing the
consumption of entanglement. As can be seen, with trade-off
coding, the sender can significantly reduce the consumption
of entanglement while still keeping the classical communica-
tion rate near to its maximum value. In (c) and (d) we plot
the capacity region for the (C,Q) and (C,E) trade-off with
amplifier gain κ = 1.5, 2.5, 3.5, and 4.5. Each capacity region
shrinks as the amplifier gain κ increases.

present paper by considering that the bound in (5) for
λ = 1 gives the finite-energy quantum capacity of the
quantum limited amplifier channel:

g(κNS + κ̄)− g(κ̄[NS + 1]). (34)

Taking the infinite-energy limit, we recover the formula
established in [31, 32]:

lim
NS→∞

g(κNS + κ̄)− g(κ̄[NS + 1]) = log2(κ/κ̄). (35)

Around 200 photons per channel use is large enough to
approximate this quantum capacity well for the above
parameter choices. The figure indicates a remarkable
improvement over a time-sharing strategy, in which the
sender transmits classical information for some fraction
of the channel uses and transmits quantum information
for the other fraction. By using a trade-off coding strat-
egy, lowering the quantum data rate by about 0.1 qubits
per channel use allows for sending roughly three extra
classical bits per channel use. However, if a time-sharing
strategy is adopted, lowering the quantum data rate by

the same amount gives only one additional bit per chan-
nel use.

In Figure 1(b), we plot the trade-off between
entanglement-assisted and unassisted classical communi-
cation. Again, a trade-off coding strategy gives a dra-
matic improvement over time sharing. In this figure,
we take the convention that positive E corresponds to
entanglement consumption. With mean photon number
NS = 200, the sender can reliably transmit a maximum
of around 10.2 classical bits per channel use by consum-
ing around 9.1 entangled bits per channel use [34, 35].
By using trade-off coding, the sender can reduce the con-
sumption of entanglement to around 4 entangled bits per
channel use, while still being able to transmit classical
data at around 9.8 bits per channel use.

One trend we see for the quantum-limited amplifier
channel is that a large amplifier gain κ compromises its
communication ability, as shown in Figures 1(c) and 1(d).
For the (C,Q) trade-off, as κ increases, the quantum ca-
pacity decreases for a fixed classical rate. For the (C,E)
trade-off, not only the maximum classical rate is reduced,
but the savings of entangled bits for a constant classical
rate are also diminished. This effect results from the fact
that a quantum-limited amplifier channel with large κ
generates more photons from the vacuum, and thus in-
jects more noise into the transmitted quantum signal.
Mathematically the shrinkage of the capacity region is
due to the term g(κ̄[λNS + 1]) appearing in all of the
inequalities in (4)–(6), which increases with increasing
amplifier gain.

IV. QUANTUM BROADCAST AMPLIFIER
CHANNEL

Our next result concerns the classical capacity of a
quantum broadcast channel induced by a unitary dila-
tion of the quantum amplifier channel. We consider the
single-sender, two-receiver case in which Alice simulta-
neously transmits classical data to Bob (B) via the am-
plifier channel and to Charlie (C) via its complemen-
tary channel. The full Bogoliubov transformation for this
setup is given by

b̂ =
√
κâ+

√
κ− 1ê† ,

ĉ† =
√
κ− 1â+

√
κê† , (36)

where â, b̂, ĉ, and ê are the field-mode annihilation op-
erators corresponding to the sender Alice’s input mode,
the receiver Bob’s output mode, the receiver Charlie’s
output mode, and an environmental input, respectively.
Here we consider a general amplifier channel with ther-
mal noise, in which the input state represented by ê is
a thermal state with mean photon number NB . Such a
channel could model information propagation to two ob-
servers, one outside and one beyond the event horizon
of a black hole [15]. This channel could also model in-
formation propagation from an inertial observer to two
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constantly accelerated complementary observers moving
with opposite accelerations in two causally disconnected
regions of Rindler spacetime, if we take the convention
that the inertial observer can encode information into
Unruh modes, which arguably allows for computing esti-
mates for an upper bound of channel capacities between
inertial and relativistically accelerating observers [36].

