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We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon
mode. In a well defined thermodynamical limit of large excitation numbers, the exact quantum
solution describes a first-order phase transition in the regime where semiclassical theory predicts
optical bistability. We study the behavior of the complex spectral gap associated to the Liouvillian
superoperator of the corresponding master equation. We show that in this limit the Liouvillian
gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The
connection between the considered thermodynamical limit of large photon numbers for the single-
mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard
system is discussed.

I. INTRODUCTION

In recent years the many-body physics of driven-
dissipative optical systems has become a rapidly expand-
ing research field (see for example Refs. [1–5]). This
has led to an increasing interest in dissipative quantum
phase transitions which have been theoretically studied
for various systems such as coupled spins [6–9] and dis-
sipative Bose gases [10–13]. Currently the field is being
lifted to the experimental realm. Examples are the spon-
taneous mirror-symmetry breaking in coupled photonic-
crystal nanolasers [14], the observation [15] of the pre-
dicted photon-blockade breakdown phase transition[16] ,
the report of bistability in one-dimensional circuit QED
lattices [17] and the probing of the dynamic optical hys-
teresis in the quantum regime [18, 19].

As in the case of quantum critical phenomena signa-
tures of dissipative phase transitions should appear in
the dynamical properties. The density-matrix ρ̂ of an
open quantum system is described by a linear master
equation ∂tρ̂ = L̂ρ̂ where L̂ is the so-called Liouvillian
superoperator, having a spectrum of complex eigenval-
ues. The steady-state solution L̂ρ̂ = 0 corresponds to
the zero eigenvalue of the Liouvillian. Dissipative phase
transitions are expected to occur when the Liouvillian
spectral gap [6] closes in some thermodynamical limit.
However, very little is known about the physical behav-
ior of such a gap. To explore such uncharted territory,
the study of paradigmatic and controlled model systems
is of paramount importance for the fundamental under-
standing of dissipative phase transitions. A particular
interesting class of systems to explore is the one repre-
sented by the driven-dissipative Kerr model, which de-
scribes a nonlinear optical resonator exhibiting optical
bistability[20–22].

In this paper, we explore the critical properties of the
Liouvillian gap for a driven-dissipative (Kerr) nonlinear
resonator. We show that, by considering a well defined
thermodynamical limit of large excitation numbers, such

a model describes a first-order phase transition. The
thermodynamic limit is obtained by letting the nonlin-
earity going to 0 and the driving intensity to +∞ while
keeping constant their product. We determine the ex-
ponential vanishing of the complex Liouvillian gap and
characterize its finite-size behavior. In this paper we
show that a finite size scaling is crucial to determine the
critical properties such as the critical driving strength
in the thermodynamic limit. As a perspective, we show
that such thermodynamical limit of large excitation num-
bers for one single-mode resonator has a direct connec-
tion with the more standard limit of many sites in the
driven-dissipative Bose-Hubbard model.

The paper is structured as follows: In Section II the
driven-dissipative Kerr model is introduced. A thermo-
dynamical limit of large excitation numbers is precisely
defined. The steady-state properties are discussed in such
thermodynamical limit. The critical power law behavior
of the Liouvillian gap is then examined in Section III.
In Section IV as a perspective the link with the driven-
dissipative Bose-Hubbard model is presented. Finally, in
Section V, the conclusions are drawn.

II. DRIVEN-DISSIPATIVE KERR MODEL AND
ITS THERMODYNAMIC LIMIT

We consider the following Hamiltonian for the driven
Kerr model (with ~ = 1):

Ĥ =ωcâ
†â+

U

2
â†â†ââ+

(
Fe−iωptâ† + h.c.

