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We derive a set of constraints, which we will call hierarchy constraints (HCs), on scattering amplitudes of an
arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such
constraints into nontrivial relations between elements of the transition probability matrix. This observation can
be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce
the number of independent elements of the transition probability matrix.

I. INTRODUCTION

Control over quantum matter can be achieved by applying
time-dependent fields, whose effects are described by the non-
stationary Schrödinger equation. This equation is often hard
to explore even numerically because of a lack of conservation
laws, strongly oscillatory behavior, and typically large size of
a phase space (e.g., for 280 spins-1/2, the size of the state vec-
tor exceeds the estimated number of atoms in the observable
Universe). Within MLZM, it is possible to study quantum dy-
namics in time-dependent fields without approximations. In
this model, evolution is described by a Hamiltonian with pa-
rameters that change linearly with time [1]:

i
dΨ

dt
= Ĥ(t)Ψ, Ĥ(t) = Â+ B̂t. (1)

Here, Ψ is the state vector in a space of N states; Â and B̂ are
constant Hermitian N ×N matrices. One can always choose
the so-called diabatic basis in which the matrix B̂ is diagonal,
and if any pair of its elements are degenerate then the corre-
sponding off-diagonal element of the matrix Â can be set to
zero by a time-independent change of the basis, that is

Bij = δijβi, Anm = 0 if βn = βm, n 6= m ∈ (1, . . . , N).
(2)

This can be achieved by diagonalizing the matrix B̂, followed
by (in the case of degeneracy) diagonalizing the projections
of the matrix Â onto the spaces of eigenvectors of B̂ that cor-
respond to degenerate eigenvalues of the latter. Constant pa-
rameters βi are called the slopes of diabatic levels. Nonzero
off-diagonal elements of the matrix Â in the diabatic basis
are called the coupling constants. We will denote them by
gij ≡ Aij . Diagonal elements of the Hamiltonian

Hii = βit+ εi, εi ≡ Aii, (3)

are called the diabatic energies. Unless specially stated, we
will order indexes according to the sizes of corresponding
state energies at t→ −∞, so that for i > j we have βi > βj ,
or if βi = βj then εi < εj .

The goal of the multistate Landau-Zener theory is to find
the scattering N × N matrix Ŝ, whose element Snn′ is the
amplitude of the diabatic state |n〉e−iϕn(t) at t → +∞,
given that at t → −∞ the system was in the diabatic state

|n′〉e−iϕn′ (t), where ϕk(t) is the time-dependent adiabatic
phase of the state |k〉 at t → ±∞, as explained in detail in
Appendix A. In many applications, only the matrix P̂ , with
elements Pnn′ ≡ Pn′→n ≡ |Snn′ |2 called transition proba-
bilities, is needed.

Applications of MLZM in mesocopic, atomic, and molecu-
lar physics are ubiquitous [2–6]. The origin of this model can
be traced to the work of Majorana [7] who generalized any so-
lution for a spin-1/2 in a time-dependent field, using the two-
state Landau-Zener-Majorana-Stückelberg model [7, 8, 18] as
an example, to arbitrary spin values.

A general analytical solution of MLZM is unknown, but
there are many choices of parameters in Eq. (1) for which
scattering matrices have been found [9–17]. Recently, con-
siderable progress in deriving nontrivial solvable MLZMs has
been achieved due to the discovery that if a model satisfies
specific integrability conditions its exact analytical solution
can be obtained by application of a semiclassical ansatz that
corresponds to applying the solution for two levels at all pair-
wise diabatic level crossings [15–17]. Currently, integrability
conditions and the way to determine transition probabilities
are conjectures, which are not explained but which are well
supported by all known analytically solved models and exten-
sive numerical checks.

In our article we derive a result that explains at least some
of the puzzling properties of MLZM. We will argue that, in
any model of the form (1), scattering matrix elements satisfy
a set of constraints with hierarchical structure, i.e., the lower
level constraints can be used to reduce the number of vari-
ables that are connected at higher levels. We will refer to such
constraints with the abbreviation “HC” meaning the hierarchy
constraint.

Going ahead, we formulate the central result. The M -th
level of the hierarchy (M < N ) is the expression for the M ×
M minor that stays at the upper left corner of the scattering
matrix. For example, the first three HCs read:

S11 = e
−π

N∑
k=2

|gk1|2/|β1−βk|
, (4)

Det

(
S11 S12

S21 S22

)
= e
−π

N∑
k=3

(
|gk1|

2

|β1−βk|
+
|gk2|

2

|β2−βk|

)
, (5)
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Det

 S11 S12 S13

S21 S22 S23

S31 S32 S33

 = e
−

N∑
k=4

(
π|gk1|

2

|β1−βk|
+
π|gk2|

2

|β2−βk|
+
π|gk3|

2

|β2−βk|

)
.

(6)
There is a second hierarchy that starts with the right lower

corner of the scattering matrix. The first two such HCs read

SNN = e
−π

N−1∑
k=1

|gkN |2/|βN−βk|
, (7)

Det

(
SN−1,N−1 SN−1,N
SN,N−1 SNN

)
= e
−
N−2∑
k=1

(
π|gkN |

2

βN−βk
+
π|gk,N−1|

2

βN−1−βk

)
.

(8)

More generally, HCs are given by

Det


S11 S12 · · · S1M

S21 S22 · · · S2M

... · · ·
. . .

...
SM1 · · · · · · SMM

 = e
−π

N∑
k=M+1

M∑
r=1

|gkr|
2

|βr−βk|
, M = 1, . . . N − 1, (9)

Det


SN−M+1,N−M+1 SN−M+1,N−M+2 · · · SN−M+1,N

SN−M+2,N−M+1 SN−M+2,N−M+2 · · · SN−M+2,N

... · · ·
. . .

...
SN,N−M+1 · · · · · · SNN

 = e
−π

N−M∑
k=1

N∑
r=N−M+1

|gkk|
2

|βr−βk| , M = 1, . . . N − 1. (10)

The reader familiar with the prior literature on MLZM can
recognize that the first level constraints, Eqs. (4) and (7), cor-
respond to the known result called the Brundobler-Elser for-
mula that provides the amplitude to remain on a level with an
extremal slope. The fact that this formula is only one of a big-
ger set of exact constraints is our main observation, which has
consequences that we will discuss.

The structure of our article is as follows. In Sec. II, we
derive HCs (9)-(10). In Sec. III, we review some of the ba-
sic information about MLZM. In Sec. IV, we discuss simple
applications that lead to relations between transition probabil-
ities in chain models. In Sec. V, we show how HCs imply
no-go constraints in MLZM [19] and argue that the solution
of the Demkov-Osherov model can be derived using only HCs
and the unitarity of evolution. In Sec. VI we prove the valid-
ity of the previously conjectured solution of a model with four
interacting states. In Sec. VII, we derive the solution of the 4-
state generalized bow-tie model using HCs and compare this
solution to the result of the application of HCs to a very similar
but not fully integrable model. We then discuss our findings
in the conclusion, where we also outline open questions.

II. DERIVATION OF HIERARCHY CONSTRAINTS

The derivation of Eqs. (9) and (10) is based on the fact
that first level HCs (4) and (7) are already rigorously proved
[20] (see also [19, 21] for an earlier, more intuitive proof and
[22, 23] for mathematical studies of the Stokes phenomenon
in MLZM). Another ingredient is the observation made in [14]
that each model of the type (1) can be used to generate a bigger
model of the form (1), with the scattering matrix of the bigger
model being fully constructed from the scattering matrix of

the original model. We formalize this property in Appendix B.
For this article, we will only need that with the original ma-
trix Hamiltonian Ĥ we can associate the secondary quantized
Hamiltonian Ĥ ′:

Ĥ ′ =

N∑
i,j=1

ĉ†iHij ĉj , (11)

where ĉi and ĉ†i are, respectively, annihilation and creation
operators of spinless fermions. Note that there are N such
operators, i.e., one per diabatic level of the original model.
So, one can think about the Hamiltonian (11) as describing
hopping of noninteracting fermions among N sites.

