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A fundamental requirement for the emergence of classical behavior from an underlying quantum
description is that certain observed quantum systems make a transition to chaotic dynamics as
their action is increased relative to ~. While experiments have demonstrated some aspects of this
transition, the emergence of quantum trajectories with a positive Lyapunov exponent has never
been observed directly. Here, we remove a major obstacle to achieving this goal by showing that,
for the Duffing oscillator, the transition to a positive Lyapunov exponent can be resolved clearly
from observed trajectories even with measurement efficiencies as low as 20%. We also find that the
positive Lyapunov exponent is robust to highly mixed, low purity states and to variations in the
parameters of the system.
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The emergence of classical chaotic-like behaviour from
quantum mechanical systems has been an area of active
research for many years [1]. There has been a great
deal of interest in purely quantum systems, displaying
unitary evolution, and non-unitary open quantum sys-
tems. This paper is concerned with open quantum sys-
tems whose classical counterparts are chaotic and make
a transition to chaotic behavior as their size (more pre-
cisely their action) is increased so as to be large com-
pared to ~ [2–19]. This transition is enabled by their
interaction with the environment or when they are sub-
jected to continuous observation. In the former case, the
evolution approaches that of the probability density in
phase space for the equivalent classical system as the ac-
tion is increased [4, 7, 15]. Continuous observation turns
this probability density into individual trajectories that
follow the nonlinear classical motion with the requisite
Lyapunov exponents [12, 15, 17, 18].

Recent experimental progress in the control and mea-
surement of quantum systems has enabled the contin-
uous measurement of individual quantum systems and
the calculation of quantum trajectories and state esti-
mates [20–23]. This opens up the exciting possibility of
directly observing the trajectories of classical chaotic dy-
namics emerging in open quantum systems. By observing
a sufficiently long trajectory, it should also be possible to
identify positive Lyapunov exponents, as a fundamental
characteristic parameter that is indicative of chaos. Al-
though experiments have been performed to explore the
quantum-classical transition [9, 10, 16, 19] and to iden-
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tify aspects of chaotic behavior in open quantum systems,
the Lyapunov exponents have not been determined ex-
perimentally from quantum trajectories. One of the dif-
ficulties in such experiments is the efficiency of the mea-
surement process. In an ideal measurement, the noise
will be purely quantum in origin and the measurement
efficiency, defined to be the fraction of the noise power
due to the quantum measurement as opposed to extra-
neous classical noise from other sources, will be 100%.
Unfortunately, practical measurement systems are often
far from ideal, and even the best experiments have effi-
ciencies well below 100%. For example, the experimental
efficiencies reported in [21] are around 35%. For the ob-
servation of certain purely quantum effects, the efficiency
must be above some minimum threshold level. Rapid-
purification [24–30], for example, requires a measurement
efficiency of at least 50% [30].

In this paper, we show that a positive Lyapunov ex-
ponent and the associated transition to classical chaos
could be derived from quantum trajectories and contin-
uous measurements with efficiencies as low as 20%. Fur-
ther, we find that the value of the positive Lyapunov ex-
ponent is robust across a wide range of purities, and are
insensitive to variations in system parameters of at least
5%. This opens the way to observing the emergence of
chaos in open quantum systems with current technology.

The evolution of a continuously observed quantum sys-
tem is described by a stochastic master equation [31–33].
As such, our work here is aided greatly by a recent and
significant improvement in the numerical methods avail-
able to solve such equations, due to Rouchon and collab-
orators [34, 35]. It also benefits from the “moving basis”
method used by Schack, Brun and Percival [3, 5]. The
system that we consider is a standard example from clas-
sical chaos: the Duffing oscillator. This system has been
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studied for pure states and efficient measurements and
it has been shown to make a transition from non-chaotic
to chaotic motion as the action is increased relative to
~ [5, 6, 8, 11–14, 17, 18]. To achieve this, one must change
the mass of the oscillator, the potential, and any driving
forces in such a way that the dynamics remain the same
up to a scaling of the coordinates and time, while the
area of the phase space increases with respect to ~. A
simple way to do this is to first write the Hamiltonian of
the system, Ĥ, in terms of dimensionless variables q̂ and
p̂, then to change the size of the phase space by defining
the new Hamiltonian to be Ĥβ = β−2Ĥ(βq̂, βp̂). The
overall factor of β−2 merely scales time. The size of the
phase space for the Hamiltonian Ĥβ now scales as β−2

so that the classical limit is given by β → 0 [3, 5].
The resulting dimensionless Hamiltonian for the Duff-

ing oscillator is

Ĥβ =
1

2
p̂2 +

β2

4
q̂4 − 1

2
q̂2 +

g

β
cos(t)q̂ +

Γ

2
(q̂p̂+ p̂q̂). (1)