)
, (1)

where â† (â) creates (annihilates) an excitation in the
resonator. The system parameters are ωc for the cavity
frequency, U is the photon-photon interaction strength,
and F is the amplitude of the coherent drive with fre-
quency ωp. Without loss of generality the drive ampli-
tude F will always be considered real. The cavity losses
can be described within the Born-Markov approximation
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resulting in the following Lindblad master equation for
the density matrix ρ̂:

∂ρ̂

∂t
=i
[
ρ̂, Ĥ

]
+
γ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (2)

with γ the dissipation rate. From now on we will con-
sider the frame rotating at the drive frequency ωp which
removes the time dependence of the Hamiltonian. The
relevant parameter is then the frequency detuning ∆ =
ωp − ωc between the drive and the cavity.

We introduce the dimensionless parameter N such that
U = Ũ/N and F =

√
NF̃ and we will consider the limit

N → ∞. In such a limit UF 2 is constant and the num-
ber of excitations diverges (see later). This will be the
thermodynamic limit we consider. In this limit quan-
tum fluctuations become negligible and the system be-
haves (semi-)classically. The Lindblad master equation
(2) then reduces to an equation of motion for the coher-
ent field amplitude α = 〈â〉 [1]:

i∂tα̃ =
(
−∆− iγ

2
+ Ũ |α̃|2

)
α̃+ F̃ , (3)

with α̃ = α/
√
N the rescaled field amplitude. Eq. (3)

is independent of N and the photon number scales as
n = |α|2 ∝ N . This confirms that N → ∞ corresponds
to a well defined thermodynamic limit with an infinite
number of photons. For a detuning ∆ >

√
3/2γ there is a

finite range of values for the drive amplitude for which the
semiclassical Eq. (3) predicts three steady-state solutions
with only two dynamically stable, typically denoted as
optical bistability [23] (see Fig. 1 (a)).

We now use the analytical expressions derived in Refs.
[23, 24] for the steady-state properties corresponding to
the master equation (2) and examine the dependence on
N . In Fig. 1 (a) and (b) the rescaled photon density
n/N , with n = 〈â†â〉, and the normalised second-order
correlation function g(2) = 〈â†â†ââ〉/n2 are presented as

a function of the rescaled drive amplitude F̃ for ∆ = 3γ,
Ũ = γ and different values of N . In the limit N → ∞
the density converges to one of the two stable semiclassi-
cal branches. Moreover, the transition between the two
branches becomes increasingly sharp as N is increased
which suggests a discontinuous jump in the thermody-
namic limit, as expected for a first order phase transition
[20, 21]. The g(2)-function in Fig. 1 (b) is strongly peaked
around the transition which is due to the high fluctua-
tions resulting from the switching between the two semi-
classical branches. The width of the peak decreases as
N increases while the height is practically independent
of N .

In Fig. 2 the corresponding Wigner functions are pre-
sented for different values of N and for two values of the
rescaled drive amplitude F̃ , one just above and one just
below the transition. Below the transition a single peak
is observed for all values of N . Above the transition and
for N sufficiently small the well-known bimodal shape
typically attributed to optical bistability is observed [25].
The system then explores two separate regions in phase

0.5 1.0 1.5 2.0 2.5

F
�
�Γ

0

1

2

3

4

n
�N

HaL

N=1N=50

SC

1.0 1.5 2.0

F
�
�Γ

1

2

3

g
H2
L

HbL

N=1

FIG. 1. (a) The rescaled photon density n/N (a) and (b)

the second-order correlation function g(2) (b) as a function of

the rescaled drive amplitude F̃ for ∆ = 3γ and Ũ = γ. The
semiclassical prediction is also presented in (a) (SC, dashed
line). Different curves correspond to N = 1, 2, 3, 5, 10, 25 and
50.
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FIG. 2. The photon Wigner function as a function of the real
and imaginary part of the rescaled field α/

√
N for a drive

amplitude F̃ = 1.65γ (upper row) and F̃ = 1.4γ (lower row)
for N = 1, 2, 3 and 10. Red corresponds to high values and
green to zero (a different scale is used for the different panels).
Other parameters are the same as in Fig. 1.

