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A main distinguishing feature of non-Hermitian quantum mechanics is the presence of exceptional points

(EPs). They correspond to the coalescence of two energy levels and their respective eigenvectors. Here, we use

the Lipkin-Meshkov-Glick (LMG) model as a testbed to explore the strong connection between EPs and the on-

set of excited state quantum phase transitions (ESQPTs). We show that for finite systems, the exact degeneracies

(EPs) obtained with the non-Hermitian LMG Hamiltonian continued into the complex plane are directly linked

with the avoided crossings that characterize the ESQPTs for the real (physical) LMG Hamiltonian. The values

of the complex control parameter α that lead to the EPs approach the real axis as the system size N → ∞. This

happens for both, the EPs that are close to the separatrix that marks the ESQPT and also for those that are far

away, although in the latter case, the convergence rate is smaller. With the method of Padé approximants, we

can extract the critical value of α.

Introduction.– A quantum phase transition (QPT) corre-

sponds to the vanishing of the gap between the ground state

and the first excited state in the thermodynamic limit [1, 2].

Excited state quantum phase transitions (ESQPTs) are gener-

alizations of QPTs to the excited levels [3, 4]. They emerge

when the QPT is accompanied by the bunching of the eigen-

values around the ground state. This divergence in the density

states at the lowest energy moves to higher energies as the

control parameter increases above the QPT critical point. The

energy value where the density of states peaks marks the point

of the ESQPT.

ESQPTs have been analyzed in various theoretical mod-

els [4–21] and have also been observed experimentally [22–

27]. They have been linked with the bifurcation phe-

nomenon [20] and with the exceedingly slow evolution of ini-

tial states with energy close to the ESQPT critical point [18–

20]. Equivalently to what one encounters in QPTs, the non-

analycities associated with ESQPTs occur in the thermody-

namic limit. When dealing with finite systems, signatures

of these transitions are usually inferred from scaling analy-

sis. There are, however, studies based on new microcanonical

distributions that claim that QPTs can be predicted without

considerations of thermodynamic limits [28, 29]. A parallel

between QPTs and the zeroes of the partition function in a

complex-extended temperature plane of systems of arbitrary

sizes has also been established [30].

In this work, we show that the nonanalycities associated

with QPTs and ESQPTs can be found in finite systems when

the control parameter of the Hamiltonian is continued into the
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complex plane. The Hamiltonian that we study,

H(α,N) = αHI(N) + (1− α)HII(N), (1)

is a linear combination of two noncommuting operators,

[HI , HII ] 6= 0, where α is the control parameter and N is

the system size. As the control parameter varies from α = 1
to α = 0 the spectrum of the full Hamiltonian is transformed

from the spectrum of HI to the spectrum of HII . The tran-

sition of the ground and excited states from one symmetry to

a mixture of different symmetry solutions is continuous in α,

yet quite sharp. It is only in the limit ofN → ∞ that a point of

nonanalyticity appears for the ground state at a critical value

αc and for the excited states at values of αESQPT < αc. In

finite systems, the sharp transition from one type of symme-

try adapted solution to another one is associated with avoided

crossings. We show that these avoided crossings are con-

nected with the exceptional points (EPs) of the non-Hermitian

form of H(α,N), where α is complex.

The association between EPs and avoided crossings was

first presented in [31]. Connections have also been made be-

tween EPs and QPTs [30, 32–34] and between EPs and ES-

QPTs [35]. Here, we further elaborate the studies of ESQPTs

from the perspective of non-Hermitian Hamiltonians taking

into account both EPs close and also far apart from the real

axis.

The EPs that we calculate correspond to the exact degen-

eracies of the non-Hermitian Hamiltonian found for specific

values αEP of the complex control parameter. More precisely,

they correspond to branch point singularities of the eigenval-

ues and eigenvectors [36–40]. We show that as N → ∞, the

complex αEP approach and accumulate at the real axis, there-

fore coinciding with the QPT and ESQPT critical values of the

real (physical) Hamiltonian. We notice that all EPs approach

the critical values, those close to the separatrix that marks the

ESQPT and also those far away. However, the distant ones
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converge to those values more slowly. Using the Padé extrap-

olation technique, we demonstrate that these critical values

can be derived from the EPs obtained with finite system sizes.

Model and separatrix.– ESQPTs have been extensively

studied in Hamiltonians with a U(n + 1) algebraic struc-

ture given by HU(n+1) = αHU(n) − (1 − α)N−1HSO(n+1).

They are composed of two limiting dynamical symmetries, the

U(n) and the SO(n + 1). In the bosonic form, these Hamil-

tonians represent limits of the vibron model [41–44], which

is used to characterize the vibrational spectra of molecules.

