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A quantum simulator based on ultracold optically trapped atoms for simulating the physics of
atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about
13 orders of magnitude allows to watch in slow motion the tunneling and recollision processes that
form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper
understanding of strong-field physics, especially for many-body systems beyond the reach of classical
computers. The quantum simulator can experimentally straightforwardly be realized and is shown
to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

In his renowned lecture, “Simulating physics with com-
puters” Richard P. Feynman suggested the use of quan-
tum computers [1], i .e. precisely controllable quantum
systems, to simulate other quantum systems that can-
not be described theoretically due to their exponentially
growing Hilbert space. This lead finally to (not yet uni-
versal) quantum simulators [2]. For instance, the Mott-
insulator to superfluid phase transition in condensed-
matter systems [3] was predicted [4] to be observable with
ultracold atoms in an optical lattice and then successfully
demonstrated [5, 6]. Also the Higgs mechanism [7], high
temperature superconductivity [8], or Zitterbewegung [9]
(to name just a few) were successfully investigated by
quantum simulation. Moreover, the quantum simulation
of electrons in crystalline solids exposed to laser fields
[10] has been proposed.

Figure 1. (color online) (a) & (b): Comparison of electrons
in an atom exposed to a strong electric field (a) and atoms in
an optical trap exposed to a magnetic-field gradient (b). The
different shadings of the electrons and atoms reflects their
different spin states and Zeeman substates, respectively. An
external electric field (a) or magnetic-field gradient (b) effec-
tively tilts the continuum threshold and the electrons (a) or
atoms (b) can escape the binding potential by tunneling.
(b) - (e): Behavior of optically trapped atoms in a period-
ically driven magnetic-field gradient (solid green curve), as
expected from the three-step model [11, 12] in strong-field
physics. After tunneling (b) the escaped atom accelerates
(c), reverses (d) and finally recollides (e) with the residual
atoms.

Strong-field physics has contributed considerably to
the understanding of the light-matter interaction. The
progress leading to pulses on the attosecond timescale
[13] has even raised visions of real-time imaging of
molecular processes [14] and ”orbital tomography”
[15]. Yet, attosecond many-body physics is challeng-
ing. An exact investigation on classical computers be-
yond the single-active-electron approximation becomes

prohibitively complex for many-electron systems. In fact,
the numerical treatment of two-electron systems like He
or H2 is today still state of the art [16–19]. Thus, simpli-
fied models are widely used for interpreting modern ex-
periments. These models are controversial and their vali-
dation is difficult for several reasons. First, the used light
pulses are bound to the specifications of the laser. The
wavelength range of lasers is limited, mostly Ti:sapphire
lasers are used. The pulse shapes are restricted and
can often only be reproduced and determined up to a
considerable uncertainty. The intensity and timescale
of laser pulses are already pushed to a limit where fur-
ther improvements require major technical or even princi-
ple developments with new limitations, like free-electron
lasers. Second, atoms, ions, and molecules are compli-
cated many-body systems. Their internal structure can-
not be simply manipulated. For example, a variation of
the number of electrons or protons underlies constraints
due to electroneutrality. Third, although the correlation
of electronic and nuclear motion is known to influence
the ionization behavior [20–23], in most theoretical mod-
els this effect is neglected by fixing the nuclei in space
while investigating the electronic response to the laser
field.
In this work, we introduce the concept of an ultracold-

atom quantum simulator for attosecond science which
offers great flexibility and control beyond the mentioned
limitations. This includes many-body quantum simula-
tions that are impossible with any classical computer.
The attoscience simulator. The simulator system con-

