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We have experimentally investigated the quench dynamics of antiferromagnetic spinor Bose-
Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic
Zeeman shift q. The rate of instability shows good agreement with predictions based upon solutions
to the Bogoliubov de-Gennes equations. A key feature of this work was removal of magnetic field
inhomogeneities, resulting in a steep change in behavior near the transition point. The quadratic
Zeeman shift at the transition point was resolved to 250 mHz uncertainty, equivalent to an energy
resolution of kB × 12 picoKelvin. A small (2-3σ) shift of the transition point was observed, from
q = 0 to q = +650 mHz, whose physical mechanism is currently unknown. To our knowledge, this is
the first demonstration of sub-Hz precision measurement of a phase transition in quantum gases. It
paves the way toward observing shifts of the transition point due to finite particle number N that
scale as 1/N , and also, to potential Heisenberg limited spectroscopy with antiferromagnetic spinor
gases [1].

Phase transitions are singular points in the behavior
of many-body systems. In the real world, however, the
mathematical singularity of a phase transition is usually
hidden by heterogeneity. For example, in the domain of
superfluids, gravity smears out the spectacular lambda
point of liquid helium, requiring that precise compar-
isons of experiment and theory be performed in space
[2]. For quantum gases of ultracold atoms the trap itself
causes density variations that are intrinsic to the system
[3]. For example, in a Bose-Einstein condensate (BEC)
the particle density varies by 100% from the center to
the edge of the Thomas-Fermi volume. A phase transi-
tion whose order parameter is proportional to the chem-
ical potential will therefore be smoothed out, typically
by kB × 100− 300 nanoKelvin. This problem confounds
the ability to observe and quantify critical behavior [4],
as well as transition point shifts caused by many-body
effects, including critical fluctuations [5]. While local
measurements on optical lattices in 2 dimensions [6, 7]
have made great strides in alleviating the inhomogene-
ity problem, they are specialized geometries, and do not
readily lend themselves to bulk quantum matter in 3D.

In this paper we report precise measurements of a
quantum phase transition in a bulk spinor Bose-Einstein
condensate. Being a first-order transition, it does not
depend on the particle density or chemical potential and
is therefore by nature immune to density variations [8–
11]. We have located this transition point with an un-
precedented frequency uncertainty of 130 mHz and 220
mHz due to statistical and systematic effects, respec-
tively. The combined error in energy units is kB × 12
picoKelvin. To our knowledge, this is the first sub-Hz ob-
servation of a phase transition in quantum gases. Other
spinor experiments have probed similar energy scales out-
side of a phase transition [12].
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Once density inhomogeneities are removed, only finite
size effects remain, that are ∝ 1/N , and which disappear
once the thermodynamic limit, N →∞, is taken. Finite
size effects are manifest in “bottom-up” approaches to
quantum simulation that utilize small particle numbers
N = 1− 10 [13, 14]. However, a higher energy resolution
alleviates the need to detect such small numbers of atoms
and thus facilitates the observation of finite size effects.
For example, at a resolution of h× 100 mHz for our sys-
tem, we estimate their visibility for N as large as 1000,
which is within reach. Thus precise measurements of the
kind explored here can realize a “top-down” approach
to quantum simulation. Finite particle number magni-
fies quantum correlations and entanglement [15], and re-
cent work has explored the possibility of ultra-precise,
Heisenberg-limited spectroscopy using this phase transi-
tion [1].

FIG. 1. (Color Online). Precise probe of quench dynamics
in an antiferromagnetic spinor BEC. a) Instantaneous quench
of quadratic Zeeman shift from q1 > 0 to q2 < 0 through
the quantum phase transition at q = 0 is performed using an
AC (microwave) magnetic field. (b) DC magnetic field, kept
constant during the experiment, consists of an applied bias
field ~B that slowly varies in space, shown for fields applied
along the long axis of the cigar-shaped condensate.

