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We uncover a superscattering behavior of pseudospin-1 wave from weak scatterers in the subwave-
length regime where the scatterer size is much smaller than wavelength. The phenomenon manifests
itself as unusually strong scattering characterized by extraordinarily large values of the cross sec-
tion even for arbitrarily weak scatterer strength. We establish analytically and numerically that
the physical origin of superscattering is revival resonances, for which the conventional Born theory
breaks down. The phenomenon can be experimentally tested using synthetic photonic systems.

I. INTRODUCTION

In wave scattering, a conventional and well accepted
notion is that weak scatterers lead to weak scattering.
This can be understood by resorting to the Born approx-
imation. Consider a simple 2D setting where particles are
scattered from a circular potential of height V0 and radius
R. In the low energy (long wavelength) regime kR < 1
(with k being the wavevector), the Born approximation
holds for weak potential: (m/~2)|V0|R2 ≪ 1. Likewise,
in the high energy (short wavelength) regime character-
ized by kR > 1, the Born approximation still holds in the
weak scattering regime: (m/~2)|V0|R2 ≪ (kR)2. In gen-
eral, whether scattering is weak or strong can be quanti-
fied by the scattering cross section. For scalar waves gov-
erned by the Schrödinger equation, in the Born regime
the scattering cross section can be expressed as poly-
nomial functions of the effective potential strength and
size [1]. For spinor waves described by the Dirac equa-
tion (e.g., graphene systems), the 2D transport cross sec-
tion is given by [2] Σtr/R ≃ (π2/4)(V0R)

2(kR) (under
~vF = 1). In light scattering from spherically dielectric,
“optically soft” scatterers with relative refractive index
n near unity, i.e., kR|n − 1| ≪ 1, the Born approxima-
tion manifests itself as an exact analog of the Rayleigh-
Gans approximation [3], which predicts that the scatter-
ing cross section behaves as Σ/(πR2) ∼ |n− 1|2(kR)4 in
the small scatterer size limit kR ≪ 1. In wave scatter-
ing, the conventional understanding is then that a weak
scatterer leads to a small cross section and, consequently,
to weak scattering, and this holds regardless of nature of
the scattering particle/wave, i.e., vector, scalar or spinor.
In this paper, we report a counterintuitive phenomenon

that defies the conventional wisdom that a weak scat-
terer always results in weak scattering. The phenomenon
occurs in scattering of higher spinor waves, such as
pseudospin-1 particles that can arise in experimental
synthetic photonic systems whose energy band struc-
ture consists of a pair of Dirac cones and a flat band
through the conical intersection point [4–11]. Theoret-
ically, pseudospin-1 waves are effectively described by
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the generalized Dirac-Weyl equation [7, 12, 13]: H0Ψ =
S · kΨ = EΨ with Ψ = [Ψ1,Ψ2,Ψ3]

T , k = (kx, ky)
and S = (Sx, Sy) being the vector of 3 × 3 matrices for
spin-1 particles. Investigating the general scattering of
pseudospin-1 wave, we find the surprising and counter-
intuitive phenomenon that extraordinarily strong scat-
tering, or superscattering, can emerge from arbitrarily
weak scatterers at sufficiently low energies (i.e., in the
deep subwavelength regime). Accompanying this phe-
nomenon is a novel type of resonances that can persist
at low energies for weak scatterers. We provide an ana-
lytic understanding of the resonance and derive formulas
for the resulting cross section, with excellent agreement
with results from direct numerical simulations. We also
propose experimental verification schemes using photonic
systems.

II. RESULTS

We consider scattering of 2D pseudospin-1 particles
from a circularly symmetric scalar potential barrier of
height V0 defined by V (r) = V0Θ(R − r), where R is
the scatterer radius and Θ denotes the Heaviside func-
tion. The band structure of pseudospin-1 particles can
be illustrated using a 2D photonic lattice for transverse
electromagnetic wave with the electric field along the z-
axis. As demonstrated in previous works [4, 13], Dirac
cones induced by accidental degeneracy can emerge at the
center of the Brillouin zone for proper material parame-
ters, about which three-component structured light wave
emerges and is governed by the generalized Dirac-Weyl
equation.

