
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Analysis of physical requirements for simple three-qubit
and nine-qubit quantum error correction on quantum-dot

and superconductor qubits
IlKwon Sohn, Seigo Tarucha, and Byung-Soo Choi

Phys. Rev. A 95, 012306 — Published  6 January 2017
DOI: 10.1103/PhysRevA.95.012306

http://dx.doi.org/10.1103/PhysRevA.95.012306


Analysis of Physical Requirement of Simple 3-qubit and 9-qubit QECs on
Quantum-Dot and Superconductor Qubit

IlKwon Sohn1,∗ Seigo Tarucha2,† and Byung-Soo Choi3‡
1School of Electrical Engineering, Korea University, Korea

2Department of Applied Physics,
The University of Tokyo, Japan

3Electronics and Telecommunications Research Institute, Korea

The implementation of a scalable quantum computer requires quantum error correction(QEC). An
important step toward this goal is to demonstrate the effectiveness of quantum error correction where
the fidelity of an encoded qubit is higher than that of the physical qubits. Therefore, it is important
to know the conditions under which quantum error-correction code is effective. In this study, we
analyze the simple three-qubit and nine-qubit quantum error-correction codes for quantum-dot and
superconductor qubit implementations. First, we carefully analyze quantum error-correction codes
and find the specific range of memory time to show the effectiveness of QEC and the best QEC
cycle time. Second, we ran a detailed error simulation of the chosen error-correction codes in the
amplitude damping channel, and confirmed that the simulation data agreed well with theoretically
predicted accuracy and minimum QEC cycle-time. We also realize that since the SWAP gate worked
fast on the quantum-dot qubit, it did not affect performance in terms of the spatial layout.

PACS numbers: 03.65.Wj, 03.67.Ac, 03.67.Lx

I. INTRODUCTION

The implementation of any practical quantum com-
puter requires reliable building blocks formed by com-
bining physical qubit devices with fault-tolerant quantum
computation protocols [1, 2]. Of the many steps involved,
the realization of an encoded qubit is the very first. In
order to make a useful encoded qubit, we should choose
an appropriate quantum error-correction code under the
given physical capabilities such as the number of physical
qubits and the fidelity of the physical gates. Following
this, we need to show that the lifetime of the encoded
qubit is longer than that of the physical qubit [3].

If the encoding succeeds in showing this gain, we say
that the implementation is effective. Although many ex-
periments have been undertaken in this vein, we still do
not have a solid example of the effectiveness of quantum
error correction(QEC) for arbitrary single error. Until
now, the most advanced experiment of this sort has been
conducted only to show repetitive bit-flip error correction
under natural condition [4].

To show the effectiveness of the encoded qubit, it
might be better to have a sufficient number of qubits
and higher fidelity gates. However, it is difficult to deter-
mine whether such resources are sufficient without test-
ing. Therefore, it is better to know the minimum con-
ditions needed to exhibit effectiveness under the given
quantum error-correction code as well as the minimum
physical capability.
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In this work, we consider the minimum conditions, es-
pecially the error rate of a physical qubit, that need to
be satisfied to show the effectiveness of the quantum-
dot and superconductor qubit technologies. Since these
technologies face the difficulty of measurement and since
only a small number of qubits have been realized thus far,
we choose the simplest quantum error-correction codes,
such as three-qubit [1, Ch. 10], [5, 6] and nine-qubit [7]
without syndrome measurement. In this case, the data
was encoded on a physical data qubit, and other physical
qubits were used to check and correct the error.

In the first step, we analyze the three-qubit and nine-
qubit quantum error-correction codes. Since our goal is
to determine the maximal tolerable error rate of physical
qubits, which depends on operation time, we define two
times as TQEC and Tmem for QEC protocol time and
idle time between QEC cycles, respectively. Based on
our analysis, we found that even if Tmem = 0, there is
no gain in QEC since the QEC protocol adds more er-
rors to the data qubit. We also found that the gain in
QEC is only positive if 2TQEC ≤ Tmem ≤ 1

2Pe
, where

Pe is the physical error rate during single-qubit gate op-
eration time. From this, we realized that QEC should
be conducted neither frequently nor rarely, and the best

memory time is Tmem =
1−
√

1− 2
3 (1+

1
9PeTQEC)

2Pe
in order

to show maximum gain. Finally, the accuracy threshold
value is Pe = 1

3TQEC
. From the experimental point of

view, this means that T ?
2 should be three times TQEC in

units of single-gate operation time. Therefore, we can use
this information as the precondition for the experimen-
tal effectiveness of QEC. Meanwhile this analysis gives
an explanation for why many previous experiments were
unable to show the effectiveness of QEC [5, 6, 8].