The first term in Ĥβ is the kinetic energy, the second
and third terms give the double-well potential, and the
fourth is the periodic linear driving with a tunable ampli-
tude g/β. The final term in the expression for Ĥβ may
look unusual, and is included because, in combination
with the dissipative measurement process, it generates
linear damping in momentum. (The Markovian dissipa-
tive measurement damps both p̂ and q̂. The Hamiltonian
term amplifies q̂ and damps p̂, thus canceling the damp-
ing of q̂ so that only the damping of p̂ remains [36]).
While damping of momentum is not required to observe
chaos in the Duffing oscillator [8], it is useful in numer-
ical simulations to keep the phase space contained. In
terms of the real physical position X̂, the momentum P̂ ,
and the Hamiltonian Ĥr, the scaled variables are given by
q̂ = X̂/

√
~/mω, p̂ = P̂ /

√
~mω, and Ĥβ = Ĥr/(~ω), in

which m is the mass of the oscillator and ω is an arbitrary
frequency scale.

Since the observer will not have full information about
which pure state the system is in at any given time, the
observer’s knowledge about this state is described by the
density matrix, ρ. The purity of the density matrix is de-
fined by P = Tr[ρ2], and indicates the level of certainty
that the observer has about the system’s state. Under
the action of a continuous measurement, the evolution
of the density matrix is stochastic. This is due to the
fact that the stream of measurement results necessarily
has a fluctuating component, and the density matrix is a
full description of the observers state-of-knowledge condi-
tioned on these results. To emphasize this, we will denote
the density matrix by ρc.

For the continuous measurement, we use a standard
model in which a transmission line — or more generally
a medium that supports a continuum of traveling waves
— is coupled to the system so as to mediate both damp-
ing and the extraction of information [32, 33]. The exact
type of measurement has been shown to be unimportant
in observing the emergence of classical dynamics, so long

as it provides enough information about the position and
momentum to maintain sufficient localization of the state
in phase space [3, 5, 8]. In fact, for the work presented
here, we have also performed the simulations using a con-
tinuous measurement of the position, q̂, and this showed
very similar behavior.

Under the action of continuous measurement, the evo-
lution of the density matrix is given by the stochastic
master equation (SME) [32, 33],

dρc = −i
[
Ĥβ , ρc

]
dt

+

{
L̂ρcL̂

† − 1

2

(
L̂†L̂ρc + ρcL̂

†L̂
)}

dt

+
√
η
(
L̂ρc + ρcL̂

† − Tr[L̂ρc + ρcL̂
†]
)
dW

(2)

in which L̂ =
√

2Γâ, with â = (q̂+ip̂)/
√

2, and the stream
of measurement results (the “measurement record”) is
given by

y(t+ dt) = y(t) +
√
ηTr[L̂ρc + ρcL̂

†]dt+ dW (3)

where dW are increments of Weiner noise and thus satisfy
〈dW 〉 = 0 and dW 2 = dt. The efficiency of the measure-
ment is denoted by η, and is defined to be the fraction
of the noise power due to the measurement rather than
other (classical) sources of noise, i.e. the fraction of the
output signal that is recorded by the measuring device.

For Rouchon’s method [34, 35] with a moving basis,
the increment to ρc for the time step from tn = n∆t to

tn+1 = (n + 1)∆t, is given by ∆ρ
(n)
c = ρ

(n+1)
c − ρ

(n)
c ,

where

ρ(n+1)
c =

M̂nρ
(n)
c M̂†n + (1− η)L̂ρ

(n)
c L̂†∆t

Tr
[
M̂nρ

(n)
c M̂†n + (1− η)L̂ρ

(n)
c L̂†∆t

] (4)

and M̂n is given by

M̂n = I −
(
iĤ +

1

2
L̂†L̂

)
∆t+

η

2
L̂2(∆W (n)2 −∆t)

+
√
ηL̂
(√

ηTr[L̂ρ(n)c + ρ(n)c L̂†]∆t+ ∆W (n)
)
,(5)

where the ∆W ’s are independent Gaussian variables with
zero mean and a variance equal to ∆t. To represent the
density matrix we use a harmonic oscillator (Fock) ba-
sis, changing the location of this oscillator to follow the
expected location of the system in phase space (i.e. the
expectation values of q̂ and p̂). This greatly reduces the
size of the state-space required for the simulation. Figure
1 shows an example trajectory in the chaotic regime.