The classical capacity region of the two-user degraded
quantum broadcast channel was derived in [37] (see also
[38] for the achievability part) and found to be equal
to the regularization of the union of the following rate
regions:

RB ≤
∑
x

pX(x)
[
H(N (ρx))−

∑
y

pY |X(y|x)H(N (ρy)
)
] ,

RC ≤ H(N c(ρ))−
∑
x

pX(x)H(N c(ρx)) , (37)

where the union is with respect to input ensembles
{pX(x)pY |X(y|x), ρy} with

ρx ≡
∑
y

pY |X(y|x)ρy , (38)

ρ ≡
∑
x

pX(x)ρx . (39)

In the following we first give an achievable rate region
for an amplifier channel with thermal noise. We then
prove that this rate region is optimal if the multi-mode
version of Theorem 1 is true. For the case in which the
amplifier channel is quantum-limited, the capacity region
is single-letter [30] and therefore Theorem 1 implies the
broadcast capacity region for the quantum-limited am-
plifier channel.

A. Achievable rate region by coherent-state
encoding

Theorem 4 Consider a quantum broadcast amplifier
channel as given in (36) with amplifier gain κ ≥ 1
and environmental thermal-state input with mean pho-
ton number NB. Suppose that the mean input photon
number for each channel use is no larger than NS. Then
the following rate region for Bob and Charlie

RB ≤ g(κλNS + κ̄(NB + 1))− g(κ̄(NB + 1)) , (40)

RC ≤ g(κ̄(NS + 1) + κNB)− g(κ̄(λNS + 1) + κNB) ,
(41)

with λ ∈ [0, 1] is achievable by using coherent-state en-
coding according to the following ensemble:

{p(t)p(α|t), |α〉〈α|} , (42)

where

p(t) =
1

πNS
exp

(
−|t|

2

NS

)
, (43)

p(α|t) =
1

πλNS
exp

(
−|
√

1− λt− α|2

λNS

)
. (44)

Here α and t are complex variables and λ̄ = 1− λ.

Proof. Using (43) and (44), we find that

ρt =

∫
d2α p(α|t) |α〉〈α|

=

∫
d2γ

1

πλNS
exp

(
− |γ|

2

NSλ

)
|γ +

√
λ̄t〉〈γ +

√
λ̄t|

= D(
√
λ̄t)ρth

λNS
D†(

√
λ̄t) . (45)

In the above, D(α) is a displacement operator [21] and
ρth
λNS

denotes a thermal state of mean photon number
λNS . The overall average input state is

ρ =

∫
d2t p(t) ρt ,

=

∫
d2t′

1

πλ̄NS
exp

(
− |t

′|2

λ̄NS

)
D(t′)ρth

λNS
D†(t′)

= ρth
NS

, (46)

which is just a thermal state with mean photon num-
ber NS , in agreement with the energy constraint. There
are four entropies we need to evaluate in (40) and (41).
The first one is∫

d2t p(t) H(N (ρt))

=

∫
d2t p(t) H(N (D(

√
λ̄t)ρth

λNS
D†(

√
λ̄t)))

=

∫
d2t p(t) H(N (ρth

λNS
)) = H(N (ρth

λNS
))

= g(κλNS + (κ− 1)(NB + 1)) . (47)

The second equality follows because the amplifier channel
is covariant with respect to displacement operators and
the fact that entropy is invariant with respect to a unitary
transformation.

Since the output state is unitarily related to a thermal
state with mean photon number (κ − 1)(NB + 1) when
Alice sends a coherent state into an amplifier channel,
the second term in (40) is given by∫

d2t d2α p(t) p(α|t) H(N (|α〉〈α|))

= g((κ− 1)(NB + 1)) . (48)

Now similarly for (41), the first term is

H(N c(ρth
NS

)) = g((κ− 1)(NS + 1) + κNB) . (49)

The last term can be calculated as follows:∫
d2t p(t) H(N c(ρt))

=

∫
d2t p(t) H(N c(D(

√
λ̄t)ρth

λNS
D†(

√
λ̄t)))

=

∫
d2t p(t) H(N c(ρth

λNS
))

= g((κ− 1)(λNS + 1) + κNB) . (50)
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We use the facts that a gauge-contravariant bosonic
Gaussian channel is contravariant with respect to dis-
placement operators and that entropy is invariant with
respect to a unitary transformation. Combining the
above results, we conclude that the rate region in (40)
and (41) is achievable.