Spinor BECs offer a rich phase diagram due to the in-
terplay of magnetic fields and magnetic interactions [16–
24]. The transition we examine is between polar and
anti-ferromagnetic spin states in a spin-1 23Na BEC at a
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quadratic Zeeman shift q = 0 (see Figure 1). In the cur-
rent work we expand upon earlier observations [8, 25] to
make precise measurements of this phase transition. A
key factor enabling the enhanced precision reported here
is the application of magnetic fields parallel to, rather
than perpendicular to the long axis of the cigar-shaped
BEC. This has afforded us a tool to control and to ex-
plore the role played by magnetic field gradients in the
quench dynamics. Our data provide a powerful argu-
ment that these gradients were responsible for smearing
out the phase boundary observed in earlier work [8]. We
argue that this arises from a decoherence mechanism in-
hibiting the production of spin pairs that tends to slow
down the instability. By removing the field gradient, we
have measured an instability rate that is in good agree-
ment with Bogoliubov theory, thus resolving discrepan-
cies noted earlier [8]. An important theme of our work is
the use of dynamics to probe the phase transition bound-
aries, rather than attempting to reach the ground state
through thermal equilibration, as other studies have done
[16, 20].

Our starting point is the spin-dependent mean-field
Hamiltonian for spin F = 1 Bose-Einstein condensates
in the low-energy spin sector, as written in Reference [8],
with an additional, linear Zeeman term (see [10]):

Hsp =
c2
2
n(r)〈F̂〉2 + p(r)〈F̂z〉+ q〈F̂ 2

z 〉 (1)

For the low values of p we are considering, the linear
Zeeman term does not influence the overall density pro-
file. F̂, F̂z are the vector spin-1 operator and its z-
projection, respectively and n is the particle density. For
sodium atoms, the spin-dependent interaction coefficient

c2 = 4π~2

3M (a2 − a0) = +1.6 × 10−52J/m3 > 0 [19], and
hence the system is antiferromagnetic. Here M is the
atomic mass, and a2,0 are the scattering lengths for atom
pairs whose total angular momentum Ftot = 2 and 0, re-
spectively.

In our experiment, we controlled the linear Zeeman
term through the spatial gradient of the magnetic field
(see Figure 1b), i.e., p(r) = gFµB(B0 + ∇B · r), where
gF = 1/2 and µB are the Lande g-factor and Bohr mag-
neton, respectively. We controlled the quadratic Zeeman
shift q = q̃B2

0 +qM through a combination of static (DC)
and microwave (AC) magnetic fields. Here B0 is the
DC magnetic field at the trap center, and q̃ = h × 276
Hz/Gauss2 is the coefficient of the DC quadratic shift for
sodium atoms [9]. As in our earlier works, qM is propor-
tional to the microwave magnetic field strength through
the AC Zeeman shifts of the F = 1,mF sublevels [8, 25].
The microwave frequency was tuned below the “clock”
transition, |F = 1,mF = 0〉 → |F = 2,mF = 0〉 at 1.772
GHz [26] by an amount between 260 to 470 kHz.

For a perfectly homogeneous magnetic field, we may
apply a gauge transformation to the Hamiltonian to set
p = 0 [10]. In this case, for an antiferromagnetic spinor
BEC prepared in an initial state with zero net magnetiza-
tion, as in our experiments, the ground state for q > 0 is

a polar condensate consisting of a single component–the
mF = 0 spin projection that minimizes 〈F̂ 2

z 〉. For q < 0
the ground state maximizes the same quantity through a
superposition of two components mF = ±1, a so-called
antiferromagnetic phase [27]. The symmetry properties
of the ground state therefore change discontinuously at
q = 0, defining a zero temperature quantum phase tran-
sition [8, 27].

