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We present an experimental and theoretical study of type I, frequency-degenerate spontaneous
parametric downconversion (SPDC) with a Bessel-Gauss pump in which we include, both, paraxial
and non-paraxial pump beam configurations. We present measurements of the SPDC angular spec-
trum (AS), of the conditional angular spectrum (CAS) of signal-mode single photons as heralded by
the detection of an idler photon, and of the transverse wavevector signal-idler correlations (TWC).
We show that as the pump is made increasingly non-paraxial the AS acquires a non-concentric
double-cone structure, with the CAS shape depending on the azimuthal location of the heralding
detector, while the signal-idler wavevector correlation region splits into characteristic doublet stripes,
representing as yet unexplored non-trivial, non-local quantum correlations between the signal and
idler photons. Our work provides further understanding of SPDC with a particular class of struc-
tured pump beams, and we believe that the controlled presence of double wavevector correlations
represents an interesting new resource for photon-pair quantum state engineering.

PACS numbers: 42.50.-p, 42.50.Dv, 03.65.Ud

I. INTRODUCTION

The study and generation of spatially structured
beams has gained huge importance in a number of fields,
including micro-manipulation [1–3], as well as linear [4, 5]
and nonlinear [6–8] optics and microscopy [9]. Bessel-
Gauss beams are characterized by some particularly in-
teresting properties: i) they are propagation-invariant
[10], ii) they may exhibit optical vortices [11, 12] and non-
local correlations in orbital angular momentum (OAM)
[13, 14] , iii) they have self-healing attributes implying
that they may reconstruct following the presence of an
obstacle [15], and iv) they are turbulence-invariant [16].
It has been predicted [17, 18] and experimentally ob-
served [19–21] that the generation of photon pairs with
similar characteristics ‘inherited’ from the pump can be
achieved through the process of spontaneous parametric
down-conversion (SPDC) using as pump a Bessel-Gauss
beam. The resulting photons possess the properties i)
through iv) above, besides transverse wavevector quan-
tum correlations with an unusual topology that could
make them especially attractive for the implementation
of quantum protocols.

In this work we report a careful experimental study
of photon pairs generated through a type I SPDC pro-
cess employing a negative uniaxial nonlinear crystal with
a zeroth order Bessel-Gauss (BG) beam as pump. The
high quality of the pump beam was ascertained by mea-
suring its angular spectrum, which exhibits a high de-
gree of cylindrical symmetry and is well characterized
by the value of its mean transverse wavenumber κ⊥ and
corresponding width δκ⊥ (see below). The experimental

and theoretical study here reported assumes normal in-
cidence of the pump beam on the crystal with κ⊥ values,
both, within and outside of the paraxial regime. In the
latter case, birrefringence effects such as walkoff can be
observed, and new effects can also arise in the nonlinear
optics realm. The meticulous preparation of the pump
beam in our experiment allows the observation of a num-
ber of interesting properties of the photon pairs generated
in the SPDC process. In particular, we study the appear-
ance of a non-concentric double-cone emission structure
[19, 22], in contrast with the single cone which character-
izes SPDC sources based on a Bessel-Gauss pump with
a small κ⊥ value (κ⊥ ≤ δκ⊥ � ω/c), which includes
Gaussian-beam pumps in the limit κ⊥ → 0. Our study
shows that photon pairs can be emitted with an easily-
controllable azimuthal asymmetry that depends on the
value of κ⊥: the probability of detecting a photon pair
has the highest values within a well-defined region of the
transverse plane. This asymmetry, in the non-paraxial
regime for the pump, leads also to the generation of her-
alded photons described by superpositions of stationary
Bessel modes of different orders, as dependent on the az-
imuthal angle of detection [22]. Meanwhile, in the parax-
ial regime the spatial structure of the photon pairs is di-
rectly inherited from the pump beam as is known from
previous works [17–19, 22–25].

In this paper we report novel results for the correla-
tions in the x− x, x− y and y− y transverse wavevector
components of the photon pairs in both the paraxial and
non-paraxial regimes [26–28]. In the first regime a diago-
nal stripe in the space formed by ksa and kib, where a and
b can take the values x and y, correlates the wavevec-
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tors for the signal and idler photons. While the width of
this stripe is determined by the wavevector spread δκ⊥ ,
its length is determined by the crystal properties, and
in particular by its length. As the pump beam departs
from the paraxial regime, this stripe splits into charac-
teristic doublet stripes compatible with the double-cone
structure of the SPDC angular spectrum. That is, each
ksa value is strongly correlated with a pair of kib values
(with a = b). To the best of our knowledge, these double
correlations have not been studied before; they undoubt-
edly constitute a resource for the controlled generation
of photon pairs entangled in continuous variables with a
particularly non-trivial topology.