space corresponding to the two semiclassical branches.
This results in large fluctuations leading to the peak in
g(2) in Fig. 1 (b). However, as N is increased the relative
weight of one of the peaks increases and for large N only
a single peak remains. This suggests that in the thermo-
dynamic limit the Wigner function consists of a single
peak for all values of F . This is in agreement with the
behavior of the density in Fig. 1 (a) which around the
transition is an average of the two semiclassical results
for small N but for increasing N converges to one of the
semiclassical branches. We thus conclude that the size of
the critical region where the Wigner function is bimodal
reduces as the thermodynamic limit is approached and
finally shrinks to a single point, the critical point. This
is also consistent with the presence of a first order phase
transition in the thermodynamic limit.
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III. CRITICAL BEHAVIOR OF THE
LIOUVILLIAN GAP

The previous observations raise the question about the
fate of the second stable semiclassical solution in the
quantum formalism. To gain further insight we now con-
sider the Liouvillian gap λ of the Liouvillian superoper-
ator L̂ associated to the master equation (2). This is
the generalisation to a dissipative context of the energy
gap for a closed system. For a closed system at equi-
librium the energy gap closes at a phase transition [26]
and recently it was realised that similarly for a dissipa-
tive phase transition the complex Liouvillian gap λ closes
[6]. In the following we examine the behavior of λ which
is obtained by numerically diagonalizing the Liouvillian
superoperator L̂ in the Fock basis. The Liouvillian gap
is the complex non-zero eigenvalue of L̂ whose real part
is closest to zero. The quantity −1/Re[λ] is the largest
relaxation timescale of the system. Convergence of the
results has been carefully checked by varying the cutoff
number of photons.

In Fig. 3 (a) and (b) the real and the imaginary part
of the Liouvilian gap are presented as a function of the
rescaled drive amplitude F̃ for different values of N with
Ũ = γ and a detuning ∆ = 0.8γ which is below the
semiclassical threshold for bistability. We also present
the real and imaginary part of the linearized spectrum
λLR around the steady-state semiclassical solution [1, 23].
The imaginary part of λ corresponds to an excitation fre-
quency while −Re[λ] is the corresponding damping rate.
In Fig. 3 (a) and (b) we observe a region where the real
part of λ becomes suppressed and the imaginary part
is equal to zero. The size of this region reduces as N
is increased and in the thermodynamic limit the results
show that the Liouvillian gap λ converges to the linear
response spectrum λLR. From now on we will use the
notation F̃c for the drive amplitude corresponding to the
smallest value of |Re[λ]|. In Fig. 3 (c) and (d) the real
part and the imaginary part of the Liouvillian gap are
presented as a function of the drive amplitude for dif-
ferent values of N , a rescaled nonlinearity Ũ = γ and a
detuning ∆ = 2γ, for which the semiclassical approach
predicts bistability. As before we find that around the
transition there is a region where the imaginary part is
zero and the absolute value of the real part is strongly
suppressed. The size of this region reduces as N is in-
creased. In the same region the absolute value of the
real part continues to decrease as N is increased suggest-
ing that the Liouvillian gap closes in the thermodynamic
limit.

In Fig. 4 (a) the relaxation timescale −1/Re[λ] is pre-

sented as a function of F̃ − F̃c, for Ũ = γ, ∆ = 2γ
and different values of N . In Fig. 4 (b) we examine
the dependence of the transition point Fc on N . In the
thermodynamic limit and for the considered parameters,
limN→∞ F̃c ' 0.93γ. At the transition point, i.e. for
F̃ = F̃c, the relaxation time −1/Re[λ] is typically de-
noted as the tunneling time τ in the context of opti-
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FIG. 3. The real (a,c) and the imaginary (b,d) part of the
Liouvillian gap λ (units of γ) as a function of the rescaled

drive amplitude F̃ (units of γ) for Ũ = γ and two values of
the detuning: ∆ = 0.8γ (a,b) and ∆ = 2γ (c,d). The different
curves correspond to different values N = 1, 5, 10, 25, 50, 100
for ∆ = 0.8γ and N = 1, 2, 3, 4, 5, 10, 20, 30, 40 for ∆ = 2γ
(as the curves approach the dashed lines N increases). For
the imaginary parts in (b) and (d) all curves drop to zero in
a range whose size decreases with increasing N (denoted by
the dotted lines). In (a) and (b) the dashed lines correspond
to the semiclassical linear response spectrum λLR. In (c) and
(d) the dashed lines indicate the edge of the regime where the
semiclassical approach predicts bistability.