Optically confined, cigar-shaped Bose-Einstein con-
densates in the mF = 0 state were prepared in a static
magnetic field aligned with one of the coordinate axes
i = x, y, z depicted in Figure 1, which corresponds to the
quantization axis in Eqn. 1. The protocol is described in
our earlier work [8]. Axial Thomas-Fermi radius and trap
frequency were measured to be Ry = 350µm and ωy =
2π × 7 Hz, respectively. From these we determined the
peak spin-dependent interaction energy, c2n0 = h × 110
Hz, accurate to about 10%. From the known trap aspect
ratio of 70, we estimated the radial Thomas-Fermi radius
to be R⊥ = 5 µm. For the data studied here very close
to the phase transition point, there is insufficient energy
for transverse excitations, whose threshold we estimate
to be > h × 50 Hz from a box model [28]. Thus only
axial spin domains could form. The measured tempera-
ture was 400 nK, close to the chemical potential of 340
nK. The number of condensed atoms was approximately
Nc = 5× 106.

We rapidly switched q from q1 > 0 to a final value
q2 < 0 at t = 0 by changing only the AC magnetic field,
keeping the DC magnetic field constant. Following a
variable hold time, we switched off the trap and used
time-of-flight Stern-Gerlach (TOF-SG) observations to
record the one-dimensional spatiotemporal pattern for-
mation in each of the 3 spin components, ni(y); i = 0,±1,
with a resolution of 10 µm. For the current work we fo-
cus on the total population in each of the spin states,
Ni =

∫
ni(y)dy, as well as the population fractions

fi = Ni/
∑
j Nj .

To control magnetic bias fields during the previously
described experimental sequence, we used three pairs of
orthogonal Helmholtz coils wrapped around the vacuum
chamber. For a bias along x̂j , j = 1, 2, 3, we eliminated
fields transverse to the xj-axis with two pairs of coils, af-
ter which we applied a constant current along the xj-axis.
The actual magnetic field magnitude |B| at the location
of the atoms was determined via microwave spectroscopy
of the F = 1,mF = 0 → F = 2,mF = ±1 transitions
through their Zeeman frequency shift of gFµB |B|/h =
700 kHz/Gauss relative to the previously mentioned clock
transition. In addition to these bias coils, we used a sin-
gle anti-Helmholtz coil pair aligned with the y-axis to
generate magnetic field gradients of up to 160 mG/cm
in magnitude. Background field gradients along the y-
direction were observed to be in the neighborhood of 80
mG/cm. Our uncertainty in magnetic field calibration
was 4 mG.

The gradient cancellation was achieved as follows.
By tuning the field gradient coils, we noticed that at
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FIG. 2. (Color Online). Probing the phase transition with ∼
100 mHz sensitivity. Solid symbols are data taken for different
static magnetic fields By, i.e., along the cigar. Clear symbols
were taken in the two transverse directions Bx, Bz. Solid line
is a fit of all By data to the rate given by Bogoliubov theory
for a homogeneous BEC, as described in the text. Inset is an
expanded view of the data outlined in the dashed box, with
solid circles for all By data. Solid line is a separate fit allowing
for an offset q0, measured to be +0.65±0.13 Hz. Vertical error
bars are statistical, while horizontal error bars are uncertainty
in q-calibration of 0.22 Hz. Bz-data is reprinted from [8].

dBy/dy = 0, a pure mixture of mF = ±1 states re-
mained perfectly overlapped, whereas for dBy/dy < 0
and dBy/dy > 0 the two states phase separated by δx < 0
and δx > 0, respectively, in order to gain linear Zeeman
energy [16]. Independent confirmation was provided by
an initial mF = 0 condensate at q > 0. This should be
the ground state of the spinor Hamiltonian, but only at
zero field gradient. For any finite gradient we observed a
slow decay into a mixture of all three spin states, similar
to results from the Ketterle group [16]. The field gradi-
ent null point also maximized the lifetime of the mF = 0
state, which could be several seconds.

The finite current resolution of our power supply con-
trols limited the resolution to ±0.3 mG/cm. With this
resolution the residual linear Zeeman energy p after can-
cellation of stray magnetic field gradients was no more
than ±7 % of the spin-dependent interaction energy U .
A complementary technique for measuring field gradients
with similar resolution to ours observed the formation
of helical spin textures using Larmor precession imaging
[29].