II. TYPE I SPDC WITH A BESSEL-GAUSS
PUMP

In general, the SPDC photon-pair properties have as
control parameters: i) the crystal characteristics includ-
ing dimensions, orientation of optic axes, and spatial vari-
ation of the nonlinear electric susceptibility, and ii) the
pump characteristics, in particular its spatial and tempo-
ral structure. In previous papers, we have studied type
I SPDC with a Bessel-Gauss pump beam from the the-
oretical point of view [22], and, for relatively low values
of κ⊥, also from the experimental point of view [19–21].
We note that in the literature, most SPDC work involves
the use of paraxial pump beams. In this paper we extend
our experimental study to also include: i) pump beams
outside of the paraxial regime, and ii) measurements of
the wavevector signal-idler correlations. Our analysis
relies on electromagnetic modes which fulfill Maxwell’s
equations strictly, so that it applies both within and out-
side of the paraxial regime. We will focus on spectrally-
degenerate SPDC–both photons are centered around the
same frequency–with non-collinear emission.

Consider a continuous, quasi-monochromatic, and co-
herent pump beam of amplitude αp and frequency ωp
that impinges on a wide (as compared to the pump trans-
verse dimensions) nonlinear crystal of length L, with its
main propagation direction parallel to the normal of the
crystal surfaces, defined as the Z-axis. The quantum
state of the electromagnetic field related to the SPDC
process at asymptotic times is given by

|Ψ〉 = |0;αp〉+
π

i~

∫
dωs αp

∫
d2ks⊥

∫
d2ki⊥NpNsNi χ

· F (ks
⊥, ω

s,ki
⊥, ω

p − ωs) |0;αkp ; 1ks ; 1ki〉 (1)

where Np,s,i represents the normalization factors associ-
ated with the pump (p), signal (s) and idler (i) modes,
the factor χ is the effective nonlinear electric susceptibil-
ity that depends on the particular crystal under consid-
eration, and F (ks

⊥, ω
s,ki
⊥, ω

p−ωs) is the joint amplitude
defined as

F (ks
⊥, ω

s,ki
⊥, ω

p − ωs) =

ψ(ks
⊥ + ki

⊥) sinc(L∆kz/2) exp(−i L∆kz/2), (2)

where ∆kz = kpz − ksz − kiz, and where signal (idler)
wavevectors are evaluated at frequency ωs (ωp−ωs). The
0 in the ket |0;αkp ; 1ks ; 1ki〉 denotes that the vacuum is
not explicitly written for all modes, αkp is the coherent
state of the pump beam, with wavector kp, and 1ks,i is a
single photon state in the signal and idler mode expressed
in wavevector space. The joint amplitude includes the in-
cident structure of the pump photons through its angular
spectrum ψ(kp

⊥). For a linearly-polarized zeroth order
BG beam, it corresponds to a Gaussian function of the
modulus of the transverse component of the wavevector
around a given value κ⊥ with a width δκ⊥ ,

ψ(kp
⊥) = e−(k

p
⊥−κ⊥)

2/2δ2κ⊥ . (3)

Note that this expression reduces for κ⊥ � δκ⊥ to the an-
gular spectrum of a Gaussian beam. We will work, how-
ever, in the regime κ⊥ � δκ⊥ which guarantees quasi
propagation-invariance and permits a close approxima-
tion to an ideal Bessel beam which can be realistically
implemented in the laboratory.