The Hamiltonian (11) conserves the number of fermions.
For example, if there is only one fermion in the model, the
matrix form of the Hamiltonian Ĥ ′ coincides with Ĥ . How-
ever, if we populate this system with M > 1 fermions then
the matrix form of Ĥ ′ would correspond to evolution of
N !/[M !(N − M)!] quantum states. Ref. [14] showed that
such a Hamiltonian acting in the space of M fermions has
the form (1). If an arbitrary operator X̂ is time independent
in the Schrödinger picture then in the Heisenberg picture this
operator changes with time according to

dX̂

dt
= −i[X̂, Ĥ ′]. (12)

So, in the Heisenberg picture, the Hamiltonian (11) leads to
equation

i
d

dt
ĉi =

∑
j

Hij(t)ĉj , i, j = 1, . . . , N, (13)
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which coincides with the Schrödinger equation for state am-
plitudes in the single particle sector of the model. Since the
evolution equation (13) is linear, we can write the solution for
operator evolution from t→ −∞ to t→ +∞ in terms of the
scattering matrix elements of the single particle sector:

ĉi(+∞) =
∑
j

Sij ĉj(−∞). (14)

For a sector with M fermions, let indexes γ1 < γ2 < . . . <
γM correspond to levels that are initially (at t → −∞) popu-
lated with fermions, and let α1 < α2 < . . . < αM be indexes
of the levels populated with fermions at t → +∞. Corre-
sponding states are constructed as

|γ1, . . . , γM 〉 ≡ ĉ†γ1(−∞) . . . ĉ†γM (−∞)|0〉, (15)

|α1, . . . , αM 〉 ≡ ĉ†α1
(+∞) . . . ĉ†αM (+∞)|0〉. (16)

Transition amplitudes between such states are given by

S′α1...αM ,γ1...γM = 〈α1, . . . , αM |γ1, . . . , γM 〉 = Det(Q̂),
(17)

where

Q̂ =


Sα1γ1 Sα1γ2 . . . Sα1γM

Sα2γ1 Sα2γ2 . . .
...

...
...

. . .
...

SαMγ1 · · · · · · SαMγM

 . (18)

In Appendix C, we provide an illustrative example of how
one solvable model can produce another model whose solu-
tion can be obtained using Eq. (17). For this section, how-
ever, we do not assume that the single particle sector of the
model is exactly solvable. Instead, we note that first level
HCs, Eqs. (4) and (7), can be equally applied to the sector
with M fermions. In such a model, the lowest slope diabatic
level corresponds to the state in which all fermions occupy
the M first lowest slope levels of the original N -state system,
i.e., γk = k, k = 1, . . . ,M . This state is coupled directly
to and only to states with one of the indexes γk replaced by
some r, such that N ≥ r > M . Corresponding couplings are
equal to ±grk, where (±) sign depends on rearrangement of
fermion indexes according to ordering of creation operators in
the definition of multifermion states in (15)-(16). Correspond-
ing differences of level slopes are equal, in absolute value, to
|βk − βr|.

The survival amplitude for such an extremal state is given
by Eq. (17) with γk = αk = k, k = 1, . . . ,M , which coin-
cides with the left hand side of Eq. (9). On the other hand,
according to Eq. (4), this survival amplitude is given by the
exponential of the sum over terms corresponding to directly
coupled states to the extremal one, which is written on the
right hand side of Eq. (9). Note that since such an amplitude
depends only on the absolute value of the couplings, inevitable
different signs, ±, near couplings of the multi-fermion sector
do not produce any effect on the survival amplitude. Combin-
ing two expressions for this amplitude, we arrive at the desired
Eq. (9). The second hierarchy (10) is proved analogously by

FIG. 1. Typical diagram of diabatic levels of a multistate Landau-
Zener model. Here, levels 1 and 2 have equal extremal (lowest) slope,
and ε1 > ε2.

assuming that all M fermions initially occupy M levels with
the highest rather than lowest slopes.

The above derivation of Eqs. (9) and (10) was achieved by
application of the fist level HCs (4) and (7) to the M -fermion
Hamiltonian. One may wonder whether more complex cases
of Eqs. (9) and (10) can give rise to even more complex HCs
after such constraints are applied to multiparticle sectors. Our
test in Appendix D shows, however, that such HCs are likely
not independent.

Despite the abundance of HCs, there is the question of how
much they reveal about transition probabilities. Numerical
simulations of MLZM have shown that scattering matrices
generally depend on parameters εi, defined in (3), and on the
phases of coupling constants. In contrast, HCs do not depend
explicitly on εi and depend on couplings and level slopes only
via combinations |gij |2/|βi − βj |. Moreover, unlike Eqs. (4)
and (7), higher order HCs depend on phases of scattering ma-
trix elements nontrivially. We will show that, nevertheless,
HCs can become sufficient to solve a model if this model has
additional symmetries.

III. PRELIMINARY INFORMATION

Before we proceed with applications, here we review some
of the known properties of MLZM. We will then often use this
section for references.

A. Diabatic Level Diagram

It is convenient to illustrate the parameters of any multistate
Landau-Zener model on a graph with time-energy axes, as
shown in Fig. 1. Lines of the graph show the time-dependence
of diabatic levels (diagonal elements of the Hamiltonian).
Small black filled circles mark the intersections of levels with
nonzero pair-wise couplings. Integers on the left side of dia-
batic levels mark level indexes. On the right, levels are marked
by analytic expressions for diabatic energies. It is easy to read
off the Hamiltonian of the model from such a picture. For



4

example, we have for Fig. 1:

Ĥ =

 −b1t+ ε1 0 0 g14
0 −b1t+ ε2 g23 g24
0 g∗23 b3t g34
g∗14 g∗24 g∗34 β4t

 , ε1 > ε2.

(19)
Direct couplings of parallel levels, such as levels 1 and 2 in
Fig. 1, are always considered zero, and if the intersection of
two levels is not specially marked then the corresponding cou-
pling is also assumed to be zero, e.g. the coupling between
levels 1 and 3 in Fig. 1.

B. Demkov-Osherov (DO) and bow-tie models

Two models of the type (1) have been known to be com-
pletely solvable for quite some time. One is the Demkov-
Osherov (DO) model [9] and another is the bow-tie model
[11, 12]. Their parameters are illustrated in Fig. 2.

The DO model describes the case when a single diabatic
level crosses a band of parallel levels (Fig. 2(a)). The bow-
tie model describes the case when some N − 2 levels inter-
sect at one point and do not interact with each other directly
(Fig. 2(b)). Instead, each of them interacts with two parallel
levels that are equally distanced from the multilevel crossing
point. For any level of the first set, the coupling to each of the
parallel levels is the same.

Originally, solutions of these models were found using
methods from complex analysis, which could not be applied to
any other system of the type (1). Interestingly, it was observed
that, despite the complexity of derivation, transition probabil-
ities in both models are provided by a simple semiclassical
ansatz [11, 15]. For real valued couplings, the transition prob-
abilities are generated as follows:

1) One should first identify all possible trajectories on a
graph in Fig. 2(a) or Fig. 2(b) that respect causality and con-
nect one initial state and one final state of interest. If there are
no such trajectories, the corresponding transition probability
is zero.

2) The amplitude of each trajectory is given by a product of
simple Landau-Zener passing or turning amplitudes that are
encountered along the trajectory: if the diabatic level of a tra-
jectory does not change at the crossing point with coupling gi
and crossing level slopes βi and βj , then the trajectory ampli-
tude gains the factor

√
pi, where pi = exp(−2π|gi|2/|βi −

βj |). If the trajectory turns at such a crossing point then it
gains an amplitude ±i

√
1− pi, where sign (±) is the same as

the sign of the coupling constant gi.
3) The final transition probability is obtained by summing

the amplitudes of all trajectories that connect the initial state
to the final state, and then taking the square of the absolute
value of the result.

Within these models, this ansatz can also be used to recon-
struct the scattering matrix up to a dynamic phase that is al-
ways the same for different interfering trajectories, so that this
phase does not influence final transition probabilities, as is dis-
cussed in detail in [11]. We also note that, according to the

FIG. 2. Diabatic level diagrams of (a) Demkov-Osherov (DO) and
(b) bow-tie models. Numbering of levels in DO model starts with
zero.

semiclassical ansatz, solutions of the DO and bow-tie mod-
els depend only on combinations of parameters of the form
|gi|2/|βi − βj |, just as in the HCs (9)-(10).

C. Unitarity conditions

The scattering matrix is unitary:

ŜŜ† = Ŝ†Ŝ = 1̂N . (20)

Taking [Ŝ†Ŝ]nn = [ŜŜ†]nn = 1 and using the definition
Pij ≡ |Sij |2, we find that the unitarity of evolution imposes
constraints on transition probabilities:

N∑
k=1

Pkr =

N∑
k=1

Prk = 1, r = 1, . . . , N, (21)

i.e., the matrix P̂ is doubly stochastic. It is easy to verify that
one of the equations in (21) is dependent on the others. For
example, an arbitrary model with four states has in general
seven independent constraints of the form (21), and hence nine
out of sixteen elements of the matrix P̂ can be independent.
Additional symmetries of a model may reduce the number of
independent transition probabilities further, as we will show
in the following sections.