The U(n) dynamical symmetry (α = 1) is described by a

one-body operator and the SO(n + 1) dynamical symmetry

(α = 0) by a two-body operator, so the latter needs to be

rescaled by the system size N .

These U(n+1) Hamiltonians show a second-order ground

state QPT at αc = 0.8 and ESQPTs for αESQPT < αc. Our

analysis is illustrated for the U(2) Hamiltonian, which repre-

sents one of the spin versions of the LMG model [8, 45]. The

Hamiltonian is written as [13, 20],

HU(2) = α

(

N

2
+ Sz

)

−
4(1− α)

N
S2
x, (2)

where Sz =
∑N

i=1 S
z
i is the total spin in the z-direction and

Sx =
∑N

i=1 S
x
i is the total spin in the x-direction. The first

term favors the alignment of the spins in the z direction and

the second term in the x direction. Hamiltonian HU(2) con-

serves parity, so the matrix can be separated in two blocks.

In our studies, however, we consider the whole Hamiltonian

matrix, instead of just one of the two blocks.

For α = 1, all eigenvalues of HU(2) are positive. For

α = 0, the eigenvalues are negative and the eigenstates form

pairs of degenerate states, one with positive and the other with

negative total magnetization in x. In Fig. 1 (a), we show the

eigenvalues versus the control parameter for N = 50. The

ground state QPT occurs at αc = 0.8 forEc ≃ 0. For α < αc,

the lowest energies become smaller than zero, while the states

with energy close to Ec cluster together. The bunching of the

energy levels at Ec characterizes the ESQPT.

The solid (nearly) horizontal line in Figs. 1 (a) and (b) is

the separatrix that marks the ESQPT. It can be obtained from

a semiclassical analysis. The normalized energy difference

betweenEc and the ground state eigenvalueEGS is the critical

excitation energy of the ESQPT. Its equation is given by [4, 5,

10]

EESQPT(α) =
Ec − EGS

N
=

[1− 5(1− α)]2

16(1− α)
. (3)

In Fig. 1, the line for the separatrix corresponds to the value

of Ec obtained using EESQPT from Eq. (3) and the numerical

data for EGS.

In Fig. 1 (b), we considerN = 100 and zoom in the data for

0.7 ≤ α ≤ 0.8. This figure makes clear the effect of the phase

transition on the structure of the eigenstates. The eigenstates

with energyE < Ec are almost doubly degenerate. These are

the states with structures closer to the SO(2) symmetry. The

degeneracy is lifted for E > Ec, where the eigenstates have

structure closer to the U(1) symmetry. Quantities such as the
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FIG. 1: (Color online) Energy levels vs α for N = 50 (a) and N =
100 (b). Eigenstates of one parity are indicated with black solid lines

and from the other with dashed red lines. The horizontal green line is

the separatrix, it indicates Ec obtained from Eq. (3). Arbitrary units.

participation ratio [18, 20] and the fidelity [19] have been used

to capture the abrupt changes in the structures of eigenstates

caused by ESQPTs.

Non-Hermitian Formalism and EP.– In the vicinity of a crit-

ical point of a finite system described by a Hermitian Hamilto-

nian H(α,N), the crossings of the energy levels are avoided.

In contrast, the complex eigenvalues of the corresponding

non-Hermitian Hamiltonian, obtained by continuing the con-

trol parameter α into the complex plane, can cross. This de-

generacy, accompanied by the coalescence of the correspon-

dent eigenvectors, is the EP. It has been proven in [36] that

for a general Hamiltonian such as that in Eq. (1), there is al-

ways an EP for some complex α, provided the commutator

[HI , HII ] 6= 0.

Sufficiently close to αEP(N) the energy spectrum of the

non-Hermitian Hamiltonian contains two almost degenerate

values given by

E±(α,N) ∼= EEP(αEP(N))± C(N)
√

α− αEP(N), (4)

where C(N) is a function of the system size. The two eigen-

vectors corresponding to these energies are

|ψ±(α,N)〉 ∼= |ψEP(N)〉 ± |χ(N)〉
√

α− αEP(N). (5)

The orthogonality condition, which can be extended to sym-

metric non-Hermitian Hamiltonians, implies that the inner

product 〈ψ∗
∓(N)|ψ±(N)〉 = 0. At the critical complex value

αEP of the control parameter, the degenerate states become

self-orthogonal, that is [37]

|ψ+(αEP, N)〉 = |ψ−(αEP, N)〉 = |ψEP(N)〉, (6)

〈ψ∗
EP(N)|ψEP(N)〉 = 0.

Because of the self-orthogonality at αEP, the quantum fluctu-

ations at this point become infinitely large if associated with

the expectation value of ∂H(α,N)/∂α. This gives further

support to associating QPT and ESQPT with EPs.