In the second step, we numerically analyze possible
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implementations of QEC on quantum-dot and supercon-
ductor qubit technologies. In order to implement the
circuits, we compared the single-shot pulse and multiple-
pulse methods. Due to the difficulty of finding a satis-
factory single-shot pulse, we decided to use the multiple-
pulse method. To reflect more practical situation, we
applied the amplitude damping channel. Finally we con-
firmed that the numerical simulation yielded similar re-
sults to our theoretical analysis.

The reminder of this paper is organized as follows:
Section II explains some preliminaries, whereas Section
III describes the theoretical analysis of the circuits and
their requirements for effectiveness. Section IV explains
the numerical results under a practical situation which
yielded similar results to the theoretical results. Section
V discusses the verification of effectiveness in a the practi-
cal situation using the IBM Quantum Experience Section
VI summarizes this work with a summary of avenues for
future research.

II. PRELIMINARY

A. Error-Correction Codes

Following the first quantum error-correction code [7],
many quantum error-correction codes have been pro-
posed. More details as well as fault-tolerant implementa-
tion have been surveyed in [9–11]. Unfortunately, current
device technologies cannot fully support many quantum
error-correction codes. Therefore, it is better to consider
the simplest quantum error-correction code at present.
In this work, we choose the simplest quantum error-
correction codes: the three-qubit QEC shown in Figure
1 and its generalization for the nine-qubit case shown in
Figure 2.

The three-qubit code has been experimentally tested
[5, 12]. This code can correct only a single type error such
as the X error shown in Figure 1. It has four steps—
encoding, free evolution (memory), decoding, and cor-
rection. For encoding, the target qubit information is lo-
cated in the middle qubit, and two CNOT gates are used
to entangle three qubits. Free evolution simply maintains
the data qubit in its natural situation. During decoding,
any single X error in the data qubit propagates to the
two ancilla qubits. Note that any X error in the ancilla
qubits cannot propagate to the data qubit. Therefore,
only an X error on the data qubit has any effect. Finally,
during the correction step, the possible X error can be
corrected. No error can be corrected during the encod-
ing, decoding, and correction steps. Moreover, it cannot
correct a Z type error. Therefore, this simple code can
correct a single X error during memory time.

In contrast to the three-qubit code, the nine-qubit code
can correct any arbitrary single error in the data qubit.
It is a concatenation code of two three-qubit codes for Z
and X type error corrections consecutively. It can correct
any single error during memory time. Since the neces-

 

FIG. 1. Memory and QEC time for 3-qubit QEC.
This circuit was experimentally implemented in [5, 6]. A QEC cy-
cle consists of Encoding, Memory, Decoding, and Correction steps.
Ideally the QEC can correct a single X error in the data qubit
during memory time. Tmem, TQEC, and TQEC Cycle are times
for memory, QEC, and the QEC cycle, respectively. Note that
TQEC Cycle=Tmem+TQEC. To periodically operate this QEC cir-
cuit, each ancilla qubit should be reset at the end of the correction
process which is omitted in the figure.

sary number of qubits is nine, the layout of the physical
qubits and their interactions affect overall performance.
As shown in Figure 2 we should add multiple SWAP gates
for the 1D layout, whereas the 2D layout has no need of
SWAP gates.

B. Effectiveness

Several recent experimental results have established
that the feasibility of quantum error-correction codes
[12, 13]. However, most results to this end have been
obtained in artificial situations, such as applying the de-
sired errors during memory time. A recent experimental
result [4] has also shown the possibility of correcting the
own error with the classical input state. Therefore, it re-
mains challenging to determine whether the fidelity of the
encoded qubit is higher than that of the physical qubit.
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FIG. 2. Mapping of nine-qubit QEC on 1D and 2D architectures.
Due to the locality condition and the limit on the degree of interaction, multiple SWAP gates are augmented in the 1D architecture. The
layout of the 1D structure was chosen such that it used few SWAP gates. After the last Toffoli gate, additional qubits (1∼4, 6∼9) should
be reset and renamed like the beginning of the circuit.