IV. LANDAU-ZENER CHAIN MODELS

In Landau-Zener chains, all diabatic levels intersect at one
point and only pairs of states with adjacent indexes interact
with each other directly. One can show that a simple gauge
transformation can make all couplings in a chain real [25],
which we will assume done. So the Schödinger equation for
diabatic state amplitudes reads

iȧn = bntan + gnan+1 + gn−1an−1, n = 1, . . . , N, (22)
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where it is also assumed that g0 = gN = 0 to keep dynamics
within only N states.

A. Constraints on probabilities in arbitrary chain

Equation (22) does not change if we replace t → −t and
then change sign of all even indexed amplitudes: a2k →
−a2k. Such discrete symmetries lead to a symmetry of the
scattering matrix. Equation that is obtained by replacement
t → −t is equivalent to evolution backwards in time, so its
scattering matrix is the complex conjugate transpose of the
one for the original model [24]. Similarly, a change of sign for
some amplitude an leads to a change of sign of corresponding
scattering matrix elements that contain the index n, Smn and
Snm, withm 6= n. Since Eq. (22) is invariant in the simultane-
ous application of these two operations, the scattering matrix
should be invariant too. This means that the scattering ma-
trix elements of the chain model satisfy additional constraints
[24]:

Sij = (−1)i+jS∗ji, i, j = 1, . . . , N. (23)

Equation (23) means that diagonal elements of the scattering
matrix are purely real and that the transition probability matrix
is symmetric: Pij = Pji. Substituting (23) into (5) and recall-
ing that couplings for chain models are only between levels
with adjacent indexes, we find

S11S22 + P12 = e
− πg22
|b2−b3| . (24)

Using (4) we then obtain:

P22 ≡ |S22|2 =

(
e
− πg22
|b2−b3| − P12

)2

e
2πg21
|b1−b2| . (25)

Although Eq. (25) does not fix any of the probabilities sepa-
rately, it is a nontrivial constraint that relates probabilities P22

and P12. We checked that Eq. (25) holds true for two exactly
solvable semi-infinite chain models that were studied in [25]
and for the 4-state chain model that was solved in [17].

B. Complete solution of 3-state chain model

One of the earliest known solvable models of the type (1) is
the 3-state chain model. Its Hamiltonian is

Ĥ =

 b1t g1 0
g1 b2t g2
0 g2 b3t

 . (26)

It is also illustrated in Fig. 3. The original solution of this
model in [10] was very complex. Here we suggest a different
approach.

First, the symmetry Pij = Pji that follows from (23) re-
duces the number of independent elements of P̂ from nine to
six. We also recall that this matrix is doubly stochastic. Gen-
erally, there are four independent constraints of the type (21)

FIG. 3. Diabatic level diagram of a three-state chain model.

for N = 3, but only three of them are independent for a sym-
metric matrix. We can use

P13 + P23 + P33 = 1,

P11 + P12 + P13 = 1, (27)
P12 + P22 + P32 = 1.

This reduces the number of unknown elements to three. We
then have two HCs (4) and (7)

P11 = e
− 2πg21
|b1−b2| , P33 = e

− 2πg22
|b3−b2| . (28)

Finally, we use constraint (25), which is specific for chain
models. Altogether we have six equations in (25), (27), and
(28) for six unknowns: P11, P22, P33, P12, P23, and P13.
Solving them, we reproduce the solution in [10], e.g.,

P22 =

(
1− e−

πg21
|b1−b2| − e−

πg22
|b3−b2|

)2

, (29)

P12 =

(
1− e−

πg21
|b1−b2|

)(
e
− πg21
|b1−b2| + e

− πg22
|b3−b2|

)
, (30)

etc.. Such an algebraic solution is considerably simpler than
the solution based on complex analysis of this model in [10].

V. BAND MODELS

Here, we will explore the application of HCs to the subclass
of models of the type (1), in which some of the levels have
the same slope. We have already shown an example of such a
model in Fig. 1, in which levels 1 and 2 have the same (lowest)
slope.

A. No-go rule and extension of Brundobler-Elser formula

Brundobler and Elser, who noticed Eqs. (4) and (7) in nu-
merical simulations [1], conjectured these formulas only for
absolute values, |S11| and |SNN |. The first proofs of these
formulas in [19, 21] showed, however, that S11 and SNN are
purely real, so one can drop modulus brackets. Ref. [19]
went further and pointed that there are non-rigorous argu-
ments showing that there are two types of extensions of the
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Brundobler-Elser formula in the case when instead of one
level with an extremal slope there is a band of several lev-
els having the same extremal slope but different parameters εi
that we defined in (3).

Assume that the band of parallel levels has the lowest slope.
First, Ref. [19] suggested that the constraint (4) is applicable
to each of the parallel levels:

Srr = e−π
∑N
k=n+1 |gkr|

2/|βk−βn|, r = 1, . . . , n, (31)

where n is the number of levels in the band with extremal
slope. Here we recall that parallel levels are assumed not to
be directly coupled to each other.

The second suggestion in Ref. [19] was the following no-go
rule: for the band with the lowest slope, transitions from level
k to level r of the same band (i.e. 1 ≤ k, r ≤ n) have zero
amplitude if εk > εr, i.e.

Srk = 0, εk > εr. (32)

There is analogous rule in the case when band levels have the
highest slope. Then for levels with εk > εr we have Skr = 0.

The method suggested in [19, 21] could not be extended
rigorously beyond Eq. (4) for the element S11. Eventually, an
alternative approach was developed in [20] that proved both
the no-go rule and Eq. (31). This approach is quite complex.
It is based on tedious analysis of perturbation series in powers
of coupling constants. Thus, finding a simpler proof of the
no-go rule and Eq. (31) is still desirable. Here we will argue
that the no-go rule and Eq. (31) are consequences of HCs (9).

We will illustrate our arguments using the example of the
4-state Hamiltonian Ĥ in Eq. (19) and Fig. 1. This Hamil-
tonian has two parallel levels with the lowest slope. By our
assumptions, Eq. (4) can be applied to level-1:

S11 = e−π|g14|
2/(b4−b1). (33)

Let us substitute t→ −t in the Schrödinger equation (1) with
this Hamiltonian. The resulting equation can still be written
in the form (1) but with a new Hamiltonian:

Ĥτ =

 −b1t− ε1 0 0 −g14
0 −b1t− ε2 −g23 −g24
0 −g∗23 b3t −g34
−g∗14 −g∗24 −g∗34 β4t

 , ε1 > ε2,

(34)
for which the level diagram is shown in Fig. 4. Note that
the time-reversal operation is equivalent to change of sign of
all couplings and parameters εi. Since the Hamiltonian (34)
describes time-reversed evolution with the original Hamilto-
nian (19), their scattering matrices are related by the conjugate
transpose: Ŝτ = Ŝ†. This means, in particular, that

Sτ22 = S∗22. (35)

The next observation is that although matrices (19) and (34)
are related, their corresponding level diagrams in Fig. 1 and
Fig. 4 have different geometries: In Fig. 4, level-2 has higher

FIG. 4. Diabatic levels of the Hamiltonian (34) for time-reversed
evolution of the model in Fig. 1.

diabatic energy than level-1. Therefore, according to our as-
sumptions, Eq. (4) can be applied to level 2 in Fig. 4:

Sτ22 = e−π(|g23|2/(b3−b2)+|g24|2/(b4−b2)). (36)

Substituting this into (35) we find

S22 = e−π(|g23|2/(b3−b2)+|g24|2/(b4−b2)), (37)

which proves that Eq. (31) works for both parallel levels in
this model.

Let us turn to the no-go rule. For model (19) it says that

S21 = 0. (38)

Let us apply the 2nd level HC to this model:

S11S22 − S21S12 = e
−π
(
|g14|

2

b4−b1
+
|g23|

2

b3−b2
+
|g24|

2

b4−b2

)
. (39)

Substituting (37) into (39) we find

S21S12 = 0. (40)

This equation can be satisfied either when S21 = 0 or when
S12 = 0. Both perturbative and semiclassical calculations
would show that S12 6= 0 so the only possibility for corre-
sponding parameter ranges is (38). Since S21 is expected to
be an analytical function of some combination of parameters,
its zero value in a finite interval of parameters means the gen-
eral validity of (38).

The above proof of (31) and (38) is elementary and extend-
able to any model (1) with only two levels in the extremal
band. Unfortunately, similar analysis for higher number n has
to include an additional nontrivial step that we cannot pursue
here in detail: it is expected that transition probabilities are
continuous functions of the level slopes if diabatic energies re-
main non-degenerate except for a few discrete time moments.
This should follow from the fact that the time interval with es-
sential nonadiabatic transitions is finite, as one can conclude
from analysis of nonadiabatic transitions at large negative and
positive time. Therefore, a small variation of level slopes in
the Hamiltonian leads to small variations of the correspond-
ing transition probabilities. If we accept this intuitively obvi-
ous but mathematically nontrivial property of scattering am-
plitudes as true, we can assume that all but two of the band
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levels with indexes r and s (s > r) have slightly lower slopes
than other levels of the band, and then end up with (31) for
levels r and s and to Ssr = 0. We can then extend this argu-
ment to all other pairs of band indexes and thus complete the
proof for arbitrary n.