We find various EPs for different complex values αEP(N)
of the control parameter of the LMG Hamiltonian. Our re-

sults below substantiate the strong relationship between criti-

cal points and the appearance of EPs.

In Fig. 2, we use circles to represent the EPs of the com-

plex LMG Hamiltonian, which is obtained from Eq. (2) by

continuing α in the complex plane. The real parts of the ener-

giesEEP are shown in the top panel and the imaginary parts in
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the bottom panel. The EPs with the lowest imaginary part of

αEP are indicated with a light (red) color. They have Im(αEP)
almost constant and close to 0.0115 for N = 100. This ar-

ray of EPs also has the lowest Im(EEP). For higher Im(EEP),
we find other rows of EPs also with approximately constant

values of Im(αEP).

FIG. 2: Exceptional points (circles) of the complex dilated LMG

Hamiltonian (2) for N = 100. Top panel: the real part of EEP, and

bottom panel: the imaginary part of EEP. The EPs with the lowest

Im(αEP) are indicated with a light (red) color. They have almost real

valued energies and Im(αEP) ∼ 0.0115; the latter is shown with a

solid line on the α plane.

ESQPT vs. EP.– To unveil the connection between ESQPTs

and EPs, we now compare the results from the Hermitian and

non-Hermitian approaches. In Fig. 3, the thin lines give the

real part of the eigenvalues of the complex LMG Hamiltonian

as a function of Re(α), the circles are the EPs as in Fig. 2,

and the thick nearly horizontal line is the separatrix. In each

panel, Re(α) varies from 0.7 to 0.8, while Im(α) is held at a

constant value.

In Fig. 3 (a), Im(α) = 0, so the plot is the same as in

Fig. 1 (b), but now with the EPs added to it. [Figure 3 (a) also

contains dotted and dashed lines, which are explained after

Fig. 4.] This figure already suggests a strong link between the

EPs and the ESQPT. As one sees, forE < Ec, where we have

pairs of degenerate states, there are no EPs. As the energies

increase, they first appear very close to the point where the

degeneracy is lifted and in the vicinity of the separatrix.

To better support this relationship, we increase the value of

Im(α) from Fig. 3 (a) to (d) up to Im(α) = 0.0115. The latter

is the value of the sequence of EPs with the lowest Im(αEP), as

shown in Fig. 2. By increasing Im(α), the values of Re(E) of

the non-Hermitian Hamiltonian change, while the EPs and the

separatrix naturally remain the same. The thin solid lines are

continuously deformed from Fig. 3 (a) to (d) until the avoided

crossings become true crossings. They happen right at the

EPs with the lowest Re(EEP) [compare Fig. 3 (d) with the

top panel in Fig. 2]. These EPs are located on the bifurcat-

ing branches of the spectrum. Lines intersecting at the EPs

exhibit cusps, which is consistent with Eq. (4). These obser-

vations indicate that the ESQPT in Fig. 1 is inherently caused

by the non-Hermitian crossings (cusps). We can thus interpret

ESQPTs as phenomena arising due to the presence of EPs.
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FIG. 3: Real part of the eigenvalues of the complex dilated LMG

Hamiltonian (2) vs. the real part of the complex α (thin solid lines)

for N = 100 and Im(α) = 0 (a), 0.0900 (b), 0.0100 (c), 0.0115
(d), 0.0230 (e), 0.0315 (f). Circles are the EPs, they correspond

to Re(EEP) versus Re(αEP). The thick nearly horizontal line is the

separatrix. In (a), we also show the extrapolations of the vertical lines

of EPs (dashed lines). They touch the curves of real eigenvalues.

The dotted (black) line is made of the intersection points between

extrapolated EPs and real eigenvalues.

In Fig. 3 (e), we choose Im(α) = 0.0230, which is close

to the value for the second row of EPs (cf. Fig. 2). There are

now two thin (red) nearly horizontal lines. The intersections

caused by the one that is lowest in energy do not correspond

to EPs, because they display degeneracies only in Re(E) not

in Im(E). This is evident in plots of Im(E) vs. Re(α) (not

shown). It is the second nearly horizontal line that leads to

true crossings (cusps). The scenario is analogous to Fig. 3

(d), but the crossings now coincide with the locations of the

second row of EPs.

As Im(α) further increases, the crossings happen for se-

quences of EPs with higher and higher Re(E). An example is

provided in Fig. 3 (f), where Im(α) = 0.0315. This value is

close to the Im(αEP) for the third row of EPs. There are now

three nearly horizontal lines. It is the third one in increas-

ing energy that corresponds to crossings in both Re(E) and

Im(E), and is therefore linked with the EPs.

We show next that as N increases, one by one, these se-

quences of EPs approach and accumulate on the real axis.

Close to the critical points, there is a high density of EPs.