sists of ultracold trapped atoms that replace the elec-
trons in the atom, ion, or molecule, see Fig. 1. The core
potential is replaced by an external, optical trapping po-
tential. The ability to implement single-well or multi-
well trapping potentials allows for a simulation of atoms
or molecules, respectively. Naturally, fermionic atoms
may be chosen, but using bosons or distinguishable par-
ticles reveals effects of the exchange interaction. The
intense laser pulse is replaced by a periodically driven
magnetic-field gradient which is generated by current-
carrying coils. Restrictions for ultrashort laser fields like
the zero-net-force condition [24] do not apply here and
thus fields of almost arbitrary shape can be created, even
true half-cycle pulses and fields that formally correspond
to sub-attosecond pulses [25].
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Certainly, the atom-atom interaction is shorter ranged
than the Coulomb interaction. However, earlier quantum
simulations like the famous superfluid to Mott-insulator
phase transition [4] demonstrated that an equivalent
physics is obtainable. The use of ultracold atoms in-
troduces the unique opportunity to arbitrarily vary the
effective interaction strength via magnetic Feshbach res-
onances. This promises new insights on the influence
of the interparticle interaction on the ionization behav-
ior. Furthermore, theoretical studies which replace the
core potential by, e.g., a zero-range potential [24], can
now be tested experimentally, and this even for many-
particle systems. Since ultracold quantum systems are
manipulated nowadays on the single-atom level [26, 27],
important investigations of single vs. correlated multi-
electron dynamics such as correlated many-body tunnel-
ing become accessible. Moreover, only the simulator al-
lows for the experimental realization of fixed nuclei – a
task impossible with real molecules due to the Heisen-
berg uncertainty principle. The influence of a fixed nu-
clear geometry on the ionization behavior [28] can thus
be tested experimentally in a clean fashion. Additionally,
the differences between the quantum-mechanical nature
of vibronic states and the simulation of a mechanical vi-
bration of the nuclei can be investigated.
Hamiltonian mapping. The formal equivalence of the

quantum simulator Hamiltonian to the electronic strong-
field Hamiltonian at a fixed nuclear configuration is
demonstrated. When treating the strong laser field classi-
cally, which is acceptable due to its high intensity, and ap-
plying dipole approximation and length gauge (LG), re-
spectively, the electronic strong-field Hamiltonian reads

ĤLG(t) = Ĥ0 +

N
∑

i=1

ri · eE(t) , (1)

where

Ĥ0 =

N
∑

i=1

p̂2
i

2me
+ Vee + Ve,nuc (2)

denotes the field-free Hamiltonian for N electrons. Here,
me is the electron mass, e the electron charge, Vee in-
cludes all electron-electron repulsion terms, and Ve,nuc all
the electron-nucleus interactions. E denotes the electric-
field component of the pulse. In analogy, the Hamiltonian
of N ultracold atoms confined in a trapping potential
Va,tr which are exposed to a time-dependent magnetic-
field gradient B′(t) reads

ĤLG(t) = Ĥ0 +

N
∑

i=1

ri · µB′(t) , (3)

where

Ĥ0 =

N
∑

i=1

p̂2
i

2ma
+ Vaa + Va,tr (4)

denotes the Hamiltonian of the atoms in the trap without
the gradient B

′. Here, ma denotes the atomic mass, µ
the magnetic moment of the atoms, Vaa includes all atom-
atom and Va,tr all atom-trap interactions, respectively.
The Hamiltonians (1) and (3) are formally equivalent

under the mappings

e E 7→ µ B
′, Ĥ0 7→ Ĥ0 . (5)

These mappings build the foundation of a quantum sim-
ulator for the strong-field Hamiltonian equation (1) be-
cause they allow for a systematic investigation of a many-
body system confined in a finite potential and exposed to
a linear, time-dependent perturbation (via Hamiltonian

equation (3)) due to the extreme control over Ĥ0 and B
′.