The angular spectrum ψ(kp
⊥), together with the L-

dependent longitudinal phasematching term, determines
the angular spectra of the idler and signal photons via
the strong phasematching condition ks

⊥ + ki
⊥ = kp

⊥, see
Eq. (2). We assume that the crystal is uniaxial, with its
optic axis specified by vector a. In the paraxial regime
the standard effective dispersion relation for the extraor-
dinary pump beam kEz (k⊥ ∼ 0) = neω/c can be assumed,
while outside of this regime the dispersion relation takes
the form

kEz (k⊥, ω) = −βa⊥ · k⊥ +
ω

c
ne

√
1− k2

⊥c
2

ω2
η, (4)

ne =

√
ε⊥ε‖

ε⊥ + ∆εa2z
, (5)

β =
∆εaz

ε⊥ + ∆εa2z
, (6)

η =
1

ε⊥ + ∆εa2z
, (7)

where ∆ε = ε‖−ε⊥ is the difference between the ordinary
ε⊥ and extraordinary ε‖ linear permittivities. These per-
mittivities are frequency-dependent so that the ordinary
refractive index no =

√
ε⊥ , and the terms ne, β, and

η, that determine the dispersion relation for extraordi-
nary beams are also frequency-dependent; for quasi plane
waves with a polarization along the crystal axis, ne can be
considered as the extraordinary refractive index. Notice
that the exact expression, Eq. (4), is anisotropic even for
normal incidence and a linearly polarized pump beam.
In fact, the parameter β is a measure of the so-called
Poynting vector walkoff, i. e., the deviation of the energy
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flux as given by the Poynting vector with respect to the
main direction of propagation of a paraxial beam within
the birefringent crystal.

A. Angular spectrum of SPDC from a
Bessel-Gauss pump beam.

In general, from the joint amplitude F , the angular
spectrum (AS) of the photon pairs can be calculated as

Rs(k
s
⊥) = |gαp|2

∫
dωs ·

∫
d2ki⊥|F (ks

⊥, ω
s,ki
⊥ω

p−ωs)|2,

(8)

g = πNpNsNiχ/~.

It has been shown recently [22] that approximating
the function sinc(x) in the joint amplitude by a Gaus-
sian function exp[−(γx)2], with γ = 0.4393, and taking
the limit δk⊥ → 0 with the restriction of a finite pump
intensity, yields the following expression for the AS, valid
for frequency-degenerate SPDC (ωs = ωi = ωp/2) with a
BG pump beam

Rs(k
s
x, k

s
y) ≈

e
−σ−2

AS

(
(k
s

⊥)
2−r2AS

)2 ∫ 2π

0

e−
(γL)2

2 (|d|κ⊥ sinϕp−κ̃)2dϕp, (9)

r2AS = (1/2) (noω
p/c)

2
(1− (ne/no)) , (10)

σ−2AS = 2(γLc/noω
p)2, (11)

κ̃ = (ωp/c)(ne − no) + (2c/noω
p)(ks⊥)2, (12)

d = βa⊥ + (2c/noω
p)ks⊥. (13)

Note that for a negative uniaxial crystal (ne < no) and
for a paraxial pump beam, i. e. κ⊥ � (ωp/c)|ne − no|,
(which includes Gaussian-beam pumps [31] with κ⊥ = 0
as a special case), the AS is concentrated nearby a cone
given by the condition

ks⊥ = (noω
p/
√

2c)
√

1− ne/no = rAS.

Note also that the Gaussian factor multiplying the in-
tegral in Eq. (9) is a function of (ks⊥)2, so that σAS has
units of the inverse of length squared, and the cone width
is given approximately by ∆AS = σAS/rAS. It becomes
clear that, in this regime, the cone aperture in wavevec-
tor space, rAS , depends only on the refractive indices
evaluated at the pump and SPDC frequencies, no(ωp/2)
and ne(ω

p), while the width σAS depends also on these
indices but is also inversely proportional to the crystal
length.

As κ⊥ increases, the restriction ks⊥ ≈ rAS is relaxed:
the SPDC spatial structure is the result of the super-
position of the contributions to the two-photon state
from individual pump wavevectors that arrive symmet-
rically on the crystal front surface, but are not dis-
tributed symmetrically with respect to the optic axis.
This anisotropy yields structures that are not centered
at the origin, but are displaced along the direction of
the optic axis. This displacement would be absent if κ⊥
were zero, e. g., for a Gaussian-beam pump. The AS
of a BG beam which is outside of the paraxial regime
involves two non-homogenous (i.e. with an azimuthally
varying width) and non-concentric cones with unequal
radii [22]. For a negative birefringent crystal and for
|noω

pβa⊥/2c| ≈ rAS � κ⊥, the two cones have a quasi-
circular transverse structure with larger (smaller) radius
r+ (r−), and center defined by the transverse vector
A+â⊥ (A−â⊥), with

r± ≈ rAS −
κ⊥
2

(
1± noω

pβ|a⊥|
2crAS

∓ κ⊥
2rAS

)
, (14)