If an implementation can show this property, we call it
effective, and our goal is to analyze the minimal physical
conditions for the simplest codes.

C. Error Models

Since we want to know the effectiveness of the code
under a physical situation, we choose a dominant error
model [14] for quantum dot physical qubits, as follows:

Γ1 =

(
0

√
γ1nth√

γ1(1 + nth) 0

)
, (1)

Γ2 =

(√
γ2 0
0 −√γ2

)
, (2)

where Γ1 and Γ2 are the relaxation and the dephasing op-
erators. In these equations, γ1 and γ2 are the relaxation
and dephasing rates of the qubit and, nth is the bath
temperature. For a single-qubit operation, there are two
sources of errors: the error in the physical qubit, and the
controlling error of the operation. However, we assume
that single-qubit operation has the same error rate as the
physical qubit for the necessary pulse time. Likewise, we
assume that the two-qubit operation has the same error
rate during pulse time. Note that since two-qubit opera-
tion involves two qubits, error in one qubit can propagate
to the other qubit depending on the operation and type

of error. To define the error rate, we use Pe as physi-
cal error rate on the physical qubit during π-pulse time
of single-qubit operation. Therefore, although the phys-
ical time for two-qubit operation can be different from
that for single-qubit operation, we use Pe for two-qubit
operation as well.

D. Performance Measure

In this work, the fidelity of the encoded qubit is defined
as the overlap of the density matrices of the data qubit
and the ideal qubit. Since we also considered a numerical
simulation, we use quantum process tomography [15] to
obtain more precise information as follows.

Fp = Tr(χIχUdata
), (3)

where χI is the process matrix [16] of the identity matrix,
and χUdata

is the process matrix of the data qubit follow-
ing one round of the quantum error-correction cycle with
different memory times.

III. THEORETICAL ANALYSIS

To know the physical requirements in order to render
quantum error correction effective, we analyze the circuit
itself. Since the strength of the error in the data qubit
depends on memory time, we investigate the performance
of the quantum error-correction code with variable mem-
ory time.
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A. Analysis of Memory Time

1. Error Rate in terms of Time

In this work, we define Pe as the error rate of the phys-
ical qubit during single-qubit gate time. Based on this
and the times for QEC and memory, we define two error
rates as follows:

PQEC = Pe ∗ TQEC, (4)

Pmemory = Pe ∗ Tmemory,

where PQEC and Pmemory represent the error rate of
the data qubit during QEC and memory, respectively.
TQEC is a constant with the physical implementation,
but Tmemory is variable.

2. Minimum Memory Time

We first consider the shortest memory time needed
show effectiveness. To check the minimum memory time,
we define two fidelities as follows.

Fp = 1− Pmemory − PQEC, (5)

Fe = 1−
[
3P 2

memory(1− Pmemory) + P 3
memory

]
−
[
1− (1− PQEC)3

]
+

[
1

9
PmemoryPQEC

]
,

where Fp and Fe represent the fidelities of the physi-
cal and the encoded qubits, respectively. The quantum
error-correction codes are worth using when their circuits
satisfy Fe ≥ Fp. We assume that Pe reduces to 0 to de-
rive a condition for Tmemory,min. It is not a lower bound
or precise value but it can be used as a guideline to de-
termine the minimum memory time. We can achieve the
condition Tmemory,min = 2TQEC. This implies that if the
memory time is too short—for example only one gate op-
eration time—the quantum error-correction circuit can-
not yield any effectiveness.

3. Maximum Memory Time

We also considered the duration for which memory
time can show effectiveness. In this case, since TQEC <<
Tmemory, the two fidelities can be simplified as follows:

Fp = 1− Pmemory, (6)

Fe = 1−
[
3P 2

memory(1− Pmemory) + P 3
memory

]
.