It is important to note that the electrodynamical po-

tentials, e.g., the vector potential −∂A(t)
∂t

= E, map ac-
cordingly. In the ultracold simulator system the “vector
potential” is thus given by

−∂A(t)

∂t
= B

′ . (6)

Of course, the potentialA differs from the physical vector
potential Ã that generates the magnetic field B and its
gradient B

′ via B = ∇ × Ã. Yet, equation (6) is the
formal consequence of the simulator mappings (5).
The simulator mappings (5) are intrinsically defined in

length gauge. However, it is particularly useful to con-
sider the analog of the velocity-gauge (VG) formulation,
too. A gauge transformation of the strong-field Hamilto-
nian (1) leads to the velocity-gauge form

ĤVG(t) = Ĥ0 +
N
∑

i=1

e

me
A(t) · p̂i +

e2

2me
A(t)2 . (7)

In analogy, a “gauge” transformation of the simulator
Hamiltonian (3) leads to the corresponding simulator
Hamiltonian in “velocity gauge”,

ĤVG(t) = Ĥ0 +

N
∑

i=1

µ

ma
A(t) · p̂i +

µ2

2ma
A(t)2 . (8)

Again, the Hamiltonians are formally equivalent. The
vector potential A(t) is the one resulting from the
simulator mappings (5) and (6).

Experimental realizability. In view of the simulator
mappings in (5) it is apparent that equivalent physics
can be obtained for ultracold atoms in an optical trap
with a time-varying magnetic-field gradient and atoms
or molecules in intense laser fields. However, the cru-
cial question remains whether there exist experimentally
accessible parameter regimes for the quantum simula-
tor that allow for the probing of the various interesting
regimes of strong-field physics.
In order to obtain realistic experimental parameters

for the quantum simulator, the already existing exper-
imental setup described in [26] is considered. In this
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experiment, up to ten fermionic atoms are loaded into
a tight optical dipole trap in a well defined quantum
state (T/TF ≈ 0.08). These are, however, not fundamen-
tal limitations but specific to this experiment. A static

magnetic-field gradient which tilts the continuum thresh-
old of the trap, see Fig. 1, is applied for the preparation
and investigation of the system. The here proposed atto-
science quantum simulator can be realized by replacing
the static magnetic-field gradient by a periodically driven
one.
Similarly to strong-field physics, the pulse covering the

time interval [0, 2πnc/ω] may be defined by its vector
potential via

A(t) = A0 sin2
(

ωt

2nc

)

sin(ωt+ ϕ) . (9)

Here, nc is the number of cycles, ϕ the carrier-envelope
phase (in the studies below set to zero), ω the angular
frequency, and A0 (from which B

′
0 is obtained via equa-

tion (6)) is the strength of the perturbation. For a given
simulator setup and a specific pulse, the corresponding
values for the frequency ωe and peak vector potential
|A0| applied in the strong-field system are found by en-

forcing equal Keldysh parameters (γe = ωe

√
2meIp

eE0

equal

to γa = ω
√
2maEb

µB′

0

where Ip (Eb) is the binding energy of

the electron (atom), E0 (B′
0) the peak electric field (mag-

netic gradient strength) [29, 30] and an equal ratio of the
binding energy to the frequency of the perturbing field
[31]. In the experiment described in [26] the 1/e-lifetime
of the prepared two-body system in the ground state is
60 s which demonstrates the high degree of isolation from
the environment. On the other hand, the here considered
magnetic-field gradient pulses have durations of the order
of 10 milliseconds. Note also that besides the here dis-
cussed applications, π pulses may provide a useful means
to prepare the system in a well-defined excited state.
Validation of the quantum simulator. In the experi-

ment [26] that is used here as a proof for the realizabil-
ity of the proposed simulator, the atom loss is routinely
measured. This observable corresponds to a measure-
ment of the total ion (or electron) yield in a strong-field
experiment. More detailed information on the under-
lying physics is obtained by a measurement of differen-
tial yields: energy-resolved electron or atom spectra for
strong-field experiments or the simulator, respectively.
The measurement of energy-resolved atom spectra re-
quires further experimental developments, similarly to
strong-field physics where in the early days also only total
yields were measured. To validate the simulator in more
detail, energy-resolved electron spectra of a hydrogen
atom are compared to the corresponding energy-resolved
atom spectra of the simulator setup, both initially in
their ground state. The spectra are calculated by solving
the corresponding time-dependent Schrödinger equations
(TDSE) [31], ensuring that the corresponding parameters
for the quantum simulator are experimentally accessible
[32].