B. Next-to-lowest slope band

As another application of HCs, consider now that there is
only one level with the lowest slope and then there are n par-
allel levels whose slope is the next to the lowest. All other
levels are arbitrary except that their slopes are even higher.
We are going to derive relations between some combinations
of transition probabilities in such models.

Let us “populate” such a model with two noninteracting
fermions by a process described in Sec. II. Then the first n
levels in the two-fermion model will have the same (lowest)
slope, and we can apply the no-go rule to them:

S1r,1k = S11Srk−S1kSr1 = 0, n+1 ≥ r > k ≥ 2, (41)

where Sij,kl and Smn are defined as in Eqs. (17)-(18). Moving
one of the terms in (41) into the right hand side and equating
the absolute value squared in both sides of equation we find

P11Prk = P1kPr1, n+ 1 ≥ r > k ≥ 2, (42)

where P11 is known due to (4).
As in the case of a similar relation (25) in the chain model,

Eq. (42) does not provide an explicit value of any transition
probability. However, it is a nontrivial constraint on the tran-
sition probability matrix that reduces the number of its inde-
pendent parameters.

C. Demkov-Osherov (DO) solution as consequence of HCs

Consider the DO model in which one level with index 0
has a slope −b < 0. This level crosses a band of N parallel
levels with zero slopes, as in Fig 2(a). The band levels are
enumerated so that for i < j, we have εi > εj . No other
diabatic states are present. This model is special because all
its levels are extremal, and we can apply (31) to all of them.
Let us denote

pk ≡ e−2π|gk|
2/b, qk = 1− pk, k = 1, . . . , N. (43)

Then (31) implies

P00 =

N∏
k=1

pk, Pkk = pk. (44)

In addition, the no-go constraints for levels of the band, which
have the highest slope here, read:

Prk = 0, 1 ≤ r < k ≤ N. (45)

Using the semiclassical ansatz in Sec. III B, we can recon-
struct other transition probabilities:

Pm0 = qm

m−1∏
k=1

pk, P0m = qm

N∏
k=m+1

pk, (46)

Pmn = qmqn

m−1∏
k=n+1

pk, m > n > 0. (47)

Semiclassical ansatz, however, is a conjecture itself. So,
we would rather not use it for a mathematical proof yet. In-
stead, we are going to show now that Eqs. (46)-(47) are also
consequences of the HCs. It is easy to check that the solution
(44)-(47) satisfies the constraints (42). We count the number
of constraints given by Eqs. (42)-(45) in addition to the con-
straints (21) on the transition probabilities: For N levels in
the band, there are N(N − 1)/2 constraints (42). We have
also N(N − 1)/2 no-go rules (45), and N + 1 rules of the
type (44). The rules (21) give 2(N + 1)− 1 independent con-
straints for N + 1 levels. Thus the total number of such con-
straints is N2 + 2N + 2, which is one larger than the number
(N + 1)2 of matrix elements of the transition probability ma-
trix. Such a counting, however, does not prove that we have a
sufficient number of independent constraints. To show that we
have enough of them, we will construct the solution (46)-(47)
explicitly, starting from Eqs. (42)-(45).

Note that (47) is a consequence of (46) and (42): (42) im-
plies that for m > n > 0, Pmn = P0nPm0/P00. Performing
the substitutions given by (46) directly implies (47). Hence,
we are left with showing that (46) is a result of Eqs. (42)-(45).

The constraints given by Eqs. (42)-(45) impose the follow-
ing structure on the P̂ -matrix of the DO model:

P̂ =



P00 P01 P02 P03 · · · P0N

P10 p1 0 0 · · · 0

P20
P20P01

P00
p2 0 . . . 0

P30
P30P01

P00

P30P02

P00
p3 · · · 0

...
...

...
...

. . .
...

PN0
PN0P01

P00

PN0P02

P00

PN0P03

P00
· · · pN


. (48)

As numbering of levels in the DO model starts with zero, we
accept the convention for this model that the numbering of
columns and rows of the matrix (48) also starts with zero.

The parameters pk and P00 here are considered known due
to Eqs. (43)-(44). Therefore, matrix (48) is parametrized by
2N unknown elements P0k and Pk0, for k = 1, . . . , N . The
only constraints that are left express the property that the sum
of elements of any row or any column of P̂ are equal to one.
Applying this property to row 1 (containing P10) and column
N (containing P0N ) we find

P0N = qN , P10 = q1. (49)
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The expressions in (49) coincide with the prediction (46) for
the same probabilities. Next, let us equate the sum of ele-
ments of column 1 or row N to one. Using that

∑N
k=2 Pk0 =

1 − P00 − P10 and
∑N−1
k=1 P0k = 1 − P00 − P0N and then

rearranging terms, we find

P01 =
P00q1

1− P10
, PN0 =

P00qN
1− P0N

. (50)

Since the elements P0N and P10 are known from (49), we
conclude that we can also derive P01 and PN0 explicitly.

We continue inductively: look at column m and row (N −
m + 1). The constraint for the sum of the elements in this
column and row give the expressions

P0m =
P00qm

1−
m∑
k=1

Pk0

, PN−m+1,0 =
P00qN−m+1

1−
m∑
k=1

P0,N−k+1

.

(51)
In particular, setting m = N − 1 we find from (51)

P0,N−1 =
P00qN−1
P00 + PN0

, P20 =
P00q2

P00 + P01
. (52)

Now, since PN0 and P01 are considered known from (50),
elements P20 and P0,N−1 can be considered also known due
to Eq. (52). In turn, we can substitute their values in (51) with
m = 2 and obtain P02 and PN−1,0, and so on.

In general, the inductive procedure is as follows: given the
values for P01 through P0,k−1, P0,N−k+2 through P0N , P10

through Pk−1,0, and PN−k+2,0 through PN0, we can use (51)
with m = N − k + 1 to find P0,N−k+1 and Pk0. Then using
(51) with m = k gives P0k and PN−k+1,0, continuing the
induction.

Consequently, Eqs. (42)-(45) can be solved recursively re-
producing Eqs. (46)-(47). So, indeed, the simplicity of transi-
tion probabilities in the DO model is purely the consequence
of HCs.

VI. COMPLETE SOLUTION OF SPIN-3/2 MODEL

In [15–17], several models of the type (1) were identified
that satisfied specific integrability conditions. These models
were solved with the semiclassical ansatz that we described
in Sec. III B. Despite definite agreement with the results of
numerical simulations, none of these solutions has been rigor-
ously proved analytically yet. Here we consider the simplest
of such models that we take from Ref. [16] in order to show
that HCs, indeed, can be responsible for integrability in this
broad class of solvable models.

The Hamiltonian of our model is a 4×4 matrix:

Ĥ =

 b1t+ e 0 g γ
0 −b1t+ e −γ g
g −γ b2t− e 0
γ g 0 −b2t− e

 . (53)

Its structure is explained in Fig. 5. Note that the numbering
of levels is different here from our convention in order to be

FIG. 5. Diabatic levels and couplings of the spin-3/2 model.

consistent with the notation of Ref. [16]. The name “spin-3/2
model” is chosen because this model describes the experimen-
tally relevant situation [6] of a spin-3/2 experiencing quadratic
anisotropy and linearly time-dependent magnetic fields, as is
explained in [26].

Let us introduce time-dependent amplitudes of the four di-
abatic states: a1(t), a2(t), a3(t), a4(t). It was shown in [16]
that the Schrödinger equation (1) with the Hamiltonian (53)
remains invariant after the simultaneous application of three
mutually commuting operations:

(a) time reversal, i.e. the change of t → −t, as well as
ai → a∗i , i = 1, 2, 3, 4;

(b) complex conjugation, i.e., the change of the sign near
the imaginary unit i→ −i and replacing ai → a∗i ;

(c) parity operation, i.e. renaming the amplitudes a1 →
−a2, a2 → a1, and a3 → −a4, a4 → a3.