We consider the setting of photonic crystal to illustrate
the pseudospin-1 band structure. Figure 1(a) shows the
band structure of lattices with a triangular configuration
constructed by cylindrical alumina rods in air, where the
rod radius is r0 = 0.203a (a - lattice constant) and the
rod dielectric constant is 8.8 [4]. We obtain an accidental-
degeneracy induced Dirac point at the center of the 1st
Brillouin zone at the finite frequency of 0.6357 · 2π · c/r0.
Following a general lattice scaling scheme of photonic
gate potential [13], we obtain a sketch of the cross sec-
tion of the lattice in the plane, as shown in Fig. 1(b),
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where the thick black bar denotes an applied exciter. For
our scattering problem, the band structures outside and
inside of the scatterer are shown in Fig. 1(c).
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FIG. 1. Pseudospin-1 band structure and the underly-

ing photonic lattice structure. The lattice has a triangu-
lar configuration constructed by cylindrical alumina rods in
air. (a) The band structure with an accidental-degeneracy in-
duced Dirac point at the center of the 1st Brillouin zone, (b)
sketch of the physical lattice, and (c) band structures outside
and inside of the scatterer. A possible experimental param-
eter setting is a1 = 17mm, r1 = 0.203a1, a2 = 0.8a1, and
r2 = 0.203a2. Dielectric constant of alumina rod is 8.8.

The scattering problem can be treated analytically us-
ing the Dirac-Weyl equation (see Appendix A for a de-
tailed derivation of the various scattering formulas). To
demonstrate the phenomenon of superscattering, we use
the transport cross section Σtr to characterize the scat-
tering dynamics. (It should be noted that the total cross
section Σ is another usual quantity for characterizing su-
perscattering with consistent results as from the trans-
port cross section - see Appendix B for details.) The
transport cross section is defined in terms of the scatter-
ing coefficients Al as:

Σtr/R = (4/x)

∞
∑

l=−∞

{

|Al|2 −ℜ [Al(Al+1)
∗]
}

, (1)

where Al’s can be obtained through the standard method
of partial wave decomposition [1]. For convenience, we
define ρ ≡ V0R and x ≡ kR. At low energies, i.e., x≪ 1,
scattering is dominated by the lowest angular momen-
tum channels l = 0,±1. To reveal the relativistic quan-
tum nature of the scattering process, we focus on the
under-barrier scattering regime, i.e., x < ρ, so that man-
ifestations of phenomena such as Klein tunneling are pro-
nounced. We define two subregimes of low energy scatter-
ing: 1 < ρ and x < ρ < 1, where the former corresponds
to the case of a scatterer with a large scattering poten-
tial. The weak scatterer subregime, i.e., x < ρ < 1, is
one in which the counterintuitive phenomenon of super-
scattering arises. Specifically, for x < ρ < 1, we obtain

the leading coefficients as

A0 ≈ −P0/(P0 + iQ0) (2)

A±1 ≈ −P1/[P1 + i(4 +Q1)],

where P0 = πx and

Q0 = 2 (x ln (γEx/2)− J0(ρ− x)/[J1(ρ− x)])

with ln γE ≈ 0.577 · · · being the Euler’s constant and
P1, Q1 given by relations [P1, Q1] = x[P0, Q0]. Using
these relations, we obtain

Σtr

R
=

4P 2
0

x(P 2
0 +Q2

0)

{

1− 8Q1

P 2
1 + (4 +Q1)2

}

. (3)

We first show that, in our scattering system, all the con-
ventional resonances will disappear in the weak scatterer
regime (ρ < 1). To make an argument, we examine the
case of a scatterer with large scattering potential: ρ > 1
where the transport cross section as a function of x and
ρ is given by (see Appendix A for a detailed derivation)