Figure 2. (color online) Atom spectra of the simulator and
electron spectra of a hydrogen atom for the multiphoton
regime (γ = 2.02), (a) and (b) respectively, and for the qua-
sistatic regime (γ = 0.715), (c) and (d) respectively. The
dashed vertical lines in (a) and (b) indicate the positions of
the multiphoton peaks for an infinitely long pulse as expected
from the subsequent absorption of field quanta. In (d), in ad-
dition to the result for the hydrogen atom in three dimensions,
also the result for the one-dimensional (1D) soft-Coulomb po-
tential V (z) = −1/

√

2 + z2 is shown. The SFA yields in (c)
and (d) are rescaled in order to agree with the total ionization
yield of the TDSE calculation. The factors are given in the
figure legends.

The laser-matter interaction is typically divided into
two characteristic regimes. In the quasistatic regime
(γ ≪ 1) the system is assumed to follow adiabatically the
changes of the electric field of the laser. In this regime
the electron is supposed to tunnel through or escape over
the field-distorted potential barrier, see Fig. 1. In the
other limit (γ ≫ 1) the multiphoton picture is usually
adopted in which the ionization is described within a
simplified picture as an absorption of photons, despite
the fact that in the theoretical treatment the electro-
magnetic field is treated classically. In the multiphoton
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regime (Figs. 2a and b), both spectra show the typical
multi-peak structure (above-threshold-ionization [24, 33]
peaks) where the peak distance reflects the frequency of
the perturbing field. Clearly, simulator and hydrogen
atom show very good agreement. Despite the different
dimensionalities the TDSE solutions agree, in fact, al-
most quantitatively.

In the quasistatic regime (Figs. 2c and d), a simple
tunneling picture suggests an exponential decrease in the
energy-resolved spectra, as is seen in the low-energy part
(up to 2Up where Up = I/(4ω2) is the ponderomotive en-
ergy and I the laser intensity). However, in a periodically
changing field the emitted electron or atom can reverse
its direction of motion and recollide, see Fig. 1. High-
harmonic generation [30, 34, 35] in strong-field physics
is based on the recombination of the liberated electron
with the parent ion at the recollision step. Using clas-
sical Newtonian mechanics it had been found that high-
harmonic spectra extend up to 3.17Up + Ip [11]. For
energy resolved electron spectra, the recollision process
leads to a broad energy distribution of the rescattered
electrons which manifests in a plateau as observed in
[12] and clearly seen in Fig. 2d. In analogy to the high-
harmonic cutoff law classical Newtonian mechanics pre-
dicts an extension of this plateau between 2Up and 10Up

[36]. Clearly, the simulator shows all expected features,
both from tunneling and rescattering. However, the more
pronounced structures in the plateaus of the 1D systems
(simulator and 1D hydrogen atom) reveal effects of the
dimensionality. Such effects can be studied with the sim-
ulator even experimentally by varying the anisotropy of
the trap – a task impossible in strong-field experiments.

Rescattering is the origin of nonsequential double
ionization, high-energy above-threshold ionization, and
high-order harmonic generation. A controlled recollision,
see Fig. 1, of an escaped atom on residual bound atoms
prepared in a specific configuration with variable inter-
action strength can reveal insights into correlated rec-
ollision dynamics relevant, e. g., for high harmonics [37]
and non-sequential double ionization [38]. On the other
hand, inspired by the experiments on imaging molecu-
lar orbitals using laser-induced electron tunneling and
diffraction [39] controlled rescattering collisions can serve
for the imaging of ultracold many-body wavefunctions.