Again, to exhibit effectiveness, Fe should be greater than
or equal to Fp. Based on this equation, we derive the as
Pmemory ≤ 1

2 , and hence Tmemory,max ≤ 1
2Pe

. This implies
that we can delay error correction for sufficiently long.

Meanwhile, if the time for the transversal gates is shorter
than this memory time, we can apply multiple encoded
operations instead of only one encoded gate between the
QEC cycles. Note that this property has been recently
investigated [17, 18].

4. Best Memory Time

We realize that there is a range of memory time to
show effectiveness in, as 2TQEC ≤ Tmemory,max ≤ 1

2Pe
.

Although we can choose any memory time within this
range, it is better to choose one that shows the maxi-
mum gain, Fe − Fp, considering overhead due to error
correction. From the above fidelities, we derive the best
memory time as follows:

Tmemory,best =
1−

√
1− 2

3 (1 + 1
9PeTQEC)

2Pe
. (7)

5. Best QEC Cycle Time

Finally, we can set the best cycle time of QEC as fol-
lows.

TQEC Cycle = TQEC + Tmemory,best, (8)

'
√

3− 1

2
√

3Pe

,

' 0.211324
1

Pe
,

when TQEC � 0 is compared to Tmemory. This condition
implies that the best cycle time depends on the physical
error rate. Therefore, we should set the appropriate cycle
time depending on the physical error rate.

B. Accuracy Threshold Value

We define the maximum tolerable error rate as
1/Tminimumcycletime because if the encoded qubits are
effective, their coherence time should be sustained for at
least the length of the QEC cycle. Based on this defini-
tion, we can set the accuracy threshold value as follows:

Pe,th =
1

TQEC + Tmemory,min
, (9)

=
1

3TQEC
.

This implies that the physical qubit should have T ?
2 as

3TQEC . We summarize the above conditions in Table I.
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TABLE I. Conditions

Parameter Condition

Tmemory,min 2TQEC

Tmemory,best
1−

√
1− 2

3
(1+ 1

9
PeTQEC)

2Pe

Tmemory,max
1

2Pe

TQECCycle 0.211324 1
Pe

Pe,th
1
3

1
TQEC

C. Explanation of Previous Experiment Results

In a previous experiment [6], the authors showed the
possibility of correcting artificial errors. However, they
were unable to show effectiveness. To explain their result,
we applied the above conditions. Based on their design,
TQEC = 11/2 was the single-qubit operation time unit.
Therefore, by applying the above condition pertaining
to the accuracy threshold value, Pe,th is 0.06. Unfortu-
nately, the fidelity of the two-qubit gate, FCCZ, in their
work was 0.22, which was much higher than the threshold
value. Therefore, their experiment cannot show effective-
ness.

IV. NUMERICAL ANALYSIS

To check the above conditions and quantitatively ana-
lyze the physical design, we numerically investigated the
actual situation by using an error simulation.

A. Pulse Sequence

To check the physical situation, we should decompose
the given quantum error-correction circuit into the form
of a physical pulse sequence that can be tailored to the
target qubit system. As the simplest approach, it was
possible to use a single-shot pulse for the entire circuit.
On the contrary, we could have used a general method,
such as concatenating the predefined pulse sequence for
each elementary gate, which we call the multiple pulse
method. To determine which approach was better, we
investigated two CNOT and Toffoli gates.

Using the multiple pulse method, we were able to de-
compose the CNOT gate into the several pulses for the
quantum-dot [21, 22] and superconductor [6, 23] qubits,
as shown in Figure 3. The Toffoli gate was also decom-
posable as shown in Figure 4.

For the single-shot pulse method, we used the GRAPE
method [24], which attempts to find a better by using
the numerical approach. As an example, Figure 5 shows
a single-shot pulse sequence for the CNOT gate on the
quantum-dot qubit. Since the performance of the gen-
erated pulse sequence depends on many configuration,

 

FIG. 3. CNOT Gate by Multiple Pulses.
Each qubit technology supports arbitrary single-qubit gates. For
two-qubit gate, quantum-dot[19] and superconductor[20] qubits
support SWAP (θ) and iSWAP (θ) interactions, respectively.

it is generally difficult to find a good single-shot pulse
sequence.