To verify whether a system exhibits chaotic behavior or
not, it is necessary to calculate the Lyapunov exponents
for the trajectory. In classical dynamics, this is fairly
straightforward and uses the Jacobian, calculated from
the classical dynamical equations, and the Lyapunov ex-
ponents are found from the eigenvalues of the product of
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the Jacobian matrices along the trajectory and taking the
infinite time limit [37]. In practice, the Lyapunov expo-
nents are estimated in the long (but finite) time limit and
the Jacobian products are repeatedly renormalized using
a Gram-Schmidt orthonormalization procedure to con-
strain the tendency of the eigenvalues to increase beyond
the numerical limits of the computer [37]. For quantum
systems, a number of approaches have been proposed and
used to define Lyapunov exponents [38–40]. Here, the
generation of trajectories means that an approach analo-
gous to the classical calculation method can be used [40],
but rather than using the classical dynamical equations
to generate a Jacobian at each time step, an approxi-
mate Jacobian is constructed using the evolution of the
expectation values for q̂ and p̂ under the non-stochastic
evolution given by (4), i.e. the evolution predicted when
dW = 0. Because of these factors, the finite time of the
simulation and the differences in the construction of the
Jacobian matrices, the solutions that generate a positive
Lyapunov exponent are strictly chaotic-like rather than
true chaos in the mathematical sense. However, we refer
to the solutions as chaotic for reasons of practicality.

With a two-dimensional phase space and an arbitrary
phase variable for the drive term, we would expect to ob-
tain three Lyapunov exponents, one of which would al-
ways be zero (corresponding to perturbations along the
trajectory). We will denote the two non-zero Lyapunov
exponents by λ+ and λ− respectively, noting that λ+
could be positive (chaotic solution) or negative (peri-
odic solution) and λ+ + λ− < 0. The estimates of the
Lyapunov exponents calculated below were obtained us-
ing the parameter values g = 0.3 and Γ = 0.125, with
a moving basis containing between 80 and 200 oscilla-
tor states, and between 2000 and 6000 time increments
per cycle of the drive term. The size of the basis and
time steps was varied to ensure that the integration of
the SME was numerically stable. Although the values
of the Lyapunov exponents are found to be insensitive
to measurement inefficiencies, the state estimates gener-
ated using (2) and a particular measurement record (3)
can be numerically unstable if the basis contains insuf-
ficient numbers of states or the time increments are too
large. For measurement efficiencies around 20% and β
values around 0.1, the number of states required to gen-
erate a stable trajectory in the moving basis grows to
150-200 states and the time step must be ∆t ' π/3000.

Figure 2 shows the largest non-zero Lyapunov expo-
nents estimated for β values between 1.0 (noisy-periodic)
and 0.1 (noisy-chaotic) for measurement efficiencies from
20% to 100%. A small number of simulations were per-
formed for measurement efficiencies as low as 10%. It was
possible to obtain values for positive exponents in some
cases but the numerical stability of the SME was affected
for β < 0.2 so these results are not shown. The main fea-
ture to note in Figure 2 is that the positive Lyapunov
exponents are approximately constant as a function of
purity and for the range of measurement efficiencies, up
to some small fluctuations due to the stochastic nature of

FIG. 1: An example quantum trajectory for β = 0.1 and
η = 0.4, with g = 0.3 and Γ = 0.125.

the trajectories. There is a weak linear dependence on the
average purity for the negative exponents (noisy-periodic
trajectories). The figure also shows that the periodic so-
lutions often have a higher average purity for the same
measurement efficiency. The chaotic solutions have lower
purities except for cases where η = 1.0, which will always
asymptote to a pure state P = 1, because all of the in-
formation contained in the measurement record is avail-
able to construct the quantum state. This relationship
between periodic solutions and a higher average purity
might be expected intuitively and has been noted in[15].
Chaos is associated with information “creation”, in that
two chaotic solutions from neighboring points will diverge
as the small differences are amplified by the stretching
and folding of phase space associated with chaotic evolu-
tion [37] – although not shown, this stretching and folding
process can be seen in the quantum states if the phase
space Wigner functions are plotted on the q − p plane
[15]. As a result of this, it could be anticipated that
a chaotic trajectory with a positive Lyapunov exponent
would require more measurements to extract the infor-
mation required to construct an accurate state estimate,
and an inefficient measurement would be likely to pro-
duce a less accurate state estimate for chaotic evolution
than for periodic evolution. The minimum Lyapunov ex-
ponents (λ−) are all negative, as expected. They are not
shown explicitly, but they were also found to be relatively
insensitive to the purity of the states and the efficiency
of the measurements.

Figure 3 shows the largest non-zero Lyapunov expo-
nents as functions of β, as in [17], for three different
measurement efficiencies. These represent the transition
from the quantum (β = 1.0) to the near classical regime
(β = 0.1). Positive Lyapunov exponents and chaotic be-
havior appear at β = 0.3 [17]. The figure shows that
the transition is preserved even when the measurement
efficiency and, consequently, the average purity of the
quantum states are low, which is relevant for possible
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FIG. 2: The largest non-zero Lyapunov exponent (λ+) calcu-
lated for β = 1.0−0.1 as a function of the average purity of the
estimated state after 100 cycles of the drive term, t = 200π,
with g = 0.3 and Γ = 0.125 (solid lines). The points marked
correspond to measurement efficiencies of η = 1.0, 0.8, 0.6,
0.4 and 0.2 (right to left).