Σtr

R
≈ 4

x

(

(πx)2

(πx)2 + 4[ρ− ρ0,m + x ln(γEx/2)]2

)

(4)

+
8

x

(

(πx3)2

(πx3)2 + 4(ρ− ρ1,n − x)2

)

,

with m,n = 1, 2, 3, · · · and ρ0,m, ρ1,n denoting the mth
and nth zeros of the Bessel functions J0 and J1, respec-
tively. The resonances occur about ρ ≈ ρ0,m, ρ1,n for
x≪ 1, and thus are well separated with a minimum po-
sition at ρ ≈ 2.4. This indicates that the locations of
such resonances satisfy ρ > 2, which are not possible in
the small scattering potential regime ρ < 1. In conven-
tional scattering systems where the Born approximation
applies, no additional resonances will emerge in the small
scattering potential regime ρ < 1.
For sufficiently weak scatterer strength (ρ ≪ 1), the

prefactor in (3), i.e.,

4P 2
0 /[x(P

2
0 +Q2

0)] ≈ π2J2
1 (ρ− x)x/[J2

0 (ρ− x)]

→ (π2/4)(ρ− x)2x≪ 1,

is off-resonance. The remaining factor characterizes the
emergence of a new type of (unconventional) revival res-
onances at Q1 + 4 = 0, which are unexpected as the
scatterers are sufficiently weak so, according to the con-
ventional Born theory, no scattering resonances are pos-
sible. The resonant condition can be obtained explicitly
from the constraint

Q1 + 4 = 0 ⇒ xJ0(ρ− x) = 2J1(ρ− x).

We obtain ρ = 2x for ρ≪ 1. The surprising feature of re-
vival resonance is that it persists no matter how weak the
scatterer. As a result, superscattering can occur for arbi-
trarily weak scatterer strength. One example is shown in
Fig. 2(a), where a good agreement between the theoreti-
cal prediction and numerical simulation is obtained. For
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comparison, results for the corresponding pseudospin-
1/2 wave scattering system governed by the conventional
massless Dirac equation are shown in Fig. 2(b), where
scattering essentially diminishes for near zero scatterer
strength, indicating complete absence of superscattering.

FIG. 2. Persistent revival resonances of pseudospin-1

particles from a weak circular scatterer at low ener-

gies. (a) Contour map of transport cross section in unit of R
(on a logarithmic scale) versus the scatterer strength ρ = V0R
and size x = kR for relativistic quantum scattering of 2D
massless pseudospin-1 particles. Revival resonances occur,
which can lead to superscattering (see Fig. 3 below). (b) Sim-
ilar plot for pseudospin-1/2 particles for comparison, where
no resonances occur, implying total absence of superscatter-
ing. The scatterer is modeled as a circular step like potential
V (r) = V0Θ(R− r), representing a finite size scalar impurity
or an engineered scalar-type of scatterers. The markers cor-
respond to the theoretical prediction, where the black circles
(◦) and crosses (×) are from ρ ≈ ρ0,m, ρ1,n (for x ≪ 1), and
the red stars (∗) follow the revival resonant condition given
by ρ = 2x for ρ ≪ 1.
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FIG. 3. Superscattering of pseudospin-1 wave. (a)
Transport cross section as a function of x ≡ kR for a weak
scatterer of strength ρ ≡ V0R = 0.1, and (b) dependence of
the maximum transport cross section on V0R.