Finally, we compared the two approaches by checking
the process fidelity with the error rate. As shown in Ta-
bles II and III, the multiple pulse method exhibited the
best performance in the range of small error rate. There-
fore, we subsequently choose the multiple pulse method.

B. Performance Analysis

Finally, we numerically simulated the quantum error-
correction circuit under the amplitude damping channel
model with different error rates. Figure 6 shows the gain
in quantum error-correction code with different memory
times and error rates. From this figure, we see that if
the time for memory is too small, there is no gain. We
also confirmed that a satisfactory range of memory time
depends on error rate.

We calculated the physical time of needed for imple-
mentation as well as the necessary conditions, such as
minimum memory time and accuracy threshold values,
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FIG. 4. Toffoli Gate by Multiple Pulses.[1].

as shown in Table IV. Two key parameters, the accu-
racy threshold value and the minimum memory time, are
marked in Figure 6. As shown in the figure, our theoreti-
cal analysis agreed well with the results of the numerical
simulation.

C. Impact of Architectures

Since the simple three-qubit code cannot support ar-
bitrary single-qubit error, it is reasonable to consider the
nine-qubit code, which can correct any arbitrary single-
qubit error. In this case, we should consider the impact of
the physical layout of qubits, such as 1D or 2D. Since the
nine-qubit code requires multiple non-neighbor qubits,
it is necessary to find an appropriate mapping to a 2D
structure, which requires the use of several SWAP gates.
Therefore, the performance of the SWAP gate might af-
fect overall performance. Tables V and VI show the time
for the quantum error-correction circuit and its accuracy
threshold value for different layouts. For the quantum-
dot qubit, since the SWAP gate operated quickly, there
was not a significant difference.

FIG. 5. CNOT Gate by Single-Shot Pulse.
Each figure shows the pulse waveform for x1, x2, y1, y2, z1, z2,
and x1x2 + y1y2 + z1z2 Hamiltonians, respectively. The horizontal
line represents the time of pulse sequence during unit time. The
red(thin) curves show the final pulse shape, and the blue(thick)
curves for intermediate pulse shapes during pulse generation.

V. IBM QUANTUM EXPERIENCE TEST

To check whether our theoretical analysis fit ac-
tual quantum hardware, we used IBM Quantum
Experience[25]. IBM Quantum Experience provides a
five-qubit superconductor quantum processor for users
online.

A. Correctness Analysis

To show the correctness of QEC, we considered arti-
ficial errors in the data qubit. Artificial errors are not
natural, such as decoherence during memory time, but
errors inserted as gates without memory time. We used
the same QEC circuit as in Figure 1, but in IBM super-
conductor qubits, only the third qubit can be used for
a target qubit of a CNOT gate. Moreover it does not
support a Toffoli gate. We changed the circuit to the one
shown in Figure 7.

We checked the fidelity of the data qubit with the arti-
ficial errors. We also considered both bit-flip and phase-
flip errors to check the dominant error type. Table VII
shows the fidelities of the data qubit after the correc-
tion of each error type. Since fidelity was close to one,
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FIG. 6. (color online) Gain of 3-qubit QEC with memory time and physical error rate.
The range in green represents memory time and physical error rate, showing positive gain(Fe − Fp) of QEC. The dotted lines represent
the theoretically calculated minimum memory time and accuracy threshold value shown in Table IV.

FIG. 7. Converted circuit of 3-qubit QEC for IBM test with an intended error and idle gates. The second qubit in this figure
was the third input to the IBM system.

TABLE II. Error Tolerance of the CNOT Gate.
Each column and row represents a different relaxation and dephas-
ing rate, respectively. Since the pulse sequence was approximate,
fidelity was not one, even though relaxation and dephasing were
zero.

(a) Single-Shot Pulse

0.00000 0.00001 0.00010 0.00100

0.00000 0.99793 0.99789 0.99753 0.99394

0.00001 0.99791 0.99787 0.99751 0.99392

0.00010 0.99773 0.99769 0.99733 0.99375

0.00100 0.99593 0.99859 0.99594 0.99196

(b) Multiple Pulses

0.00000 0.00001 0.00010 0.00100

0.00000 0.99999 0.99989 0.99897 0.98984

0.00001 0.99979 0.99968 0.99877 0.98964

0.00010 0.99795 0.99785 0.99693 0.98783

0.00100 0.97985 0.97975 0.97885 0.96992

we confirmed that the circuit could correct correctable
error.