B. Outer bound for the capacity region

We first prove that the rate region in (40) and (41) is
optimal if a multi-mode version of Theorem 1 is true. To
do so we need to show that it is also an outer bound for
the capacity region.

Theorem 5 Consider a quantum amplifier channel with
amplifier gain κ ≥ 1 and environmental thermal-state
input with mean photon number NB. Suppose that the
mean input photon number for each channel use is no
larger than NS. Suppose that a multi-mode version of
Theorem 1 is true. Then the region given by (40) and
(41) is an outer bound for the broadcast capacity region.

Proof. Since a general quantum amplifier channel with
thermal noise is not a Hadamard channel, we need to
consider the n-letter version of (40) and (41). Specif-
ically, we need to prove that for all input ensembles
{pX(x)pY |X(y|x), ρy} for n uses of the channel, there ex-
ists λ ∈ [0, 1] such that the following four bounds hold∑

x

pX(x)H(N⊗n(ρx)) ≤ ng(κλNS + κ̄(NB + 1)) ,

(51)

H((N c)⊗n(ρ)) ≤ ng(κ̄(NS + 1) + κNB) ,
(52)∑

x

∑
y

pX(x)pY |X(y|x)H(N⊗n(ρy)) ≥ ng(κ̄(NB + 1)) ,

(53)∑
x

pX(x)H((N c)⊗n(ρx)) ≥ ng(κ̄(λNS + 1) + κNB) .

(54)

The second inequality holds because

H((N c)⊗n(ρ)) ≤
n∑
j=1

H(ρjC) (55)

≤ ng((κ− 1)(NS + 1) + κNB) . (56)

The first inequality follows from the subadditivity of
quantum entropy. The second inequality follows from
the fact that each output state at C has mean photon
number (κ − 1)(NS + 1) + κNB and the thermal state
maximizes the entropy.

Since the vacuum minimizes the output entropy for
any phase-insensitive Gaussian channel [27], we find that
H(N⊗n(ρy)) ≥ ng((κ− 1)(NB + 1)), which leads to the

third bound:∑
x

∑
y

pX(x)pY |X(y|x)H(N⊗n(ρy))

≥ ng((κ− 1)(NB + 1)) . (57)

Now we prove the first bound. From the concavity of
quantum entropy, we have that

H

(∑
y

pY |X(y|x)N⊗n(ρy)

)
≥
∑
y

pY |X(y|x)H(N⊗n(ρy)) .

Thus we have∑
x

pX(x)H(N⊗n(ρx))

≥
∑
x,y

pX(x)pY |X(y|x)H(N⊗n(ρy))

≥ ng((κ− 1)(NB + 1)) . (58)

On the other hand, we have that∑
x

pX(x)H(N⊗n(ρx)) ≤ H(N⊗n(ρ))

≤ ng(κNS + (κ− 1)(NB + 1)) .
(59)

Together with (58) and the fact that g(x) is monotonic,
there exists λ ∈ [0, 1] such that∑
x

pX(x)H(N⊗n(ρx)) = ng(κλNS + (κ− 1)(NB + 1)) .

To prove the last bound, we use the fact that the weakly
degrading channel of the amplifier channel is the weakly-
conjugate of an amplifier channel with κ′ = (2κ−1)/κ >
1 [24]. We first calculate the entropy of the output state:

H(N⊗n(ρx)) = H(ρB,x) ,

≤
n∑
j=1

H(ρjB,x) ,

≤ n
n∑
j=1

1

n
g(κNS,xj

+ (κ− 1)(NB + 1)) ,

≤ ng(κNS,x + (κ− 1)(NB + 1)) . (60)

The first inequality follows from subadditivity of quan-
tum entropy. Letting NS,xj

be the mean photon number
for the jth symbol of ρx, the second inequality follows
because the thermal state maximizes the entropy. Let-
ting NS,x =