A± ≈∓
κ⊥
2

(
1 +

noω
pβ|a⊥|

2crAS
− κ⊥

2rAS

)
. (15)

The two emission cones are nearly tangent to each
other along the direction defined by the wavevector ∼
(−rAS + κ⊥/2)â⊥ + kz êz. The double conical structure
of the AS reflects both the asymmetric distribution of
the wavevectors in the incoming Bessel pump beam with
respect to the optic axis and effects proportional to the
β term arising in the extraordinary-ray dispersion rela-
tion. Below, in Fig. 1, we show a schematic of the SPDC
source with BG pump used in our experiments.

As the crystal length is increased, the regions where
the AS has significant values become smaller and the
anisotropy associated with the extraordinary pump beam
dispersion relation becomes more evident. It is expected
that a similar structure of the AS would be exhibited if
other propagation-invariant beams were to be used as
pump beams, in particular, higher-order Bessel-Gauss
beams.

B. Conditional angular spectrum (CAS) and
transverse wavevector correlation (TWC) functions.

The conditional angular spectrum Rc represents the
angular spectrum of the signal photon conditioned on
the detection of an idler photon with wavevector ki

0. For
zeroth order BG pump beams, Rc may be expressed as

Rc(k
s
⊥;ki

⊥0;ωs, ωi
0) =

|gαp|2S (ks
⊥,k

i
⊥0) ·L (ks

⊥,k
i
⊥0;ωs, ωi

0) , (16)
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with

ωs + ωi
0 = ωp (17)

S (ks
⊥,k

i
⊥0) = |ψ(ks

⊥ + ki
⊥)|2

= e−(|k
s
⊥+ki

⊥0|
2−κ⊥)2/δ2κ⊥ (18)

L (ks
⊥,k

i
⊥0;ωs, ωi

0) = sinc2(L∆kz/2). (19)

Here we have assumed a monochromatic pump beam and
an ideal resolution in the characterization of the idler and
signal wavevectors (corresponding in a practical experi-
mental situation to filtering the SPDC photons with a
narrow bandpass filter so as to retain only the degener-
ate photon pairs with frequency ωp/2).

The signal-idler transverse wavevector correlations, or
TWC, are evaluated in terms of the probability of detect-
ing a pair of photons characterized by wavevector com-
ponents ks

a and ki
b while maintaining the complementary

components ks
c and ki

d at fixed values, where a, b, c, d= x,
y, with c 6= a and d 6= b. For instance, the x − x TWC
function is given by Rc(k

s
x, k

s
y0; kix, k

i
y0;ωs

0, ω
i
0). As we will

study below, the topology of photon-pair wavevector cor-
relations for a non-paraxial BG pump beam has an un-
usual double-correlation structure which may lead to in-
teresting quantum non-local effects.

The structure of Rc shows that the wavevector corre-
lation functions for BG beams are expected to be max-
imized in regions of the ks,i

⊥ space where the following
phasematching conditions are fulfilled

|ks
⊥ + ki

⊥| ≈ κ⊥ (20)

∆kz ≈ 0. (21)

The equalities in Eq. (20) and Eq. (21) are approached
for smaller values of δκ⊥ and larger values of the crystal
length L, respectively. Note that the condition given
by Eq. (20) for Gaussian beams, that is for κ⊥ = 0, is
equivalent to ks

⊥ ≈ −ki
⊥.

1. Transverse phasematching constraints

In what follows, we study the constraints on the signal
and idler transverse wavevectors derived from Eq. (20),
in the case of interest for which κ⊥ � δκ⊥ . There are,
in principle, four different types of transverse wavevec-
tor correlation measurements: x − x, y − y, x − y, and
y − x. The symmetry of the joint wavevector amplitude
expected for a type-I, frequency-degenerate photon pair
source implies that the x − y and y − x measurements
yield the same information. It results from Eq. (20) that

(a) The conditional angular spectrum is maximized on
a contour given by a circumference of radius κ⊥
centered around −ki

⊥0.

(b) The x − y TWC function is also maximized on
a contour given by a circumference of radius κ⊥
centered around (−kix0,−ksy0). This circumference
may yield non-local Bessel-like photons similar to
those reported in Ref. [29].