B. Effectiveness Analysis

As stated above, we wanted to find when the encoded
qubit yields better performance than the physical qubit.
Thus, we inserted several IDLE gates to prolong mem-
ory time to check effectiveness in a the practical situa-
tion. Unfortunately, the IBM device does not support a

TABLE III. Error Tolerance of the Toffoli Gate.
Each column and row represents a different relaxation and dephas-
ing rate, respectively.

(a) Single-Shot Pulse

0.00000 0.00001 0.00010 0.00100

0.00000 0.59219 0.59215 0.59185 0.58877

0.00001 0.59217 0.59214 0.59185 0.58875

0.00010 0.59202 0.59198 0.59167 0.58860

0.00100 0.59047 0.59043 0.59012 0.58706

(b) Multiple Pulses

0.00000 0.00001 0.00010 0.00100

0.00000 0.99970 0.99858 0.98842 0.89298

0.00001 0.99743 0.99631 0.98617 0.89096

0.00010 0.97727 0.97617 0.96625 0.87300

0.00100 0.80014 0.79925 0.79115 0.71518

TABLE IV. Key Parameters

Quantum-Dot Superconductor

TQEC
281
8

821
8

Pe,th 0.009489 0.003248

Tmemory,min ' 70 ' 205

sufficient number of steps to minimize memory time. It
allowed for only 40 steps, and the converted circuit had
31 steps. According to the result in Section III, the min-
imum memory time should be 2TQEC steps, which here
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TABLE V. TQEC with 1D and 2D Architectures

TQEC Equation QD SC

1D(QD) 5 TSWAP+8TCNOT+2TToffoli
672
8

�

1D(SC) 6 TSWAP+7TCNOT+2TToffoli � 2220
8

2D 8 TCNOT+2TToffoli
562
8

1642
8

TABLE VI. Pe,th with 1D and 2D Architectures

Pe,th QD SC

1D 0.0039682 0.0012012

2D 0.0047449 0.0016240

meant 62 steps. Therefore, we were unable to check the
minimum memory time. However, we could test a mem-
ory time over nine-idle gates, although it was not helpful.
Table VIII shows the degradation in the data qubits with
a small number of steps for memory time. With this cir-
cuit, we checked that the three-qubit QEC did not show
any effectiveness using fidelities from the test. Table VIII
shows the results of the test. This results can be consid-
ered to show that the theoretical analysis of minimum
memory time was correct, but we could not check the
QEC gain of the real hardware in maximum and best
memory times.

VI. CONCLUSION AND FUTURE WORKS

In this work, we investigated the physical condition
that needed to be satisfied to meet the requirements for
the effectiveness of quantum error-correction code. For
the quantum-dot and superconductor qubits and their
current and near future capabilities, we considered the
simplest three-qubit quantum error-correction code with
a coherent correction method. We first analyzed the cir-
cuit and found that there is a range of memory time that
exhibits the effectiveness of the code. Note that even if
memory time is zero, it cannot exhibit effectiveness. To
confirm this, we conducted an error simulation using the
amplitude damping channel. The simulation confirmed
that there is a range of memory time with a different
physical error rate. We also investigated the impact of
layout, such as 1D or 2D on the nine-qubit code. In the

case where the performance of the SWAP gate is good,
we found the difference in physical layout does not affect
performance.

Since the current study considers only the encoded
memory qubit, it can be used for any application which
requires only the memory capability such as the quan-
tum repeater node [26]. Since the quantum repeater
node requires the longer memory time for longer distance,
the above analysis can be used to find the tradeoff be-
tween the best number of hops without doing quantum
error-correction. Also we can consider the decoding and

TABLE VII. Fidelities of 3-qubit QEC with intended errors

Fidelity Fp

Bit flip code 0.765

Phase flip code 0.783

TABLE VIII. Fidelities of 3-qubit QEC with insufficient num-
ber of idle gates

Fidelity Fp Fe

Bit flip code 0.984 0.852

Phase flip code 0.973 0.860

the implementation of entanglement swapping protocol
at the physical level with purification protocol.
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