∑
j NS,xj

/n, the last inequality follows from

concavity of g(x). Since we also have that

H(N⊗n(ρx)) ≥ ng((κ− 1)(NB + 1)), (61)
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there exists λx ∈ [0, 1] such that

H(N⊗n(ρx)) = ng(κλxNS,x + (κ− 1)(NB + 1)) . (62)

Using the multi-mode version of Theorem 1 for the de-
grading channel, we find that∑

x

pX(x)H((N c)⊗n(ρx))

≥
∑
x

pX(x)ng((κ′ − 1)[κλxNS,x + κ̄(NB + 1) + 1] + κ′NB)

=
∑
x

pX(x)ng((κ− 1)(λxNS,x + 1) + κNB) . (63)

Together with∑
x

pX(x)g(κλxNS,x + κ̄(NB + 1))

= g(κλNS + κ̄(NB + 1)) , (64)

we can invoke Theorem 7 in Appendix A with q = (κ −
1)/κ and C = 2κ−1

κ (NB + 1)− 1 to find that∑
x

pX(x)H((N c)⊗n(ρx))

≥ ng((κ− 1)(λNS + 1) + κNB) . (65)

This concludes our proof. Together with the achievability
of (40)–(41), we establish it as the capacity region for the
quantum broadcast amplifier channel, provided that the
multi-mode version of Theorem 1 is true.

Now let us consider the quantum-limited ampli-
fier channel. Since the broadcast capacity region for
Hadamard channels is single-letter [30], by setting n = 1
and NB = 0 in the above proof, we establish the follow-
ing:

Corollary 6 For a quantum-limited amplifier broadcast
channel, (40)–(41) with NB = 0 is equal to the capacity
region.

C. Coherent-detection and large κ limit

To evaluate the performance of the capacity region
given by (40) and (41) with NB = 0, we compare it
with what can be achieved by conventional, coherent-
detection strategies [39, 40]. When Alice inputs a co-
herent state |α〉, Bob receives a displaced thermal state
D(
√
κα)ρth

κ̄ D
†(
√
κα), where D(

√
κα) denotes a displace-

ment operator and ρth
κ̄ the density operator correspond-

ing to a thermal state with mean photon number κ̄ [21].
When Bob employs homodyne or heterodyne detection
[21], his measurement outcomes have particular Gaussian
distributions, and similarly for Charlie. The quantum
broadcast channel then reduces to a classical Gaussian
channel with additive noise [41]. Using known results for

Optimum
Homodyne
Heterodyne
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0.0
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FIG. 2. In (a) we consider a quantum-limited broadcast am-
plifier channel with NS = 5 and NB = 0. We compare the
capacity region obtained by homodyne detection ((66) with
ξ = 1/2), heterodyne detection ((66) with ξ = 1) and the
optimal measurement ((40)–(41) with NB = 0). In (b) we
plot the large κ limit of the rate region. At κ = 10, it is
indistinguishable with the limit in (67).

classical Gaussian broadcast channels [40–42], we find
that coherent-detection strategies lead to the following
capacity regions:

RB ≤ ξ log2

(
1 +

λκNS
ξ(ξ + κ̄)

)
,

RC ≤ ξ log2

(
1 +

(1− λ)κ̄NS
ξ(ξ + κ̄) + λκ̄NS

)
,

(66)

where ξ = 1/2 for homodyne detection and ξ = 1 for
heterodyne detection. See Appendix B for a detailed
derivation.

In Figure 2(a), we compare these strategies with the
optimal strategy for a quantum-limited amplifier with
κ = 2 and NS = 5. As we can see, the capacity region
we find in (40) and (41) outperforms both coherent detec-
tion schemes. For relatively high mean photon number,
heterodyne detection outperforms homodyne detection
as expected from prior results [22].