To characterize superscattering in a more quantitative

manner, we obtain from Eq. (3) the associated resonance
width as Γ ∼ πρ3/8, and the closed approximation form
as

Σtr

R
≈ π2

4
ρ2x

[

1 +
16xρ

π2x4ρ2 + 16(ρ− 2x)2

]

. (5)

In addition, at the resonance, we have
(

Σtr

R

)

max

≈ π2xJ2
1 (x)

J2
0 (x)

32

π2x4

∣

∣

∣

∣

x=ρ/2

≃ 16

ρ
. (6)

A striking and counterintuitive consequence of (6) is that,
the weaker the scatterer (ρ ↓), the larger the resulting
maximum cross section ((Σtr/R)max ↑). This can be ex-
plained by noting that, due to the revival resonant scat-
tering, an arbitrarily large cross section can be achieved
for a sufficient weak scatterer with its radius R much
smaller than the incident wavelength 2π/k (i.e., in deep-
subwavelength regime kR≪ 1). In contrast, for a system
hosting pseudospin-1/2 wave under the same condition of
x < ρ≪ 1 where the Born approximation applies [2], the
maximum transport cross section is given by

(

Σtr

R

)BA

max

≈ π2

4
ρ3. (7)

Comparing with pseudospin-1/2 particles, the scattering
behavior revealed by Eq. (6) for pseudospin-1 particles is
extraordinary and represents a fundamentally new phe-
nomenon which, to our knowledge, has not been reported
for any wave (especially matter wave) systems. The an-
alytic predictions [Eqs. (6) and (7)] have been validated
numerically, as shown in Fig. 3.
Further insights into superscattering can be obtained

by examining the underlying wavefunction patterns, as
shown in Fig. 4. In particular, Figs. 4(a,c) and 4(b,d)
show the distributions of the real part of one component
of the spinor wavefunction ℜ(Ψ2) for pseudospin-1/2 and
pseudospin-1 particles, respectively, where the parame-
ters are V0R = 0.5 and kR = 0.2485. The patterns in
Figs. 4(b,d) correspond to the revival resonance indicated
by the pink arrow in Fig. 3(b). We see that, even for
such a weak scatterer, the incident pseudospin-1 wave of
a much larger wavelength λ = 2π/k ∼ 25R is effectively
blocked via trapping around the scatterer boundary, re-
sulting in strong scattering. In contrast, for the conven-
tional pseudospin-1/2 wave system, the weak scatterer
results in only weak scattering, as shown in Figs. 4(a,c),
which is anticipated from the Born theory.

III. EXPERIMENTAL TEST WITH PHOTONIC

SYSTEMS

It is possible to test superscattering in experimental
optical systems. Recent realization of photonic Lieb lat-
tices consisting of evanescently coupled optical waveg-
uides implemented by femtosecond laser-writing tech-
nique [7–10] make them suitable for studying the physics
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FIG. 4. Wavefunction patterns associated with super-

scattering. For V0R = 0.5 and kR = 0.2485, distribution
of the real part of one component of the spinor wavefunc-
tion ℜ(Ψ2) for (a) pseudospin-1/2 and (b) pseudospin-1 wave.
(c,d) Magnification of part of (a) and (b), respectively. Both
axies in (a-d) are in units of the incident wavelength λ. The
color code denotes the quantity ℜ(Ψ2).

of pseudospin-1 Dirac cones. For example, in the tight-
binding framework, for a homogeneous identical waveg-
uide array with the same propagation constant β0, the
Hamiltonian in the momentum space is given by

HTB(k) =





β0 2κx cos(
kx

2 ) 0

2κx cos(
kx

2 ) β0 2κy cos(
ky

2 )

0 2κy cos(
ky

2 ) β0



 .