Figure 2 shows our main experimental observation.
It is the extreme sensitivity of the instability rate to
quadratic Zeeman shift near the phase boundary, allow-
ing for a precise determination of the latter. Similar
to our earlier work [8, 25], we measured the fractional
population in mF = ±1, i.e., f±1 = f1 + f−1, which
was observed to grow with time. The instability rate
was defined to be Γ1/2 = 1/T1/2, where T1/2 was the
time at which f±1 had increased to 1/2. The extreme
sensitivity was only observed for magnetic fields aligned
parallel to the long axis of the cigar-shaped BEC (here-

after, By), where we could carefully null stray magnetic
field gradients. By contrast, we measured a stark differ-
ence for fields aligned along Bx,z. In this case, according
to our earlier observations (data reproduced from [8] in
Figure 2 as open squares), a significant discrepancy was
noticed between the experimentally observed instability
rates and those predicted by Bogoliubov theory, partic-
ularly for data taken near the transition point. The ex-
perimental data suggested a smooth turn-on of the in-
stability rate rather than a sharp transition point. In
the current work we have reproduced this difference for
magnetic fields Bx (open circles), which agrees with the
previous Bz data. With the newer By data we observe
a much closer agreement with the theoretical prediction
for a homogeneous system, Γ(q) =

√
|q|(q + 2c2n0), the

solid line in the Figure. Here n0 is the peak density of
the mF = 0 cloud. The theoretical line is a fit to the ex-
perimental data yielding c2n0 = h× 125± 11 Hz, which
agrees with the experimentally determined value within
the quoted uncertainties.

Focusing now only on By data with the gradients
cancelled in Figure 2, we applied 3 different magnetic
fields By = 100, 145 and 170 mG, and adjusted the mi-
crowave power accordingly to cover the same range of
total quadratic Zeeman shift. In all 3 cases the data
collapsed onto what appears to be a single curve, par-
ticularly for small q very close to the transition point.
For larger static fields of 200 mG, the difference between
transverse and longitudinal instability rates was less ap-
preciable, for reasons that are not presently clear. It
is possible that the larger microwave power required to
cancel the increased quadratic shift caused a spin-state
dependent atom loss that suppressed the instability.

The inset to the figure shows an expanded view of the
data outlined in the dashed box. Here, the data sets
from different static fields have been combined into one.
This data very close to the transition point was sepa-
rately fit to a Bogoliubov function Γ(q − q0) that has
been shifted empirically by q0, yielding q0 = 0.65± 0.13
Hz. The quoted error is the statistical uncertainty in
the fit to the first 9 data points starting from the left
in the inset. Although no physical theory motivates this
choice of fitting function, it does provide a useful param-
eterization of our data, particularly the steepness with
which it approaches Γ = 0 from the q < 0 side. The
error bars along the q-axis are the 200 mHz experimen-
tal uncertainty in determination of the q = 0 point due
to the bias magnetic field calibration uncertainty of 4
mG. Other error sources, including microwave magnetic
field amplitude and frequency uncertainties, were much
smaller and could be neglected. A better magnetic field
calibration could help reduce this uncertainty.

With this level of precision the data suggest a 2 to 3
σ shift of the phase transition point to q = +650 mHz.
We do observe a finite instability rate of about 3 s−1 for
q = +3 Hz, in the absence of any microwave fields. This
could be caused by spin redistribution from background
AC magnetic fields not measured by our magnetic field
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calibration technique, for which further study would be
needed. Apart from this technical consideration, it is also
possible that the transition point is shifted due to fun-
damental reasons, either interactions with the thermal
cloud or, perhaps, to non-mean-field effects. We note
that for q > 0, thermally induced distillation of atoms
from mF = 0 to mF = 1 has been previously observed in
elongated BECs, but only at much larger field gradients
of 100 mG/cm [30]. It is not clear that the weak gra-
dients here of < 0.3 mG/cm can cause this background
instability. Notwithstanding these experimental caveats,
the sub-Hz level precision spectroscopy of a phase transi-
tion has not been achieved previously in ultracold gases,
to our knowledge.