Notice that in the first equation of (66), the amplifier
gain κ happens to cancel out in the case of heterodyne de-
tection (ξ = 1). This indicates that amplifying will both
boost and hurt the transmission rate, so that there should
exist a ‘balanced point’. Actually, if we consider the large
κ limit, (40) and (41) reduce to a gain-independent linear
trade-off:

RB +RC ≤ log2(NS/[NB + 1] + 1) . (67)

Physically, although a large amplifier gain will amplify
the input energy power and thus potentially increase the
capacity, it is balanced out by the increasing noise gener-
ated from amplifying the vacuum, manifested by the neg-
ative terms in (40) and (41). With mean photon numbers
NS = 5 and NB = 0, the maximum classical capacity of
Bob and Charlie converges to around log2(6) ≈ 2.58 bits
per channel use. In Figure 2(b), we plot the rate region
for amplifier gain κ increasing from 1.1 to 10. The capac-
ity region converges to (67) very quickly. The maximum
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capacities for both receivers approach around 2.6 bits per
channel use, as expected from the reasoning above.

V. TRADING PUBLIC AND PRIVATE
RESOURCES

Here we briefly argue that we obtain the private dy-
namic capacity region [20] of quantum-limited amplifier
channels. The techniques for establishing this result are
similar to those from previous sections, so we merely state
the result rather than going through all the details.

The information-theoretic task is similar to the triple
trade-off discussed previously, but the resources involved
are different. Here we are concerned with the trans-
mission (or consumption) of public classical bits, private
classical bits, and secret key along with the consumption
of many independent uses of a quantum-limited amplifier
channel. The communication trade-off is characterized
by rate triples (R,P, S), where R is the net rate of pub-
lic classical communication, P is the net rate of private
classical communication, and S is the net rate of secret
key generation.

Since the quantum-limited amplifier channel is a
Hadamard channel, the private dynamic capacity region
of a quantum channel N is given by the union of regions
of the following form [20]:

R+ P ≤ H(N (ρ))−
∑
x,y

pX(x)pY |X(y|x)H(N (ψx,y)),

P + S ≤
∑
x

pX(x) [H(N (ρx))−H(N c(ρx))] ,

R+ P + S ≤ H(N (ρ))−
∑
x

pX(x)H(N c(ρx)), (68)

where the union is with respect to all possible pure-state
input ensembles {pX(x)pY |X(y|x), ψx,y},

ρx ≡
∑
y

pY |X(y|x)ψx,y, (69)

ρ ≡
∑
x

pX(x)ρx, (70)

and N c is a complementary channel of N . To give
an upper bound on the single-letter private dynamic
capacity region of the quantum-limited amplifier chan-
nel, we need to show that for all input ensembles
{pX(x)pY |X(y|x), ψx,y}, there exists a λ ∈ [0, 1] such that
the following four inequalities hold

H(N (ρ)) ≤ g(κNS + κ̄) , (71)∑
x

∑
y

pX(x)pY |X(y|x)H(N (ψx,y)) ≥ g(κ̄) , (72)

∑
x

pX(x)H(N (ρx)) ≤ g(κλNS + κ̄) , (73)∑
x

pX(x)H(N c(ρx)) ≥ g(κ̄(λNS + 1)) . (74)

We can establish these bounds using methods from the
previous sections. Thus, we find that the private dynamic
capacity region of the quantum-limited amplifier channel
is as follows:

R+ P ≤ g(κNS + κ̄)− g(κ̄), (75)

P + S ≤ g(κλNS + κ̄)− g(κ̄(λNS + 1)), (76)

R+ P + S ≤ g(κNS + κ̄)− g(κ̄(λNS + 1))). (77)

This rate region is achievable as well, as shown in [17, 18],
and so the union of (75)–(77) with respect to λ ∈ [0, 1]
is equal to the private dynamic capacity region.

VI. DISCUSSION

Theorem 1 from [23] plays an important role in our
proof of the capacity regions for the information trade-off
and quantum broadcast settings. For a long time now,
thermal states have been conjectured to minimize the
output entropy for pure-loss channels with an input en-
tropy constraint [22]. The authors of [23] established this
result for all single-mode phase-insensitive bosonic Gaus-
sian channels, going well beyond the original conjecture
and including it as a special case. The special case for
H0 = 0 was proved for all multi-mode phase-insensitive
Gaussian channels [8, 27]. After that, de Palma et al. first
reduced the optimizer problem to the set of all possible
passive states [43] using the technique of majorization
[44–46] and subsequently proved the conjecture for single-
mode pure-loss channels [47]. The multi-mode general-
ization of the results in Ref. [23], which would determine
capacity regions for pure-loss channels [17, 22], is still
unsolved.