As a result, the scattering matrix can be parametrized as
shown in [16]:

Ŝ =

 S11 0 S13 S14

0 S11 S23 S24

S24 −S14 S44 0
−S23 S13 0 S44

 . (54)

Comparing the off-diagonal elements in (20) with Ŝ from (54)
we find relations such as

(ŜŜ†)13 = S11S
∗
24 + S13S

∗
44 = 0. (55)

Based on these relations and using Eq. (4), Ref. [16] derived
relations for transition probabilities:

P11 = P22 = P33 = P44 = p1p2,

P13 = P24 = P31 = P42, (56)
P14 = P23 = P32 = P41,

P12 = P21 = P34 = P43 = 0,

where

p1 ≡ e−
2πg2

|b1−b2| , p2 ≡ e−
2πγ2

|b1+b2| . (57)

Equations (21) and (56) fix the transition probabilities up to
one unknown parameter. We now show that a 2nd order HC
fixes the value of this parameter.
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For the Hamiltonian (53), we take the extremal level 1 and
the next-to-lowest slope level 3. Combining the 2nd order HC
(5) with Eq. (54) we find

S11S44 − S13S24 = p2. (58)

Isolating S24 in (58), then substituting the result in (55), and
then using that P11 ≡ |S11|2 is given in (56), we find the
missing element of the transition probability matrix:

P13 ≡ |S13|2 = p2q1. (59)

Now using the unitarity of the scattering matrix, e.g. P11 +
P12 + P13 + P14 = 1, and Eqs. (56) and (59), we find

P14 = q1. (60)

With (56)-(57) we can then reconstruct all other elements of
the transition probability matrix. This result coincides with
the analytical expression suggested in [16]. Thus the solution
in [16] can now be considered rigorously proven.

Finally, we note that the two-fermion version of this model
turns out to belong to the class of the bow-tie model, as we
discuss in Appendix E. This relation can be used to derive not
only probabilities but also phases of scattering amplitudes in
model (53).

VII. INTEGRABLE VS NONINTEGRABLE
LANDAU-ZENER MODELS

In this section, we consider two relatively simple models:
one is fully solvable and another is not. Both models are inten-
tionally chosen to look very similar, including the presence of
a simple discrete symmetry. We will pursue three goals: First,
we will keep testing the hypothesis that HCs supplemented by
other symmetries are completely responsible for the integra-
bility of known solvable models. Second, we will explore how
much information one can extract using HCs about the transi-
tion probability matrix of a nonintegrable model. Finally, by
comparing very similar integrable and non-integrable models,
we identify critical properties of the scattering matrix that lead
to full integrability.

A. 4-state bow-tie model

Our integrable model is shown in Fig. 6. It is the 4-
state bow-tie model, which is exactly solvable as described
in Sec III B. Its Hamiltonian is

Ĥ =

 β1t γ γ 0
γ ε 0 g
γ 0 −ε g
0 g g β4t

 , (61)

where we assume ε > 0, β1 < 0, β4 > 0. In Fig. 7, we
show the dependence of eigenvalues of the Hamiltonian (61)
on time, treating t as a parameter of the matrix. Note that at
t = 0 there is an exact crossing point that coincides with the

FIG. 6. Diabatic level diagram of the Hamiltonian (61).

FIG. 7. Eigenvalues of the Hamiltonian (61) as functions of t. Pa-
rameters: ε = 2, β1 = 1, β4 = 0.75, γ = 0.7, g = 0.8. There is an
exact crossing point at time t = 0 at the place of crossing of diabatic
levels 1 and 4. This is a signature of Landau-Zener integrability.

crossing point of diabatic levels 1 and 4, which are not directly
coupled to each other. According to [15], the presence of such
crossing points is the signature of Landau-Zener integrability.

In order to derive transition probabilities, we first note that
the Schrödinger equation of this model is invariant under the
simultaneous application of the following commuting trans-
formations:

(a) t→ −t;
(b) a2 → a3, a3 → a2;
(c) a1 → −a1, a4 → −a4.
So, if we take the conjugate transpose of the scattering ma-

trix, exchange indexes 2 and 3 of its elements, and add minus
signs at all elements with only one of the indexes being 1 or
4, the result will coincide with the original scattering matrix: S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 =

=

 S∗11 −S∗31 −S∗21 S∗41
−S∗13 S∗33 S∗23 −S∗43
−S∗12 S∗32 S∗22 −S∗42
S∗14 −S∗34 −S∗24 S∗44

 . (62)

Comparing these two matrices, we can infer various relations;
e.g., S23 = S∗23 etc.. We then use such constraints to reduce
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the number of independent parameters of the scattering matrix

Ŝ =

 X S12 S13 S14

−S∗13 S22 A S∗42
−S∗12 B S∗22 S34

S∗14 −S∗34 −S∗24 Y

 , (63)

where

A ≡ S23, B ≡ S32 (64)

are introduced to emphasize that the corresponding matrix el-
ements are real numbers. We also introduced the real-valued
parameters

X = e
− 2π|γ|2
|β1| , Y = e−

2π|g|2
β4 , Z ≡

√
XY , (65)

and we included HCs (4) and (7) in (63) explicitly.
The 2nd order HCs, (5) and (8), now lead to

XS∗22 + S13S
∗
12 = Z, Y S∗22 + S12S

∗
12 = Z. (66)

In addition, two parallel levels in the model (61) have the next-
to-extremal slope, so we can apply the relations (41) to them.
Writing these conditions in terms of the elements of matrix
(63) we find

XB + |S12|2 = 0, Y A+ |S24|2 = 0. (67)

Consider now the unitarity constraint:

[Ŝ†Ŝ]23 = 0, (68)

which explicitly reads

S∗13S12 + S22(B +A) + S24S
∗
24 = 0. (69)

With constraints (66), this simplifies to

S22 (B +A−X − Y ) + 2Z = 0. (70)

Since the term 2Z and the factor B +A−X − Y are always
real, the condition (70) can be generally satisfied only if S22

is also real. This fact has profound consequences because the
expressions (66) can now be converted to constraints that do
not involve phases of scattering matrix elements. Indeed, rear-
ranging terms and taking absolute value squared on both sides
of these equations we find

P12P13 = (Z −XS22)2, P24P24 = (Z − Y S22)2. (71)

Two more useful constraints follow from [Ŝ†Ŝ]22 =

[Ŝ†Ŝ]33 = 1, which can be written in components as

P12 +B2 + S2
22 + P34 = 1, (72)

P13 + S2
22 +A2 + P24 = 1. (73)

We can solve Eqs. (71)-(73) for P12, P13, P34, P24 in terms of
real parameters A, B, S22. Substituting them back into (67)
we obtain two constraints:

−XB =
(Z −XS22)2

1−A2 − S2
22 + Y A

, (74)

−Y A =
(Z − Y S22)2

1−B2 − S2
22 +XB

. (75)

Together with Eq. (70), Eqs. (74)-(75) provide three equations
for three unknown variables A, B, and S22. Since the equa-
tions are nonlinear, they generally have more than one solu-
tion.

From (67) follows that A and B are negative. Hence, from
(70) it follows that S22 is positive. By restricting our search
to only physical ranges A,B ∈ (−1, 0) and S22 ∈ (0, 1), we
find

A = Y − 1, B = X − 1, S22 = Z. (76)

Substituting this into (71)-(73) and using other constraints of
the type (21), we restore the exact solution of the 4-state bow-
tie model.

P̂ =

 X2 X(1−X) Y (1−X) (1−X)(1− Y )
(1−X)Y XY (1− Y )2 Y (1− Y )
X(1−X) (1−X)2 XY X(1− Y )

(1−X)(1− Y ) X(1− Y ) Y (1− Y ) Y 2

 , (77)

which coincides with predictions of the semiclassical ansatz
from Sec. III B.

B. Pseudo bow-tie model

Consider a four-state system with the Hamiltonian

Ĥ =

 β1t −γ γ 0
−γ ε 0 g
γ 0 −ε g
0 g g β4t

 . (78)

Its diabatic level diagram is shown in Fig. 8. We will assume
the same choice of parameters as in model (61). Model (78)
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FIG. 8. Diabatic levels and parameters of the nonintegrable model
with the Hamiltonian (78).

FIG. 9. Eigenvalues of the Hamiltonian (78) as functions of t. Pa-
rameters are the same as in Fig. 7. Although according to Fig. 8
diabatic levels 1 and 4 are not directly coupled to each other, there is
a gap opening near their crossing. This indicates that the model (78)
is not integrable.

is different from model (61) only by a sign change at one of
the coupling constants. Figure 9 shows that, although dia-
batic levels 1 and 4 do not interact with each other directly,
corresponding eigenvalues of the Hamiltonian (78) experience
avoided level crossings near the point t = 0. Such a behavior
is the signature of the breakdown of the model’s integrability
[15].