cal bistability [27]. In Fig. 4 (c) the dependence of
τ on N is presented together with a fit to an expo-
nential decay. Note that for a first order phase transi-
tion at equilibrium the energy gap closes exponentially
as a function of the size of the system. We conclude
that in the thermodynamic limit the tunneling time di-
verges corresponding to a closing of the Liouvilian gap,
i.e. limN→∞ λ(F̃ = F̃c) → 0. If λ = 0 there are two
eigenvectors of the Liouvillian with eigenvalue zero cor-
responding to two steady-state density matrices. This
agrees with the semiclassical prediction of bistability.

As F̃ − F̃c is decreased for finite N the relaxation time
−1/Re[λ] exhibits a power law behavior and eventually
converges to the tunneling time (see Fig. 4 (a)). This
behavior is similar to a phase transition for a system at
equilibrium whose energy gap typically closes according
to a power law with a critical exponent [26]. However, in
stark contrast we find that in the present case the power
law exponent depends on the parameter N and diverges
in the thermodynamic limit. In order to quantify this we
have fitted the power laws observed in Fig. 4 (a) as

−1/Re[λ] = [(F̃ − F̃c)/f ]−bN/γ, (4)

with b and f two fitting parameters (see the dash-dotted
lines in Fig. 4 (a)). This parametrization of the fitting
curve (4) shows that for N →∞ the power law becomes
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FIG. 4. (a) The relaxation timescale −1/Re[λ] (units of γ−1)

as a function of the distance from the transition point F̃ − F̃c

(units of γ) for Ũ = γ and ∆ = 2γ. The different curves
correspond from top to bottom to N = 40, 30, 20, 10 and 5.
For the same parameters and as a function of N : (b) the

drive amplitude F̃c at the transition point (units of γ); (c) the
tunneling time τ (units of γ−1); (d) the dimensionless fitting
parameter b and (e) the fitting parameter f (units of γ). The
dash-dotted lines in (a) are the power law fits (4). The dashed
lines in (a) and (e) indicate the drive amplitude where the
semiclassical approach predicts the edge of the bistable region.
The inset in (e) demonstrates the finite size scaling analysis
that is used for the extrapolation to the thermodynamic limit.

a vertical curve at F̃ − F̃c = f . The obtained fitting
parameters are plotted in Fig. 4 (d) and (e) as a func-
tion of N . In the thermodynamic limit they converge to
limN→∞ b ' 0.35 and limN→∞ f ' 0.214γ (these values
are determined from a finite size scaling as demonstrated
in the inset of Fig 4 (e) for f). This value for f is in

good agreement with F̃+ − limN→∞ F̃c ' 0.24γ (indi-
cated by the dashed lines in Fig. 4 (a) and (e)), with

F̃+ = 1.16, the value where the semiclassical edge of
bistability occurs [23]. The difference between the fitted
values 0.214 and 0.24 is due to statistical error propa-
gation in the two sequential fitting procedures [28]. In
the thermodynamic limit there is a finite region where
the Liouvillian gap closes, corresponding to two degener-
ate steady-state density matrices and resulting in optical
bistability. Note that the same exponential vanishing of
the Liouvillian gap is found by changing the nonlinearity
and the detuning within the optical bistability regime,
but the values of the coefficients b and f do depend on
the parameters U and ∆.