(8)
In the low-energy regime (measured from the β0), the
Hamiltonian is reduced to a generalized Dirac-Weyl
Hamiltonian for spin-1 particles with β0 analogous to the
constant electronic gate (voltage) potential. As such, the
superscattering phenomenon uncovered in our work can
in principle be tested experimentally in photonic Lieb lat-
tice systems through a particular design of the refractive
index profile across the lattice to realize the scattering
configuration.
Loading ultracold atoms into an optical Lieb lat-

tice fabricated by interfering counter-propagating laser
beams [11] provides another versatile platform to test
our findings, where appropriate holographic masks can
be used to implement the desired scattering potential
barrier [14, 15]. Synthetic photonic crystal based 2D
pseudospin-1 wave systems are also promising for feasi-
ble experimental validation. For example, it was demon-
strated experimentally [4–6] and theoretically [13, 16]
that a pseudospin-1 wave system can be realized in 2D
dielectric photonic crystals via the principle of accidental
degeneracy. Implementation of the scalar type of poten-
tial can be achieved by manipulating the length scale of
the photonic crystals. From a recent work of “on-chip

zero-index metamaterial” design [6] based on such a sys-
tem, we note that the phenomenon of superscattering
uncovered in this paper can be relevant to a novel on-
chip superscatterer fabrication, which is not possible for
conventional wave systems.

IV. CONCLUSION AND DISCUSSION

In conclusion, we uncover a superscattering phe-
nomenon in a class of 2D wave systems that host mass-
less pseudospin-1 particles described by the Dirac-Weyl
equation, where extraordinarily strong scattering (char-
acterized by an unusually large cross section) occurs for
arbitrarily weak scatterer in the low energy regime. Phys-
ically, superscattering can be attributed to the emergence
of persistent revival resonances for scatterers of weak
strength, to which the cross section is inversely propor-
tional. These unusual features defy the prediction of the
Born theory that is applicable but to conventional elec-
tronic or optical scattering systems. Superscattering of
pseudospin-1 wave thus represents a fundamentally new
scattering scenario, and it is possible to conduct experi-
mental test using synthetic photonic systems.
An important issue is whether superscattering uncov-

ered in this paper is due to the presence of a flat band
that implies an infinite density of states. Our answer is
negative, for the following reasons. Note that, measured
from the three-band intersection point, the energy for the
(dispersionless) flat band states is zero outside and V0 in-
side the scatterer, but for the two dispersion Dirac bands
the energy is finite outside the scatterer and not equal to
V0 inside. For elastic scattering considered in our work,
the incident energy outside the scatterer is finite and less
than V0 as well. As a result, only the states belonging to
the conical dispersion bands are available both inside and
outside the scatterer, and therefore are responsible for the
superscattering phenomenon. Indeed, as demonstrated,
superscattering is due to revival resonant scattering for
states belonging to the conical dispersion bands that per-
sist in the regime of arbitrarily weak scatterer strength.
From another angle, if superscattering were due to the
flat band, the phenomenon would arise in the conven-
tional resonant scattering regime V0R > 1, which has
never been observed.
While the flat band itself is not directly relevant to the

superscattering behavior, its presence makes the struc-
ture of the relevant states belonging to the conical bands
different from those, e.g., in a two band Dirac cone sys-
tem, giving rise to boundary conditions that permit dis-
continuities in the corresponding intensity distribution
and tangent current at the interface. Interestingly, sur-
face plasmon modes [c.f., Fig. 4(d)] are excited at the
interface when revival resonant scattering occurs, which
are strongly localized and can be excited for arbitrarily
weak scatterer strength, leading to superscattering in the
deep sub-wavelength regime. These modes are created
from the particular spinor structure of the photon states,
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which can be implemented by engineering light propa-
gation in periodically modulated/arranged, conventional
dielectric materials (e.g., alumina) rather than within the
material itself. Our finding of the superscattering phe-
nomenon is thus striking and represents a new scattering
capability that goes beyond the Rayleigh-Gans limit or,
equivalently, one defined by the Born approximation.
With respect to potential applications of the finding of

this paper, it is worth emphasizing that the phenomenon
of superscattering represents a novel way of controlling
light behaviors beyond those associated with the conven-
tional scattering scenario because, in our system [e.g.,
Fig. 1(b)], light is structured into three-component spinor
states and behaves as relativistic spin-1 wave in the un-
derlying photonic lattice. There have been extensive re-
cent experimental works demonstrating that such lattice
systems can actually be realized. Our theoretical predic-
tion is based on a general setting that effectively char-
acterizes the low-energy physics underlying the photonic
lattices.
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Appendix A: Scattering formalism of 2D massless

spin-1 particles

Model Hamiltonian. As indicated in the main text,
we consider the following perturbed Hamiltonian