While the data in Figure 2 appear to have a univer-
sal character, we do not yet have a complete explanation
why transverse fields appear to suppress the instability
relative to longitudinal fields. We have evidence, how-
ever, that spatial inhomogeneities in the field magnitude
play an important role, and we explore this effect in the
rest of the paper. Since these gradients were different
for transverse and longitudinal fields, this effect by itself
might explain the observed differences.

To understand this point in further detail, we note that
for a one-dimensional system we only need to consider
variations in magnetic field along the y direction. Thus
for fields that are mostly By, the first order magnetic field

is given by B = | ~B| ≈ B0 +
∂By

∂y y, and by applying an

external field gradient −∂By

∂y we could cancel the field in-

homogeneity to first order. For a bias field that is mostly
Bz, the only term that is relevant in the same order is

the variation of that field along y: | ~B| ≈ B0 + ∂Bz

∂y y,

since all other gradient terms ∂By,x/∂y add in quadra-
ture and should be suppressed. A similar argument ap-
plies to fields that are mostly Bx. Transverse field gra-
dients of this type could neither be easily characterized
nor cancelled using our current setup [31]. However, as
noted earlier [8], they did appear to play some role in the
problem, since at long times t > 1 second, the cloud had
separated into two distinct domains of mF = ±1, consis-
tent with a gradient in the linear Zeeman term. In the
absence of a field gradient these two spin states would be
miscible with one another.

An alternative and very intriguing explanation is a gen-
uine orientation dependence of the instability upon the
bias field. This would signal physics beyond a mean-
field description of the spinor BEC, an exciting develop-
ment. For example, dipolar interactions [32–34] have an
anisotropy in space and can influence the spin relaxation
rate for sufficiently anisotropic trapping potentials [35].
The similarity of the data in Figure 2 for both Bx and Bz
fields suggests this as a possibility, although the effect in
Reference [35] is unfortunately too weak to explain the
factor of 10 suppression observed. Without further study
we hold dipolar effects in abeyance.

To separate out the role played by magnetic field gradi-
ents from other potential causes, we performed controlled

FIG. 3. (Color Online). Field gradient slows down the insta-
bility. Shown are experimentally measured and numerically
computed instability rates versus applied magnetic field gra-
dient. Quadratic shift was q = −3.7 Hz at zero field gradient,
and varied from -5 to -2.5 Hz over the data range shown.

experiments with the magnetic field applied along the y-
direction, and negligible z and x fields. Here the field

gradient Bp =
∂By

∂y was deliberately applied, and could

be tuned to both positive and negative values by varying
the current in the anti-Helmholtz coils. Thus, to a good
approximation we had independent control over p and q.

Figure 3 shows the variation of Γ1/2 with applied mag-
netic field gradient, which has been normalized in order
to compare with 1D numerical simulations. The nor-

malized gradient is Bp/Bp0, where Bp0 =
~ωy

gFµBay
' 13

mG/cm, where ωy, ay =
√
~/mωy are the axial frequency

and oscillator length, respectively. The data clearly show
that the maximum rate occurs near Bp = 0, and falls off
rapidly with field gradient to either positive or to nega-
tive values. Due to non-idealities in the experiment, the
gradient coils introduced an asymmetric bias field varia-
tion which was independently measured. For normalized
field gradients < −3 this caused an increase in |q| that
created a small, positive deviation between the experi-
mental data and the theory on the left side of the graph.