Nevertheless, model (78) has almost the same discrete sym-
metry as the bow-tie model (61). Namely, the Schrödinger
equation with the Hamiltonian (78) remains the same after ap-
plication of three mutually commuting operations:

(a) change of sign of time t→ −t;
(b) change of sign of one amplitude: a4 → −a4;
(c) renaming amplitudes of two parallel levels: a2 → a3

and a3 → a2.
Repeating the same steps as for the previously considered

bow-tie model, we can parametrize the scattering matrix as

Ŝ =

 X S12 S∗21 S14

S21 S22 A S24

S∗12 B S∗22 S34

−S∗14 −S∗34 −S∗24 Y

 . (79)

There are, in total, 8 unknown scattering amplitudes in (79).
Considering the symmetries of (79), only four constraints of

the type (21) are expected to be independent. So for full
integrability, we require four extra constraints on the transi-
tion probabilities. Second order HCs written in terms of the
parametrization in (79) read

XS22 − S21S12 = Z, Y S∗22 + S∗24S34 = Z. (80)

The analog of Eq. (67) here is

XB − |S12|2 = 0, Y A+ |S24|2 = 0. (81)

Considering equation [ŜŜ†]23 = 0, we find

S12S21 + S22(B +A) + S∗34S24 = 0, (82)

which is the analog of Eq. (69) for the bow-tie model. So far,
Eqs. (80)-(82) look very similar to their counterparts in the
bow-tie model. Problems start when we substitute Eqs. (80)
into (82). We find then

S22 [X − Y +B +A] = 0. (83)

In comparison to the analogous Eq. (70), now the free term
that depended on Z has canceled out. As a result, we cannot
conclude that S22 is purely real and hence cannot plug it back
to (80) in order to derive additional constraints on transition
probabilities. In fact, Eq. (83) tells nothing about S22 now.

In principle, Eq. (83) still means a useful constraint on real
parameters:

B +A+X − Y = 0. (84)

Moreover, there is still one constraint on probabilities that can
be derived from (80). For this, we move terms with S22 to the
right hand side and take the absolute value squared on both
sides. Eliminating Re(S22) we find a nonlinear relation for
probabilities

XY (X − Y )(P22 − 1) = Y P21P12 −XP24P34. (85)

One can still hope that Eqs. (81), (84), and (85) provide the
four missing constraints; however, our studies showed that
this is not the case. They are not independent and only reduce
the number of unknown parameters in the transition probabil-
ity matrix to two. However, when used altogether with four
independent constraints (21), they lead to some useful rela-
tions. For example, if we set P12 and P22 as independent
parameters then we find

P32 = (P12/X)2,

P23 = (Y −X − P12/X)2,

P24 = P43 =
(P12 +X(X − Y ))Y

X
,

P14 = P41 = P22 +
(P12 +X2)(P12 −XY )

X2
. (86)

In Fig. 10, we tested relations (86) by simulating evolution
with the Hamiltonian (78) numerically from large negative to
large positive times. We found perfect agreement with our
theory. Figure 10 demonstrates clearly that transition proba-
bilities in the nonintegrable model are quite sensitive to the
distance between parallel levels. In contrast, the solution of
the integrable bow-tie model in Eq. (77) does not depend on ε
at all.
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FIG. 10. (Color online) Numerical test of Eqs. (86). Parameter
ε is the half-distance between parallel levels 2 and 3. Discrete
points correspond to transition probabilities that were obtained di-
rectly from numerical simulations of quantum mechanical evolution
with the Hamiltonian (78). Solid curves are predictions of formulas
in (86) that take numerically obtained probabilities P12 ≡ P2→1 and
P22 ≡ P2→2 as an input. Parameters for simulations: γ = 0.37,
g = 0.45, β1 = −1., β2 = 1.25. Evolution proceeds from
t = −2000 to t = 2000 with a time step dt = 0.00005. Simu-
lation algorithm is described in Ref. [17].

VIII. DISCUSSION

Multistate Landau-Zener model (MLZM) has provided un-
usually many nonperturbative exact results. Some of them
correspond to interactions among only a few states [14–16],
others describe truly many-body mesoscopic dynamics [17].
In terms of complexity, DO and bow-tie models [9, 11] stay
somewhere in between. It has always been puzzling why
all such seemingly different systems produce simple final re-
sults with many common properties. The discovery of the
Brundobler-Elser formula in [1] provided an important piece
to this puzzle and generated a lot of interest.

Here, we showed that the Brundobler-Elser formula is actu-
ally only one of many nontrivial exact “hierarchy constraints”
(HC) on the scattering matrix of an arbitrary model of the type
(1). The effect of higher than 1st order HCs on transition prob-
abilities is, however, not straightforward to understand in de-
tail. We showed that HCs can lead to novel nonlinear relations
among transition probabilities, such as Eq. (25) for an arbi-
trary chain model and Eq. (42) for models with a band of par-
allel diabatic levels. In combination with other symmetries,
these relations can lead to considerable simplifications. Thus,
using new HCs, we were able to prove expressions for transi-
tion probabilities of the spin-3/2 model that were conjectured
in [16].

It is also encouraging that all known simple solvable sys-
tems, such as the three-state chain, DO, and the four-state
bow-tie models can be fully solved using elementary symme-
tries and HCs. We argued that even such a general result as the
no-go rule in MLZM [19] is one of the consequences of HCs.
Moreover, HCs depend only on specific parameter combina-
tions that appear in all known exactly solved MLZMs with
a finite number of levels. All such observations point to the
possibility that HCs are responsible for the phenomenon of

integrability in MLZM.
We would like to conclude with raising questions about

MLZM that still need resolution. First, even in combina-
tion with other symmetries, HCs lead generally to a set of
strongly nonlinear algebraic equations. We showed how to re-
solve such equations in relatively simple situations but how
to use even more nonlinear constraints remains an open prob-
lem. Second, both HCs and solutions obtained by applying
the semiclasscial ansatz, which we described in Sec. III B, de-
pend on the same combinations of parameters. This indicates
that HCs can be responsible for the validity of the semiclassi-
cal ansatz. It remains unclear whether this is true and whether
some other form of an exact solution is possible. Third, it is
not clear what type of additional symmetry can be responsi-
ble for most complex solvable cases such as in Ref. [17]. For
example, quantum groups are under suspect [27].

One unexplained signature of the Landau-Zener integrabil-
ity is the presence of specific exact crossings of eigenvalues
of the Hamiltonian [28, 29], such as the one shown in Fig. 7
for the four-state bow-tie model. We showed in Sec. VII A
that, almost miraculously, all independent constraints play in
synergy in this case, fixing the values of all transition prob-
abilities. On the other hand, we showed in Sec. VII B that
in a very similar model without such an eigenvalue crossing,
phases of the scattering matrix cannot be eliminated from im-
portant equations. It is impossible then to close these equa-
tions for probability variables only.

In Ref. [26], the role of one type of exact crossing points of
adiabatic energy levels was completely understood within the
context of multistate Landau-Zener problem. It was found that
such points lead to specific constraints on the scattering ma-
trix even for models that are not completely integrable. Thus,
it seems that exact crossing points play some important role,
which is the next key puzzle that should be resolved in order to
connect numerous observations about MLZM into a coherent
theory of integrable explicitly time-dependent quantum sys-
tems.

Apart from making an insight into the origin of the Landau-
Zener integrability, HCs set an unusual example of an exact
result that describes evolution with an arbitrary Hamiltonian
of some very broad type. Indeed, in Ĥ(t) = Â + B̂t, ma-
trices Â and B̂ are practically arbitrary by definition. Thus,
at t = 0, the Hamiltonian Ĥ = Â can describe a macro-
scopic system with strongly nonlinear and chaotic behavior.
However, applying linearly growing fields and then measur-
ing scattering amplitudes between asymptotically simple mi-
crostates it becomes possible to extract some simple com-
binations of the matrix Â elements. Having such proper-
ties, HCs can extend previously discussed applications of the
Brundobler-Elser formula in physics of decoherence [5] and
dynamic passage through a quantum phase transition [25].

The example of HCs in MLZM raises questions about ex-
istence of similar results beyond the linearly time-dependent
Hamiltonian. Such extensions are certainly possible within
the bigger class of so-called LZC-systems that include terms
decaying as ∼ 1/t with time. Analogs of the Brundobler-
Elser and the no-go relations have been already derived for
such models in [24], so corresponding extensions of HCs can
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be found along the same path as in the present article. The
question “what is the most general evolution equation leading
to HCs” is important but still open. We hope that our article
will stimulate interest also inside the mathematical commu-
nity to resolve it.

Appendix A: Scattering Matrices of Landau-Zener Models

In this appendix we provide a definition of the scattering
matrix Snn′ , associated with a multistate Landau-Zener (LZ)
problem. This is done mostly for the sake of introducing a
convention, which is needed since the off-diagonal elements
of Ŝ are defined up to phase factors that do not depend on
the model parameters, and a convention is needed to fix the
aforementioned ambiguity.