H = H0 + V (r), (A1)

where V (r) = V0Θ(R − r) with V0 being the potential
height.
Generally, far away from the scattering center (i.e. r ≫

R), for an incoming flux along the x direction, the spinor
wavefunction with the band index s takes the asymptotic
form

|Ψ≫
s (r)〉 = eikx|k0, s〉+

f(θ)√
−ir

eikr|kθ, s〉, (A2)

where the vector |k, s〉 is the spinor plane wave ampli-
tude with wavevectors k0 = (k, 0) and kθ = k(cos θ, sin θ)
defining directions of the incident and scattering respec-
tively.
In our case, for the conical dispersion bands s = ±, we

obtain

|k, s〉 = 1

2





e−iθ
√
2s
eiθ



 . (A3)

With the definition of the current operator Ĵ =
(1/~)∇kH(k) = vF (Sx, Sy), we have the scattered cur-
rent

Jsc =
1

r
〈kθ, s|f∗Ĵ · kθ

k
f |kθ, s〉 =

vF
r
|f(θ)|2, (A4)

while the incident current Jin = 〈k0, s|Ĵ · k0/k|k0, s〉 =
vF . The differential cross section is thus defined in terms
of the scattering amplitudes f(θ) as

dΣ

dθ
=
rJsc
Jin

= |f(θ)|2. (A5)

The other relevant cross sections can be calculated by
definition, i.e. the total cross section (TCS)

Σ =

∫ 2π

0

dθ
dΣ

dθ
, (A6)

the transport cross section (TrCS)

Σtr =

∫ 2π

0

dθ(1− cos θ)|f(θ)|2. (A7)

In order to figure out the exact expression of f(θ), we
expand the wavefunctions inside and outside the scatterer
as a superposition of partial waves, i.e. for r > R (outside
the scatterer)

|Ψ>
s (r)〉 =

∑

l

ψ>
l,s(r), (A8a)

for r < R (inside the scatterer)

|Ψ<
s (r)〉 =

∑

l

ψ<
l,s(r), (A8b)

where ψ>
l,s and ψ

<
l,s are the partial waves defined in terms

of the cylindrical wave eigenfunctions of the reduced
Hamiltonian H that reads in polar coordinates r = (r, θ),

H =
~vF√

2





0 L̂− 0

L̂+ 0 L̂−

0 L̂+ 0



+ V (r), (A9)

with the compact operator

L̂ = −ieiτθ
(

∂r + i
∂θ
r

)

,

and V (r) = V0Θ(R − r) the circular symmetric scalar-

type scattering potential. It is evident that [H, Ĵz ] = 0

with the definition of Ĵz = −i~∂θ + ~Sz. As such, H
acting on the spinor eigenfunctions of Ĵz yields

Hϕl,s = Eϕl,s, (A10)

where the wavefunctions ϕl simultaneously satisfy
Ĵzϕl = ~lϕl with l being an integer. After some standard
derivations, we obtain for the conical bands (i.e. s = ±)

ϕ
(0,1)
l,s (r) =

1

2
√
π







h
(0,1)
l−1 (qr)e−iθ

i
√
2sh

(0,1)
l (qr)

−h(0,1)l+1 (qr)eiθ






eilθ, (A11)
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where q = |E − V |/~vF and s = Sign(E − V ). The

radial function h
(0)
l = Jl is the Bessel’s function, and

h
(1)
l = H

(1)
l the Hankel’s function of the first kind. The

partial waves outside the scatterer (r > R) are therefore
given by

ψ>
l,s(r) =

√
πil−1

[

ϕ
(0)
l,s +Alϕ

(1)
l,s

]