The strongest conjecture proposed so far is the Entropy
Photon number Inequality (EPnI) [48] which takes on a
role analogous to Shannon’s entropy power inequality [1].
The truth of the EPnI subsumes all minimum output
entropy conjectures. Although the EPnI has not been
proved yet, a different quantum analog of EPI, quantum
EPI (qEPI) has been proved recently for a multi-mode
lossy channel [49]. Although the qEPI does not imply
the truth of the EPnI, the lower bounds given by the
two inequalities are extremely close for a large range of
parameters [49]. This fact strongly suggests the truth of
the multi-mode EPnI. We give an upper bound in Ap-
pendix C for the capacity region of information trade-off
over the pure-loss channel by using the qEPI. This rep-
resents the first application of the qEPI to the informa-
tion trade-off problem. The bound given by the qEPI
is extremely close to the upper bound, if we assume the
multi-mode minimum output entropy conjecture is true.
Therefore, it is safe to say that the achievable rate region
found in Ref. [17] is the optimal capacity region for all
practical purposes.
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VII. CONCLUSION

We have determined the capacity region for trade-off
coding over quantum-limited amplifier channels and have
shown that it can significantly outperform a time-sharing
strategy. We also find that with increasing amplifier
gain, the capacity region is shrinking, due to amplifica-
tion noise from the vacuum. Going beyond the point-to-
point setup, we have also determined the classical capac-
ity region for broadcast communication over a quantum-
limited amplifier channel, which outperforms the commu-
nication rate achieved using conventional coherent detec-
tion. The capacity region converges to a linear trade-off
form, with the same maximum rate for both receivers,
when the amplifier gain κ is large.

One unsolved problem is to determine the trade-off ca-
pacity for a pure-loss channel [17, 18] and the broadcast
capacity for a thermal-noise channel [22, 50], which re-
quire a multi-mode version of Theorem 1. Recall that
Appendix C shows how it is possible to obtain a good
bound for the trade-off capacity region by employing the
quantum entropy power inequality [49], but it is likely
possible to improve this bound. On the other hand, the
techniques we used in our converse proofs in this work
are not applicable to quantum channels which are not
degradable. This includes lossy and amplifier channels
with thermal noise and pure-loss channels with trans-
missivity smaller than one-half. We leave the problem of
determining the capacities for those channels as future
work.
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Appendix A: Two properties of g(x)

We first recall a property of the function

g(x) = (x+ 1) log2(x+ 1)− x log2 x, (A1)

which is helpful for our converse proofs. Recall that g(x)
is equal to the entropy of a thermal state with mean
photon number x.

Theorem 7 (Theorem A.3 of [50]) Given q ∈ [0, 1] a
probability distribution pX(x) and non-negative real num-
bers {yx : 1 ≤ x ≤ n}, if

n∑
x=1

pX(x)g(yx) = g(y0) , (A2)

then the following inequality holds for C ≥ 0:

n∑
x=1

pX(x)g(qyx + C) ≥ g(qy0 + C) . (A3)

As mentioned above, the above inequality is Theo-
rem A.3 in Appendix C of [50]. Observe that Ref. [50]
proved the inequality for pX(x) set to the uniform dis-
tribution. However, the argument there only relies on
concavity of g(x) and thus applies to an arbitrary distri-
bution, as discussed later in [18].