Also plotted is the result of 1d numerical simulations
based on the Truncated Wigner Approximation (TWA)
[25]. These were performed for Bp > 0 and the results
reflected about the y-axis in the figure for Bp < 0. These
numerical data were scaled by a factor of 2 in both x
and y axis, and show good agreement with our measured
data. Although we cannot at present account for an over-
all scaling factor, we can account for the fact that it is
the same for both x and y axes in the figure. This is
due to the linearity of the Bogoliubov equations that de-
scribe the initial instability. All quantities of interest,
including p, q and the (imaginary) eigenvalues E, scale
linearly with the chemical potential. If experiment and
theory were performed at different values for µ, a single
scaling factor should apply to the quantities plotted in
both axes of Figure 3. This argument should be approxi-
mately true even for larger hold times, provided that the
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system is still in the growth phase of the dynamics where
nonlinearities are not too strong.

FIG. 4. (Color Online). Origin of field-gradient induced sup-
pression of instability. Numerical simulations of the dynami-
cal evolution of the f±1 populations for various field gradients
show the formation of a plateau, as described in the text. The
dimensionless time unit is 2π/ωy.

What causes the suppression? The numerically ob-
tained wavefunctions show that noise in the initial state
becomes amplified by the instability, forming localized
domains that grow with time, as noted in earlier work
[25]. Figure 4 shows numerical results for the temporal
dynamics of the population f±1 for different values of
the field gradient Bp, plotted in dimensionless time units
Ty = 2πω−1y . For both Bp = 0 and Bp 6= 0, we observe
rapid domain growth, but for Bp 6= 0, a plateau in f±1
is reached. The plateau value decreases with increasing
field gradient, and is < 0.01 for normalized field gradients
Bp/Bp0 & 1.0. Further growth of the ±1 populations
must wait until a longer time Tlate ∼ 1.5, which is the
timescale observed in the experiment, i.e., Γ1/2 > 1/Tlate.
By examining the numerically generated wavefunctions,
we observed that near t = Tlate, the meagerly popu-
lated ±1 domains had diffused to opposite sides of the
trap where their population could increase more easily
at the expense of the smaller mF = 0 population near

the Thomas-Fermi boundaries.

Our simulations therefore suggest that there are two
stages to the dynamics–early (t � Tlate) and late (t ∼
Tlate). In the early stage, a clamping of the initial
mF = ±1 population, rather than a reduction of the
instability rate, occurs. This early stage is critical for
slowing down the instability. Unfortunately, our current
experimental sensitivity does not allow us to probe pop-
ulation fractions f±1 < 0.05. We can, however, under-
stand the numerical observations in terms of a decoher-
ence process caused by the field gradient. In the presence
of a magnetic field gradient, the quantum field operator,

ψ̂m, acquires a phase gradient that increases with time:
φ = mEZty/~, where EZ = gFµB(dB/dy). If φ varies
by 2π over a single domain, the effective rate of ampli-
fication can be reduced by destructive interference from
different spatial regions. For a domain of size d this oc-

curs when
Bp

Bp0

(
ωytd
ay

)
= π. For ωy = 2π×7s−1, a domain

size of 30µm and
Bp

Bp0
= 1.2, this occurs at 16 ms, which

is a similar timescale to the instability itself (see data for
Bp = 0 in Figure 3). This picture is therefore consistent
with the formation of a plateau early in the dynamical
evolution, as seen in Figure 4. Since the decoherence is a
process local to individual domains, it should not depend
on whether the overall density profile is homogeneous or
inhomogeneous.

In conclusion, we have made sub-Hz level precise mea-
surements of the location of a quantum phase transition
by observing a dynamical instability. We achieved this
through careful control of magnetic field gradients that
revealed a new mechanism for suppression of the insta-
bility. We observed a small shift in the transition point
from q = 0 to q0 = +0.65 ± 0.13 Hz, whose origin mer-
its further study. Our observations pave the way toward
realizing entangled states appearing at very small values
of the quadratic shift, q < c2n0/N [15, 36]. For our atom
density, this equals 100 mHz at N = 1000, which should
be quite feasible to detect.

We thank Mukund Vengalattore and Carlos Sá de Melo
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