, (A12a)

while inside the scatterer (r < R) the partial waves read

ψ<
l,s(r) =

√
πil−1Blϕ

(0)
l,s′ , (A12b)

where Al and Bl denote the elastic partial wave reflec-
tion and transmission coefficients in the l angular channel
respectively. In order to obtain the explicit expressions
of the partial wave coefficients, relevant boundary condi-
tions (BCs) are needed.
Boundary conditions. Recalling the commutation re-

lations [Ĵz ,H] = 0, we generally define a spinor wave-
function in polar coordinate

ψ(r, θ) = [ψ1, ψ2, ψ3]
T =





R1(r)e
−iθ

R2(r)
R3(r)e

iθ



 eilθ, (A13)

that satisfies

Hψ = Eψ. (A14)

Substituting Eq. (A13) into the wave Eq. (A14) and elim-
inating the angular components finally yield the following
(one-dimensional first-order ordinary differential) radial
equation

−i√
2





0 d
dr + l

r 0
d
dr − l−1

r 0 d
dr + l+1

r

0 d
dr − l

r 0









R1(r)
R2(r)
R3(r)





=
E − V (r)

~vF





R1(r)
R2(r)
R3(r)



 .

(A15)

Directly integrating the radial equation above over a
small interval r ∈ [R − η,R + η] defined around an in-
terface at r = R and then taking the limit η → 0, we
obtain

R2(R − η) = R2(R+ η),

R1(R − η) +R3(R − η) = R1(R+ η) +R3(R+ η),
(A16)

provided that the potential V (r) and the radial function
components R1,2,3(r) are all finite. Reformulating such
continuity conditions in terms of the corresponding wave-
function yields the BCs that we seek

ψ<
2 (R, θ) = ψ>

2 (R, θ),

ψ<
1 (R, θ)e

iθ + ψ<
3 (R, θ)e

−iθ = ψ>
1 (R, θ)e

iθ + ψ>
3 (R, θ)e

−iθ.
(A17)

Far-field solutions: r ≫ R. Using the asymp-

totic form of the Hankel function H
(1)
l (kr) ∼

√

2/πkrei(kr−lπ/2−π/4) and evaluating the outside wave-
function given in Eq. (A8a) at r ≫ R, we arrive at

|Ψ≫
s (r)〉 = eikx|k0, s〉+

−i
√

2/πk
∑

lAle
ilθ

√
−ir

eikr |kθ, s〉.
(A18)

It is evident from the Eq. (A18) and Eq. (A2) that

f(θ) = −i
√

2

πk

∑

l

Ale
ilθ. (A19)

Imposing relevant BCs given in Eq. (A17) on the total
wavefunctions of both sides at the interface r = R, we
have







BlJl(qR) = ss′
[

Jl(kR) +AlH
(1)
l (kR)

]

,

BlX
(0)
l (qR) = X

(0)
l (kR) +AlX

(1)
l (kR),

(A20)

whereX
(0,1)
l = h

(0,1)
l−1 −h(0,1)l+1 . Solving the equation above,

we finally determine the unknown coefficients

Al = − Jl(qR)X
(0)
l (kR)− ss′X

(0)
l (qR)Jl(kR)

Jl(qR)X
(1)
l (kR)− ss′X

(0)
l (qR)H

(1)
l (kR)

,

(A21)
and

Bl =
H

(1)
l (kR)X

(0)
l (kR)−X

(1)
l (kR)Jl(kR)

H
(1)
l (kR)X

(0)
l (qR)− ss′X

(1)
l (kR)Jl(qR)

. (A22)

Using the basic relations of J−l = (−)lJl and H
(1)
−l =

(−)lH
(1)
l , one can show the following symmetries

A−l = Al, B−l = Bl. (A23)