Thermodynamic limit.– For a given system size, we have

a discrete collection of EPs. As the system size increases,

the number of EPs increases and they approach the separatrix

(which in turn approaches zero, Ec/N → 0). This is illus-



4

trated in Figs. 4 (a) and (b) for the EPs with the lowest val-

ues of Re(EEP) and Im(EEP). As N increases, Im(EEP)/N
and Im(αEP) go to zero [the same occurs for Re(EEP)/N
(not shown)] . In the thermodynamic limit, Im(αEP) → 0,

Im(EEP)/N → 0, Re(EEP)/N → Ec/N , and Re(αEP) co-

incides with αESQPT.

In Figs. 4 (c) and (d), we compare the EPs with the low-

est (filled symbols) and the second lowest (empty symbols)

energies for N = 200 and 250. The second lowest EPs also

approach the separatrix as the system size increases, but at a

smaller convergence rate than the lowest EPs. This pattern

propagates to higher energies.
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FIG. 4: EPs with the lowest (a,b) and both the lowest and the second

lowest values of Re(EEP) (c,d) for different N ’s. Extrapolation to-

wards N → ∞ carried out with the method of Padé approximants

(e). In (a) and (b): N = 100 (circles), N = 150 (squares), N = 200
(up triangles), N = 250 (down triangles). In (c) and (d): the lowest

EPs (filled symbols) and the second lowest EPs (empty symbols) for

N = 200 (up triangles) and N = 250 (down triangles). In (e): the

circles in each line correspond to 22 system sizes between N = 20
and N = 250. Each line is a specific pair of states (j1, j2) forming

an EP, from bottom to top: (0, 2), (1, 3), (1, 4), (1, 5), (1, 6). The

solid lines are obtained via the Padé method, leading to the extrapo-

lated points at Im(αEP) → 0, where Re(αEP) → αc = 0.8.

In Fig. 4 (e), we select a specific pair (j1, j2) of eigen-

states that coalesce and study αEP(N, j1, j2) as a function

of the system size. For large N , αEP(N, j1, j2) changes al-

most continuously in the complex α-plane. Using the Padé

extrapolation method, we can obtain numerically the limit of

αEP(N, j1, j2) for 1/N → 0. This method avoids the calcu-

lation of high order derivatives of αEP with respect to 1/N ,

as needed in Taylor and similar expansions [46, 47]. The

limit for αEP(N → ∞, j1, j2) exists and equals the real value

αc = 0.8, as confirmed in Fig. 4 (e) for any of the chosen

pairs. The convergence is faster for the EPs of lower ener-

gies. This shows that the critical point for the QPT can be

obtained from non-Hermitian calculations considering finite

system sizes.

As for the critical points of the ESQPT, we verified that the

extrapolations of the vertical progressions of the EPs, indi-

cated with dashed lines in Fig. 3 (a), touch the curves of real

eigenvalues (the thin solid lines). This happens very close to

where these curves split. The (black) dotted line in Fig. 3 (a)

is made of the intersection points between the extrapolated

EPs and the real eigenvalues. This line is nearly parallel to the

separatrix and approaches it as the system size increases.

We detect the effects of EPs also in physical observables.

For the real Hermitian Hamiltonian of finite systems, the be-

havior of quantities such as the total magnetization in the z
and in the x direction changes abruptly, yet smoothly, close

to the QPT and ESQPT critical values of the control parame-

ter [20]. In the non-Hermitian approach, we find that by keep-

ing Im(α) fixed and varying Re(α), a sudden non-analytical

discontinuity in the values of those observables occur exactly

when we reach the associated EP. Contrary to the Hermitian

treatment, where non-analyticities occur only in the thermo-

dynamic limit, here they appear already for finite N . In fi-

nite system sizes, sharp non-analytical transitions associated

with eigenvalues and eigenvectors can happen only in non-

Hermitian quantum mechanics [37]. In the thermodynamic

limit, where the EPs fall into the real α-axis, the results from

the two approaches, Hermitian and non-Hermitian, coincide.

Conclusions. – Using a finite system described by the LMG

model with the control parameter α continued into the com-

plex plane, we showed that the EPs are linked with the avoided

crossings that characterize the ground state QPT and ESQPTs

obtained for the real (physical) LMG Hamiltonian. These EPs

approach the axis of real α in the thermodynamic limit. The

eigenvalues pertaining to such EPs indicate the position of the

separatrix that marks the ESQPT.

The approach presented here can be used for studying phase

transitions in systems other than the LMG model. It should be

of particular interest to models where the critical values are

unknown and difficult to accurately determine from Hermitian

methods. We expect to find EPs also in systems where the

ESQPT is not associated with a divergent density of states,

such as those in [48, 49], but this is a subject that deserves

further investigation.
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