FIG. 3: The largest non-zero Lyapunov exponents (λ+) calcu-
lated for β = 1.0− 0.1 for measurement efficiencies of η = 1.0
(red-dashed line), 0.6 (dot-dashed-green line) and 0.2 (blue-
solid line), after 100 cycles of the drive term, t = 200π, with
g = 0.3 and Γ = 0.125.

experimental investigations where the measurements are
not idealized theoretical models.

The accuracy of the estimation process and of the
quantum trajectory are reliant on the accuracy of the
Hamiltonian and the parameters used in the SME to es-
timate the quantum state from the measurement record.
If there is a mis-match between the system that gener-
ates the measurements and the parameter values used
in the SME, the fidelity of the quantum state estimate
will be adversely affected. It is natural, therefore, to ask
what effect such mis-matches would have on the estima-
tion of the Lyapunov exponents. To address this concern,

simulations were conducted using one filter to generate
a continuous measurement record, and this record was
then fed into a second SME, where the second SME had
errors in each of the parameters in the Hamiltonian (1)
and the SME (2): g, β, Γ, η, and the initial phase of
the cosine drive term. In each case, the accuracies of the
quantum trajectories did deteriorate, but the estimates
for the Lyapunov exponents were found to be insensitive
to errors up to 5% of the true parameter values. So,
the Lyapunov exponents were found to be robust against
measurement inefficiencies, highly mixed states and mis-
matches in the state estimation processing.

The importance of these results lies in the accessibility
of the characteristic Lyapunov exponents to experimen-
tal investigation. As we have already noted, continuous
measurements are difficult to achieve in experiments and
are often limited in terms of their efficiency [21]. A sig-
nature of chaos that is related to the “quantum-ness” or
classicality of the system and that is relatively insensi-
tive to the measurement efficiency could be a significant
factor in the experimental observation of quantum chaos
in such systems. The signature is also robust against
highly mixed states and inaccuracies in the experimental
parameters. It is also a benefit that the Duffing oscil-
lator can be realized using superconducting circuits and
Josepson junctions [41, 42] and it already forms the basis
for nonlinear amplifiers used in quantum circuit experi-
ments [41]. Using the notation given in [41], we can de-
fine dimensionless quantities for the parallel circuit con-
figuration (also called the radio-frequency SQUID [43]):

q̂ = Φ(~
√
Lp/Cp)

− 1
2 , p̂ = Q(~

√
Cp/Lp)

− 1
2 , where Φ is

the magnetic flux, Q = CpΦ̇ is the conjugate momen-
tum, Cp is the junction capacitance, Lp is the parallel
inductance formed from the Josephson inductance LJ
and the geometric inductance Lpe and ω = 1/

√
CpLp.

To produce the potential given in (1), the circuit must
be biased to give a negative quadratic term and a posi-
tive quartic term, with Lp = (1/LJ − 1/Lpe)

−1. For this
configuration, the classical scaling parameter is given by
β =

√
e/(3ωCp(1− LJ/Lpe)), where e is the electron

charge, and the classical limit is taken by letting the ef-
fective “mass” of the system Cp →∞.

In this paper, we have studied the properties of the
quantum Duffing oscillator in the presence of a contin-
uous measurement, mediated by a weak coupling to an
environment. The stochastic master equation was used
to follow the evolution of the quantum state, for both
ideal (efficient) measurements and inefficient measure-
ments; including very inefficient measurements, leading
to highly mixed states. The resultant quantum trajec-
tories are stochastic and can exhibit periodic or chaotic
behavior as the dynamical evolution is scaled from the
quantum regime towards the classical limit. The stan-
dard indicators of chaos, the Lyapunov exponents, have
been calculated for this system. Positive Lyapunov expo-
nents were shown to be insensitive to the measurement
efficiency and to the purity of the quantum states, mean-
ing that the emergence of chaotic behavior can be de-
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termined even when using very inefficient measurements
and highly mixed states. The Lyapunov exponents cal-
culated from the quantum trajectories were also found
to be robust to variations in all of the parameter values
used in the state estimation process. The robustness of
the Lyapunov exponents to these factors would be sig-
nificant for any experimental investigation of chaos in
open quantum systems, because it demonstrates that the

quantum-classical transition to chaotic behavior should
be accessible even when the measurements are not ideal
and the system parameters have not been characterized
perfectly.
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