As stated in section I, a multistate LZ-problem is a system
of linear equations, given by Eq. (1). Diagonalizing the ma-
trix B̂, using a basis set (e1, . . . , eN ) we obtain a set of real
eigenvalues β1, . . . , βN , referred to as the diabatic slopes. In
case of degeneracy there is ambiguity in the choice of the basis
set. However in this case we can consider the vector subspace
of the eigenmodes that correspond to a degenerate eigenvalue
βk, project the matrix Â to this subspace, obtaining a hermi-
tian matrix, and further diagonalize the latter using a basis set.
We assume that the eigenvalues of the aforementioned pro-
jection, referred to as diabatic energies, are non-degenerate,
treating the latter condition as a restriction, needed to define
a proper LZ-problem, i.e., a one that possesses a well-defined
scattering matrix. Applying the above procedure to all degen-
erate levels of B̂ we obtain an ordered basis set by applying
the lexicographic ordering, introduced in section I, i.e., i > j,
if βi > βj , or if βi = βj then εi < εj . The obtained ordered
basis set (e1, . . . , eN ) is referred to as the diabatic basis set;
it is defined with a minimal ambiguity of choosing phases of
the normalized elements of the basis.

We further introduce the adiabatic phases ϕk(t), associated
with the diabatic states ek

ϕk(t) = −βk
2
t2 − εkt−

ηk
2

ln(t2 + 1),

ηk =

l 6=k∑
l

|gkl|2

βk − βl
. (A1)

The reason for such a choice of the phases is the following. At
t → ±∞ the system evolves adiabatically. Since the differ-
ence between the adiabatic and diabatic states tends to zero as
∼ |t|−1 at t→ ±∞, we can represent N linearly independent
solutions Ψ±k (t) asymptotically at t→ ±∞, respectively,

Ψ±k (t) ∼ ekeiϕ
±
k (t), ϕ±k (t) = −

∫ t

t±

dτ ε̄k(τ), (A2)

with t± sitting in the corresponding adiabatic regions, and
ε̄k(τ) being the adiabatic energies. Applying the standard per-
turbation theory

ε̄k(t) ∼ βkt+ εk +
ηk
t
, (A3)

where we neglected the higher-order terms, since they tend to
zero after time integration in the adiabatic regions. Substitut-
ing Eq. (A3) into Eq. (A2) we obtain the asymptotic expres-
sions for the adiabatic phase in the adiabatic regions

ϕ±k (t) = −βk
2
t2 − εkt− ηk ln |t|+ c±k , (A4)

and setting the integration constants c±k = 0 to zero, which ac-
tually determines our convention, we arrive at the expression
in Eq. (A1) that has the same asymptotic form as in Eq. (A4),
while being defined on the whole real axis.

Since Ψ±k (t) form two basis sets in theN -dimensional vec-
tor space of the solutions of the LZ-problem [Eq. (1)], the
scattering matrix can be defined as the transformation from
one to another:

Ψ+
n (t) =

∑
n′

Snn′Ψ
−
n′(t), (A5)

and note that by definition Ŝ does not depend on time, whereas
Ψ±k (t) are well defined for all real t, and also can be uniquely
analytically continued to all complex values of z, while they
have a simple asymptotic form at t → ±∞. Since the so-
lutions of Eq. (1) can be explicitly expressed in terms of the
evolution operator

Û(t, t′) = T exp

(
−i
∫ t

t′
dτĤ(τ)

)
, (A6)

we arrive at an explicit expression for the scattering matrix

Snn′ = lim
t→∞

lim
t′→−∞

Unn′(t, t
′)e−i(ϕn(t)−ϕn′ (t

′)). (A7)

The expression for the scattering matrix in terms of the evo-
lution counterpart allows the scattering matrices of the com-
posite LZ-problems to be derived based on the corresponding
properties of the evolution matrices, the latter being dealt us-
ing standard linear algebra.

While the adiabatic phases ϕk(t) do not enter the expres-
sions for the scattering matrices of the composite (tensor-
product and exterior-product) LZ-problems, considered in ap-
pendix B [Eqs. (B2) and (B5)], and need to be carefully con-
sidered just for justification purposes, they play an impor-
tant and explicit role in certain symmetry properties of the
LZ-problems. In particular, linear transformations of time
t = λt′ + t0 that change both the time scale and the position
of its reference zero point. By switching to the new variables
in Eq. (1) we obtain the transformed value of the LZ-problem
parameters

β′k = λ2βk, ε′k = λ(εk + βkt0), g′kr = λgkr. (A8)

A straightforward computation yields for t→ ±∞:

ϕk(t)− ϕ′k(t′) ∼ βkt
2
0

2
+ εkt0 + ηk ln |λ| ≡ ζk, (A9)

which yields the following relation between Ŝ = Ŝ(β, ε, g)

and Ŝ′ = Ŝ(β′, ε′, g′):

S′nn′ = Snn′e
i(ζn−ζ′n). (A10)
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Appendix B: Linear Algebra and Composite Models

In this appendix we will interpret the procedure of build-
ing composite LZ-problems, including the models of non-
interacting fermions, applied in section II to derive the con-
straints, as linear algebra in the space of multistate LZ-
problems.

Consider two LZ-problems in vector spaces V1 and V2 of
dimensions N1 and N2, with the Hamiltonians Ĥ1(t) = Â1 +

B̂1t and Ĥ2(t) = Â2 + B̂2t respectively. As outlined above
the vector spaces are equipped with the preferred ordered di-
abatic basis sets (e

(1)
1 , . . . e

(1)
N1

) and (e
(2)
1 , . . . e

(2)
N2

). The com-
posite LZ-problem, also referred to as the tensor product of
the above two, has the space V = V1 ⊗ V2, of dimension
N = N1N2 equipped with the preferred basis set, represented
by eks = e

(1)
k ⊗ e

(2)
s , with the Hamiltonian

Ĥ(t) = Ĥ1(t)⊗ Î + Î ⊗ Ĥ2(t),

Â = Â1 ⊗ Î + Î ⊗ Â2,

B̂ = B̂1 ⊗ Î + Î ⊗ B̂2. (B1)

It follows from Eq. (1) that Û(t, t′) = Û (1)(t, t′)⊗Û (2)(t, t′),
which, combined with the obvious property ϕkr(t) =

ϕ
(1)
k (t) + ϕ

(2)
r (t) immediately extends the product property

of the evolution operator to the scattering matrices

Ŝ = Ŝ1 ⊗ Ŝ(2), Skr,k′r′ = S
(1)
kk′S

(2)
rr′ . (B2)

If we consider a tensor product of a space with itself, and
further an iterated n-fold tensor product, we can restrict our-
selves to its completely antisymmetric components called the
n-th exterior degree, denoted

∧n
V , which is equipped with

a preferred basis set, given by ek1...kn = ek1 ∧ . . . ∧ ekn in
terms of the preferred basis set of V , associated with a LZ-
problem, with the wedge denoting an antisymmetric product.
In language of physics,

∧n
V represents n-fermion states of

the system. For a linear map f : V → V we consider its n-th
exterior power ∧nf :

∧n
V →

∧n
V defined by

∧nf(u1 ∧ . . . ∧ un) = f(u1) ∧ . . . ∧ f(un). (B3)

Then the result obtained in section II, reformulated in lin-
ear algebra terms means Û (n)(t, t′) = ∧nÛ(t, t′), with
Û (n)(t, t′) being the evolution operator of the n-fermion LZ-
problem. Combining it with the property

ϕk1...kn(t) = ϕk1(t) + . . .+ ϕkn(t), (B4)

inherited from the tensor product property of the adiabatic
phases, considered above in the context of the tensor prod-
ucts of LZ-problems, we arrive to the following property of
the n-fermion scattering matrix

Ŝ(n) = ∧nŜ, (B5)

and in particular this means that the matrix elements of S(n)

are given by the determinants of the corresponding n× n mi-
nors of the N × N scattering matrix Ŝ of the original LZ-
problem.

FIG. 11. Diabatic level dagram of the 4-state Hamiltonian corre-
sponding to the single particle sector of the model (C1) at b1 > b2 >
b3.

Appendix C: Example of a Composite Model

It was shown in [14] that one can generate new solvable
multistate Landau-Zener models from already solved ones.
To do this, one should assume that a known solvable model
describes evolution of either fermionic or bosonic operators
in the Heisenberg picture. Switching to the Fock space, i.e.
to evolution of the state amplitudes, we find then the matrix
Hamiltonian that depends on the number of particles. When
restricted to the single particle sector, this Hamiltonian de-
scribes the original model but multiparticle sectors look more
complex.

The goal of this appendix is to support our discussion in
Sec. II with a specific example of this procedure. In order
not to overlap with Ref. [14], we choose a model that was not
studied there. As a byproduct, we will provide the proof of
the six-state model solution that was conjectured in Ref. [15]
based on integrability conditions.