Strong-field approximation. A perfect agreement of a
quantum simulator and its simulated system is usually
only possible within approximations. A prominent exam-
ple is the ultracold-atom simulation of solid-state systems
in the spirit of the Bose-Hubbard model where the long-
range Coulomb interaction is approximated by a short-
range interaction. At least as widespread as the Hub-
bard model in condensed-matter physics is the strong-
field approximation (SFA) [29, 40, 41] in laser physics.
Here, bound states of the potential other than the ini-
tial state are neglected and the final continuum state of
the electron is described by a Volkov state, i.e. the so-
lution of a free electron in a laser field. This neglect of
the Coulomb interaction of the electron with the remain-

ing ion in the SFA parallels the tight-binding approxi-
mation in the Hubbard model and makes the SFA an ef-
fective short-range approximation. Therefore, agreement
between the attoscience simulator and the strong-field
system is expected at least within the SFA. Hence, the
simulator is a valuable tool to gain insight into the gauge
ambiguity of the SFA [42] (and references therein), to an-
alyze the assumptions of the SFA (by changing, e. g., the
number of bound states or the extent of the trap poten-
tial), and hence to uniquely judge on the applicability of
the SFA for many-body strong-field systems. Note, how-
ever, that the quantum simulator goes clearly beyond the
SFA as the latter does, e. g., not include rescattering as
can be seen in Figs. 2c and d. On the other hand, the
direct electrons and atoms (up to 2Up) in the quasistatic
regime in Figs. 2c and d are qualitatively well described
by the SFA. Similarly, the SFA reproduces the multi-peak
structure in the multiphoton regime, see Figs. 2a and b.

Interestingly, the SFA in velocity gauge allows to ob-
tain the momentum density of the initial state since the
energy-resolved yield is a product of the momentum-
space density |ψ̃(p)|2 and a prefactor |g(p)|2 [31]. For a
given momentum p, the prefactor g(p) depends solely on
the vector potential A(t) and the binding energy. In con-
trast to the corresponding strong-field experiments, these
parameters are known precisely for the quantum simula-
tor because of the exactly known pulse shape. Note, this
imaging technique relies on the agreement of the SFA
in velocity gauge with the full TDSE results, which is
fulfilled as seen in Figs. 2a and c despite the fact that
the simulator mapping (5) is bound to the length gauge.
Thus, this imaging technique indeed allows to image the
momentum density of an ultracold gas in a trap.

Conclusion. A proposal for a quantum simulator for
attosecond physics is presented based on ultracold atoms
in an optical trapping potential. The simulator idea
connects the very contrary physics of ultracold, trapped
atomic gases and the one of atoms, ions, and molecules in
ultra-intense, ultra-short laser fields. The constraints one
faces in strong-field experiments, such as the limitation to
a specific molecular geometry, a fixed number of electrons
per element or molecule, fixed interaction strengths, and
limited pulse shapes are overcome in the simulator sys-
tem. Moreover, the simulation can even reach parame-
ter regions which are beyond those nowadays realizable
in strong-field experiments, including, e.g., exotic pulse
shapes and effective pulse durations corresponding to the
sub-attosecond regime. In fact, the here proposed at-
tosecond science in slow motion may shed light onto the
ongoing debate on ”tunneling times” [37, 43–45]. The nu-
merical analysis of the here proposed concrete experimen-
tal realization of the quantum simulator with realistic ex-
perimental parameters demonstrates that it reproduces
in its simplest configuration the ionization characteristics
of a hydrogen atom. While this simple demonstrating ex-
ample can be evaluated computationally, the simulator
paves the way to systematically investigate many-body
systems where the full numerical treatment is beyond the
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reach of any classical computer. On the other hand, the
physics of ultracold atoms may strongly profit from the
quantum simulator by adopting concepts developed in
attosecond science. Both control and imaging techniques
resulting from the time-dependent Hamiltonian can be
directly transferred to ultracold gases.
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