Due to the requirement that q ∈ [0, 1], Theorem 7 is
not useful for the quantum amplifier channel given that
its amplifier gain κ > 1. To resolve this problem, we
prove another property of g(x):

Theorem 8 Given q ∈ (1,+∞), a probability distribu-
tion pX(x) and non-negative real numbers {yx : 1 ≤ x ≤
n}, if

n∑
x=1

pX(x)g(yx) = g(y0), (A4)

then

n∑
x=1

pX(x)g(qyx + q − 1) ≥ g(qy0 + q − 1) . (A5)

Proof. The original proof of Theorem 7 depends on the
following inequality:

log2

(
1 +

1

qx+ C

)
(qx+ C)(1 + qx+ C)

≥ log2

(
1 +

1

x

)
qx(1 + x) , (A6)

which holds for q ∈ [0, 1], x ≥ 0, and C ≥ 0. When
considering q > 1, the above inequality does not generally
hold. However, we can prove that it is true for C = q−1.
Substituting C = q − 1 in (A6), we need to show that

(q(1 + x)− 1) log2

q(1 + x)

q(1 + x)− 1
≥ x log2

1 + x

x
. (A7)

Defining h(x) = x ln x+1
x , then we can see that the above

inequality is equivalent to the following one:

h(q(1 + x)− 1) ≥ h(x) . (A8)

But

lim
x→0

h(x) = lim
t→+∞

ln(1 + t)

t
= lim
t→+∞

1

1 + t
= 0 , (A9)

by L’Hospital’s rule, and

h′(x) = ln

(
1 +

1

x

)
− 1

1 + x
. (A10)
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Since h′(0) = +∞, h′(+∞) = 0, and h′′(x) = −1/x(1 +
x)2, we have

h′(x) ≥ 0 , (A11)

for x ≥ 0, and the function h(x) is non-negative and
monotonically increasing for non-negative x. Now since
q(1 + x)− 1− x = (1 + x)(q − 1) ≥ 0, we find that

h(q(1 + x)− 1) ≥ h(x) . (A12)

This concludes the proof.

Appendix B: Coherent-detection schemes

Although we have shown that (40)–(41) is achievable
by using coherent-state encoding with a Gaussian dis-
tribution, implicitly we have also assumed that it is
achieved by some fully quantum measurement scheme. If
the two receivers use classical coherent detection instead,
the problem reduces to a classical broadcast channel with
Gaussian additive noise. We expect such schemes to be
outperformed by those achieved with a fully quantum
measurement.

One way to calculate the capacity region of the clas-
sical degradable broadcast channel is to use the formula
from [37] with the same distribution as in (42). Another
easier way is to first calculate the capacity of each clas-
sical channel to Bob and Charlie. Since each channel is
Gaussian with additive noise, each capacity should have
the following form:

C ≡ C(snr) =
1

2
log2(1 + snrB/C) , (B1)

where snrB/C is the signal-to-noise ratio of the channel
A → B/C. Then we can use known results [41, 42] to
directly get the capacity region for broadcast channel,

RB ≤ C(λsnrB),

RC ≤ C
(

(1− λ)snrC
λsnrC + 1

)
. (B2)

For Bob, the channel could be modeled by the following
transformation:

B =
√
κA+ Z . (B3)

If homodyne detection is employed, Bob is measuring
one of the quadratures and B, A, and Z are scalar
Gaussian random variables. The noise Z has distribu-
tion Z ∼ N(0, 1

4 + 1
2 κ̄), where the variance comes from

both the vacuum itself and the thermal noise generated
from the vacuum [51]. The capacity of the classical
Gaussian channel is achieved by input with distribution
A ∼ N(0, NS), and therefore we have

snrB =
κNS

1
4 (1 + 2κ̄)

. (B4)

When heterodyne detection is used, B, A, and Z are
complex Gaussian random variables. The real part of
the noise has distribution Re(Z) ∼ N(0, 1

2 + 1
2 κ̄) and

the same for the imaginary part [51]. The optimal input
distribution for each part is Re(A) ∼ N(0, NS/2) and
Im(A) ∼ N(0, NS/2) since the total input power is NS .
Thus for heterodyne detection we have

snrB =
κNS

(1 + κ̄)
= NS . (B5)

Notice that we need to multiply the capacity formula by
a factor of two, to take into account the contribution
from each part of the complex variable. The channel to
Charlie is modeled by

C =
√
κ̄A+ Z , (B6)

and all the analysis above for Bob still holds. We can
write the capacity of each classical channel achieved by
coherent detection in a unified way as

CA→B = ξ log2

(
1 +

κNS
ξ(ξ + κ̄)

)
, (B7)

CA→C = ξ log2

(
1 +

κ̄NS
ξ(ξ + κ̄)

)
, (B8)

where ξ = 1
2 for homodyne detection and ξ = 1 for het-

erodyne detection.
Now using (B2), we find the capacity region of coherent

detection:

RB ≤ ξ log2

(
1 +

λκNS
ξ(ξ + κ̄)

)
, (B9)

RC ≤ ξ log2

(
1 +

(1− λ)κ̄NS
ξ(ξ + κ̄) + λκ̄NS

)
, (B10)

thus giving (66).