IV. 0D THERMODYNAMIC LIMIT AND LINK
WITH DRIVEN-DISSIPATIVE BOSE-HUBBARD

MODEL

Let us now make a link with some other works where
a similar thermodynamic limit in zero dimensions was
considered. In the context of Carmichael’s discussion in
Ref. [16] we have considered a ”weak-coupling thermo-

dynamic limit” since the interaction strength U = Ũ/N
goes to zero. In qualitative agreement with our results
the numerical study of Carmichael in Ref. [16] for the
steady-state suggest a convergence to the semiclassical
prediction in the regime with many photons. Recently
the thermodynamic limit was also introduced to exam-
ine a second order phase transition and the associated en-
tanglement of the driven-dissipative Bose-Hubbard dimer
[29]. Such a thermodynamic limit has also been explored
for the study of the cavity-QED laser threshold [30] and
for the conservative (no dissipation) Rabi and Jaynes-
Cummings models [31, 32].

The considered thermodynamic limit of large photon
numbers for one single-mode nonlinear resonator has
been obtained while keeping constant the nonlinearity-
intensity product UF 2: this might seem artificial at first
sight. Here we show that there is an intriguing connection
with the traditional thermodynamical limit of many res-
onators in the driven-dissipative Bose-Hubbard model.
Let us consider the Bose-Hubbard Hamiltonian with a
homogeneous coherent drive given by

ĤBH =−J
∑
<i,j>

(
â†i âj + h.c.

)
+
∑
i

(
F̃ e−iωptâ†i + h.c.

)

+
∑
i

(
ωcâ
†
i âi +

Ũ

2
â†i â
†
i âiâi

)
, (5)

with J the hopping parameter, Ũ is the photon-photon
interaction strength, F̃ the amplitude of the coherent
drive with frequency ωp and ωc is the mode frequency of
the resonators. An alternative and equivalent description
is obtained by Fourier transforming from the real space
to the dual reciprocal k-space. The annihilation operator
for an excitation in mode k is âk = 1/

√
V
∑

i e
−ik.râi,

with V the total volume and âi the annihilation operator
in the position space r. Since the drive is homogeneous
only the k = 0 mode is externally driven and the other
k 6= 0 modes can get populated only through nonlin-
ear scattering. Neglecting these non-homogeneous k 6= 0
modes results in the following Hamiltonian for the k = 0
mode:

Ĥ0 = ω0â
†
0â0 +

Ũ

2N
â†0â
†
0â0â0 +

√
N
(
F̃ e−iωptâ†0 + h.c.

)
,

(6)
with ω0 the k = 0 mode frequency and N the number of
cavities. The dissipation does not couple the different k-
modes and has the same form in k-space as in real space.
By neglecting the k 6= 0 modes the homogeneous driven-
dissipative Bose-Hubbard model can thus be mapped ex-
actly onto the driven-dissipative Kerr model considered
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in this letter. The k = 0 mode frequency ω0 depends on
the lattice geometry and the hopping parameter J . The
effective nonlinearity Ũ/N and drive amplitude

√
NF̃ ex-

hibit the previously considered scaling behavior with the
parameter N which now has a clear physical role as the
number of cavities. This establishes a clear link between
the thermodynamic limit we consider for a single mode
and the more commonly considered thermodynamic limit
of an infinite system size. The validity of neglecting the
non-homogeneous k 6= 0 modes is however not obvious,
especially for a critical system and opens an intriguing
perspective. In particular, as it happens for some equilib-
rium phase transitions, in one-dimensional arrays where
correlations are more important the behavior could be
significantly different from two-dimensional lattices and
the vanishing of the Liouvillian gap in the thermodynam-
ical limit is not guaranteed.

V. CONCLUSIONS

We have theoretically explored the closing of the Li-
ouvillian spectral gap in a well defined thermodynamical

limit of large excitation numbers for a driven-dissipative
Kerr nonlinear resonator. Our work provides a clear
paradigm of critical dynamical behavior for a dissipative
first-order phase transition as it will stimulate further
systematic studies of the Liouvillian gap and its finite
size scaling for other critical dissipative model systems.
It paves the way to intriguing experimental investigations
in a broad class of platforms where Kerr optical nonlin-
earities can be implemented in single-mode resonators
and in more complex systems such as lattices of coupled
resonators.
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