Consider the secondary quantized Hamiltonian of four in-
teracting fermions

Ĥ = β1tâ
†â+ β2tb̂

†b̂+ (β3t+ e)ĉ†1ĉ1 + (β3t− (C1)

−e)ĉ†2ĉ2 + [gâ†(ĉ1 + ĉ2) + γb̂†(ĉ1 + ĉ2) + h.c.],

with constant parameters β1, β2, β3, g, γ, e. Heizenberg evo-
lution equation for operators then reads:

i
d

dt


â

b̂
ĉ1
ĉ2

 =

 β1t 0 g g
0 β2t γ γ
g γ β3t+ e 0
g γ 0 β3t− e




â

b̂
ĉ1
ĉ2

 .

(C2)
Equation (C2) has the same form as the Schrödinger equation
for amplitudes in the 4-state bow-tie model, whose scattering
matrix is known. Since Eq. (C2) is linear in operators, we can
write its solution in terms of the scattering matrix elements,
Sij of the bow-tie model. We can read elements Sij directly
from the diagram in Fig. 11 using the semiclassical ansatz de-
fined in Sec. III B. Let us denote

p1 = e
−2π g2

|b3−b2| , p2 = e
−2π γ2

|b3−b1| , q1,2 = 1− p1,2.
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The scattering matrix for a single particle sector with b1 <
b2 < b3 then reads:

Ŝ = (C3) p2 −√p2q2q1 i
√
p1p2q2 i

√
q2

−√p2q2q1 p1 + q1q2 ip2
√
p1q1 i

√
p2q1

i
√
q2 i

√
p2q1

√
p1p2 0

i
√
p2q2p1 ip2

√
p1q2 −q1 − p1q2

√
p1p2

 .

Let us now consider the sector of the model (C1) with two

fermions. In the basis

|1〉 ≡ â†b̂†|0〉, |2〉 ≡ ĉ†1ĉ
†
2|0〉, |3〉 ≡ â†ĉ†1|0〉, (C4)

|4〉 ≡ â†ĉ†2|0〉, |5〉 ≡ b̂†ĉ†1|0〉, |6〉 ≡ b̂†ĉ†2|0〉,

the Hamiltonian (C1) is a 6×6 matrix:

Ĥ ′ =


(β1 + β2)t 0 γ γ −g −g

0 2β3t −g g −γ γ
γ −g (β1 + β3)t+ e 0 0 0
γ g 0 (β1 + β3)t− e 0 0
−g −γ 0 0 (β2 + β3)t+ e 0
−g γ 0 0 0 (β2 + β3)t− e

 . (C5)

Up to state renumbering, model (C5) contains the six-state model in Ref. [16] as a special case. The scattering amplitudes in
model (C5) can be derived now using Eqs. (17) and (C3). For example, S′11 = S11S22 − S12S21 = p1p2. Taking P ′ij ≡ |S′ij |2
of such amplitudes, we find the matrix of transition probabilities of the composite six-state model:

P̂ ′ =


p21p

2
2 0 p1q1p

2
2 p2q1 p1p2q2 q2

0 p21p
2
2 q2 p1p2q2 p2q1 p1q1p

2
2

p2q1 p1p2q2 p1p2 q22 0 p2q2q1
p1q1p

2
2 q2 p22q

2
1 p1p2 p2q2q1 0

q2 p1q1p
2
2 0 p2q2q1 p1p2 p22q

2
1

p1p2q2 p2q1 p2q2q1 0 q22 p1p2

 . (C6)

The matrix (C6) coincides, up to redefinition of state indexes,
with the matrix in Eq. (32) in Ref. [16]. This fact proves the
conjecture made in that reference about the integrability of its
six-state model.

Appendix D: Test of a more complex constraint for
independence of Eqs. (9)-(10)

Let us try to generate a new constraint by considering the
MLZM Hamiltonian Ĥ , which we populate with two non-
interacting fermions to generate a new matrix Hamiltonian.
Let us apply the second level HC (5) to the two-fermion scat-
tering matrix:

Det

(
S12,12 S12,13

S13,12 S13,13

)
= e
−
∑

k 6=1,2

π|gk1|
2

|β1−βk| × (D1)

× e
−
∑

k 6=1,3

π|gk1|
2

|β1−βk|
−

∑
k 6=1,2,3

π|gk2|
2

|β2−βk|
−

∑
k 6=1,2,3

π|gk3|
2

|β3−βk|
,

where indexes ij mark two levels of the original model that
are populated by fermions. On the other hand, Eq. (17) gives

S12,12 = S11S22 − S12S21, S12,13 = S11S23 − S21S13,

S13,12 = S11S32 − S31S12, S13,13 = S11S33 − S13S31.

Substituting this into (D1) we find a constraint that relates
some of the amplitudes and parameters of the original model.

However, it is straightforward to check that

Det

(
S12,12 S12,13

S13,12 S13,13

)
= S11Det

 S11 S12 S13

S21 S22 S23

S31 S32 S33

 ,

(D2)
so, constraint (D1) is merely the result of a product of HCs (4)
and (6). Hence, the constraint (D1) is a pure consequence of
the hierarchy (9).

Finally, we note that hierarchies (9) and (10) are not in-
dependent of each other because populating M lowest slope
levels of an N -state system with noninteracting electrons is
physically equivalent to populating N −M highest slope lev-
els with noninteracting holes. While electrons produce HC
(9), holes produce HC (10), so the second hierarchy follows
from the first one via the particle-hole duality of fermionic
systems. Therefore, we have generally only N − 1 indepen-
dent HCs in an arbitrary N -level model.

Appendix E: Reduction of solvable models

Here we show that the model in Sec. VI can be solved in an
alternate way which we will call the reduction. Namely, we
show that solution of the 4-state model in Sec. VI can be de-
rived from solution of a more complex but previously solved
6-state bow-tie model.
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FIG. 12. Diabatic levels of the Hamiltonian (E1) in the basis (E2).

Let us populate four diabatic levels of the Hamiltonian
(53) with two noninteracting fermions. The corresponding
fermionic Hamiltonian reads:

Ĥ = (β1t+ e)â†â+ (−β1t+ e)b̂†b̂+ (β2t− e)ĉ†ĉ+ (−β2t
−e)d̂†d̂+ g[â†ĉ+ b̂†d̂+ h.c.] + γ[â†d̂− b̂†ĉ+ h.c.]. (E1)

We then choose the basis

|1〉 ≡ â†b̂†|0〉, |2〉 ≡ ĉ†d̂†|0〉,
|3〉 ≡ â†ĉ†|0〉, |4〉 ≡ â†d̂†|0〉, (E2)

|5〉 ≡ b̂†ĉ†|0〉, |6〉 ≡ b̂†d̂†|0〉.

Instead of writing an explicit matrix, we illustrate the pa-
rameters of the corresponding 6×6 Hamiltonian in Fig. 12. It
is clear that this model belongs to the class of bow-tie models
shown in Fig 2(b).

Let us derive the transition probability P
(4)
3→1 ≡ |S13|2,

where the upper index “(4)” marks the probabilities and in-
dexes in the 4-state model (53). The probability to find the
fermion â after evolution with the Hamiltonian (E1) in the
two-fermion sector, assuming that the system starts in state
|3〉, defined in (E2), is given by

〈3|â†(+∞)â(+∞)|3〉(6) = P
(4)
1→1 + P

(4)
3→1, (E3)

where the upper index “(6)” means that we refer to the model
in Fig. 12. On the other hand, in terms of the Hamiltonian
illustrated in Fig. 12, such a probability is the sum of prob-
abilities of transitions from level 3 in this figure to all levels
that correspond to a filled fermion of type â, which are levels
1, 3, and 4 in Fig. 12. The bow-tie model solution is repro-
duced by a semiclassical ansatz described in Sec. III B. None
of the transitions from level 3 to levels 1, 3, and 4 involve path
interference, so we can readily read such transition probabili-
ties:

P
(6)
3→3 = p22, (E4)

P
(6)
3→1 = p2(1− p2)p1, (E5)

P
(6)
3→4 = p2(1− p2)(1− p1), (E6)

where p1 and p2 are defined in (57). We also know, from
Eq. (4), that P (4)

1→1 = p1p2. We can now equate results of both
ways to calculate 〈3|â†(+∞)â(+∞)|3〉(6):

P
(6)
3→1 + P

(6)
3→3 + P

(6)
3→4 = P

(4)
1→1 + P

(4)
3→1, (E7)

which leads to

P
(4)
3→1 = p2(1− p1), (E8)

which in turn coincides with the main result in Sec. VI. This
approach to solve the spin-3/2 model demonstrates that some
instances of already solved models can be themselves re-
ducible to interesting and more compact systems like the spin-
3/2 model.
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