Appendix C: Upper bound for trade-off capacity
region of the pure-loss channel given by the qEPI

The capacity region for the information trade-off over a
pure-loss channel has been given in [17], provided that a
multi-mode minimum output-entropy conjecture is true.
Although the multi-mode conjecture has not been proved
yet, the recently proved quantum EPI (qEPI) can give a
good upper bound [49, 52], holding for η ∈ [1/2, 1]. The
qEPI is a direct translation of the classical EPI and is as
follows:

2H(ρB)/n ≥ λA2H(ρA)/n + λE2H(ρE)/n , (C1)

where ρA is the input of one beamsplitter port, ρE is the
input of the other beamsplitter port, ρB is the output of
one port, and λA = η, λE = 1− η for a pure-loss channel
with transmissivity η.
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When we consider the case when the environment is in
the vacuum state, we have H(ρE) = 0 and the following
bound holds

H(ρB)/n ≥ log2(η2H(ρA)/n + 1− η) . (C2)

We will use this lower bound in what follows.
Recall the development in Eqs. (60)–(76) of [18]. Pick-

ing up from there, we have that∑
x

pX(x)H(ρx) = ng(λ′NS) , (C3)∑
x

pX(x)H(N (ρx)) = ng(ληNS) , (C4)

where λ′, λ ∈ [0, 1]. Now instead of invoking the mini-
mum output-entropy conjecture for a pure-loss channel,
we use the lower bound given by the multi-mode qEPI
in (C2):

g(ληNS) ≥
∑
x

pX(x) log2(η2g(λ
′
xNS,x) + 1− η) ,

≥ log2(η2g(λ
′NS) + 1− η) . (C5)

The last inequality follows from the fact that f(x) =
log2(η2x + 1 − η) is convex, and we have also used the
equality

∑
x pX(x)g(λ′xNS,x) = g(λ′NS). Rewriting this,

we find that∑
x

pX(x)H(ρx)

= ng(λ′NS) (C6)

≤ n log2

[
1

η

(
2g(ληNS) − (1− η

)]
, (C7)

which replaces Eq. (60) in Ref. [18].
The lower bound given in Eq. (63) of [18] will be re-

placed by a new lower bound found by invoking the qEPI.
Using (C2) for a pure-loss channel with η′ = (1 − η)/η,
we find that∑

x

pX(x)H(N c(ρx))

≥
∑
x

pX(x)n log2(η′2g(ηλxNS,x) + 1− η′) (C8)

≥ n log2(η′2
∑

x p(x)g(ηλxNS,x) + 1− η′) (C9)

= n log2

(
1− η
η

2g(ηλNS+1−η) +
2η − 1

η

)
. (C10)

The two inequalities follow by invoking the qEPI and
convexity of f(x) as defined and used previously. In the
last step, we have used

∑
x pX(x)g(ηλxNS,x) = g(ληNS).

In summary, an upper bound for the trade-off capacity
region of the pure-loss channel, derived from the qEPI,
follows from the inequalities below:

1

n
H(N⊗n(ρ)) ≤ g(ηNS) ,

1

n

∑
x

pX(x)H(ρx) ≤ log2

[
1

η

(
2g(ληNS) − (1− η)

)]
,

1

n

∑
x

pX(x)H(N⊗n(ρx)) ≤ g(ηλNS) ,

1

n

∑
x

pX(x)H((N c)⊗n(ρx)) ≥ log2

[
1− η
η

2g(ληNS) +
2η − 1

η

]
.

(C11)

For the broadcast capacity region of a pure-loss chan-
nel, the upper bound is given in Sec. IV.C of [49].
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