As such, the resulting probability density
ρ = 〈Ψs(r)|Ψs(r)〉 and local current density

j = 〈Ψs(r)|Ĵ |Ψs(r)〉 can be calculated accordingly.
In addition, the relevant scattering amplitudes f(θ) can
be exactly obtained according to the Eq. (A19) and
hence related cross section given in Eqs. (A6) and (A7).
Derivation of the Eq. (4). By definition, the trans-

port cross section can be obtained as

Σtr

R
=

4

x

∞
∑

l=−∞

{

|Al|2 −ℜ[Al(Al+1)
∗]
}

, (A24)

with Al being the reflection coefficients given in
Eq. (A21). For x ≪ 1, scattering is dominated by the
lowest angular momentum channels l = 0,±1. As a re-
sult, the transport cross section can be approximated as

Σtr

R
≈ 4

x

{

|A0|2 + 2|A1|2 − 2ℜ[A0(A1)
∗]
}

, (A25)
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FIG. 5. Total and transport cross sections versus x ≡ kR for
a given weak scattering potential ρ ≡ V0R = 0.1 in cases of
pseudospin-1 and pseudospin-1/2 respectively.

where

A0 ≈ − πx

πx+ i2 [x ln(γEx/2)− J0(ρ)/J1(ρ)]

= − P0

P0 + iQ0
,

(A26a)

and

A±1 ≈ − πx3

πx3 + i2 [J1(ρ)/J ′
1(ρ)− x]

= − P2

P2 + iQ2
,

(A26b)

provided that the scattering potential is large, ρ > 1.
Substituting the Eqs. (A26a) and (A26b) into Eq. (A25),
we obtain

Σtr

R
≈ 4

x

{

P 2
0

P 2
0 +Q2

0

+ 2
P 2
2

P 2
2 +Q2

2

−

2
P0P2Q0Q2

(P 2
0 +Q2

0)(P
2
2 +Q2

2)

}

.

(A27)

Since P2 = x2P0 = πx3 ≪ 1, the transport cross section
will approach Σtr/R ∼ 4/x (8/x) aboutQ0 = 0 (Q2 = 0),
and Σtr/R ∼ x ≪ 1 otherwise. It is thus reasonable to
reduce Eq. (A27) to

Σtr

R
≈ 4

x

{

P 2
0

P 2
0 +Q2

0

+ 2
P 2
2

P 2
2 +Q2

2

}

, (A28)

where Q0 = 2[x ln(γEx/2) − J0(ρ)/J1(ρ)] and Q2 =
2[J1(ρ)/J

′
1(ρ) − x]. Since they are from different terms

and each term has considerable values near Q0 = 0 or
Q2 = 0, we can expand Q0 and Q2 about the zeros of
J0(ρ) and J1(ρ), respectively, to get

Q0 ≈ 2
[

ρ− ρ0,m + x ln
γEx

2

]

, (A29a)

and

Q2 ≈ 2(ρ− ρ1,n − x), (A29b)
with m,n = 1, 2, 3, · · · and ρ0,m and ρ1,n denoting the
mth and nth zeros of the Bessel functions J0 and J1,
respectively. Substituting these into the Eq. (A28), we
arrive at Eq. (4) in the main text.

Appendix B: Characterizing superscattering with

total cross section

The total cross section Σ is an alternative quantity
to characterize superscattering, with consistent results
as the transport cross section, as shown in Fig. 5. In
particular, from the total cross-section curves (black and
green), one can infer the same scattering behaviors as
from the transport cross section. In fact, with the def-
inition of total cross section: Σ/R = 4/x

∑

l |Al|2, we
can obtain a closed-form formula in the weak scattering
potential regime:

Σ

R
≈ π2

4
ρ2x

[

1 +
8x2

π2(ρ− x)2x4 + 16(ρ− 2x)2

]

. (B1)

For ρ = 2x, the total cross section gives the same res-
onant peak value ∼ 16/ρ as the transport cross section
would.
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