(c) The x−x TWC function is maximized on contours
defined by two lines with a slope of negative unity,

ksx = −kix ±
√
κ2⊥ − (ksy0 + kiy0)2, whenever κ⊥ ≥

|ksy0 + kiy0|.

(d) The y−y TWC function, analogously to (c), is max-
imized on contours defined by two lines with slope

of negative unity, ksy = −kiy ±
√
κ2⊥ − (ksx0 + kix0)2,

whenever κ⊥ ≥ |ksx0 + kix0|.

It is important to point out that the structure of the
doublet stripes appearing in the x − x and y − y TWC
functions can be controlled by the source parameters.
In particular, the separation of the stripes in transverse
wavevector space is determined by κ⊥ as is clear from the
above discussion. Likewise, as can be verified through nu-
merical simulations, the width of the stripes is controlled
in part by the BG cone width parameter δκ⊥ , and their
length by the crystal thickness L.

2. Longitudinal phasematching constraints

In the case of frequency-degenerate type I SPDC, the
approximate conservation of the z wavevector compo-
nent, Eq. (21), can be written as

∆kz ≈ κ̃− d · (ks
⊥ + ki

⊥) ≈ 0. (22)

This expression results from the first-order Taylor
expansion of the extraordinary-ray dispersion relation,
Eq. (4), in κ⊥c/ω

p and the strong phasematching con-
dition for the transverse wavevectors. The width of the
distribution associated with this phasematching condi-
tion decreases linearly with the crystal length. A direct
calculation shows that the fulfilment of Eqs. (20) and (22)
implies the following condition∣∣∣ks

⊥ −
noω

p

2c
βa⊥

∣∣∣2 +
∣∣∣ki
⊥ −

noω
p

2c
βa⊥

∣∣∣2 ≈
2r2AS + κ2⊥ +

(noωpβ|a⊥|√
2c

)2
. (23)

In the paraxial limit, the terms proportional to β can
be neglected and the signal photon has the structure of a
zeroth order BG photon. Outside of the paraxial limit the
CAS function becomes anisotropic: there is a dependence
on ks,i

⊥ · a⊥ arising from the modulii |ks,i
⊥ −

noω
p

2c βa⊥|2.

Taking a given value ki
⊥0 for the idler transverse wavevec-

tor we find that the CAS is maximal on a contour defined
by the following condition∣∣∣ks

⊥ −
noω

p

2c
βa⊥

∣∣∣2 ≈ 2r2AS + κ2⊥

+
(noωpβ|a⊥|√

2c

)2
−
∣∣∣ki
⊥0 −

noω
p

2c
βa⊥

∣∣∣2 (24)
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Similarly, taking fixed values for ksy0 and kix0, the x−y
TWC functions are maximal around(

ksx −
noω

p

2c
βax

)2
+
(
kiy −

noω
p

2c
βay

)2
≈ 2r2AS + κ2⊥

+
(noωpβ|a⊥|√

2c

)2
−
(
ksy0−

noω
p

2c
βay

)2
+
(
kix0−

noω
p

2c
βax

)2
.

(25)
For studying the structure of the y−y and x−x TWC

functions, it results more convenient to write the ∆kz = 0
condition as

ks
⊥ · ki

⊥ + r2AS +
noω

pβ

2c
a⊥ · (ks

⊥ + ki
⊥) ≈ 0, (26)

so that we expect the TWC functions to be maximal on
contours given by hyperbolae, defined by

ksyk
i
y ≈ −r2AS

−ksx0kix0−
noω

pβ

2c

(
ax(ksx0+kix0)∓ay

√
κ2⊥ − (ksx0 + kix0)2

)
.

(27)
In Eq. 27 the sign of the last term is positive (nega-

tive) for ksy + kiy negative (positive). As a consequence,
we expect that the maximal y − y correlations lie on the
intersection of the pair of lines mentioned in the previous
subsection which result from the transverse phasematch-
ing constraint, and the hyperbolae defined by Eq. (27),
which result from the longitudinal phasematching con-
straint. Note that for visualizing this intersection it is
helpful to consider the structure of the angular spec-
trum, since it describes the region where the idler and
signal photons can be emitted. For instance, the regions
nearby the circumferences described in items (a) and (b),
and the parallel lines described in (c) and (d) should over-
lap with the regions nearby the cones where the angular
spectrum is maximal.

In order to make the asymmetry in the TWC func-
tions, which arises from the direction of the optic axis,
even more evident let us give the explicit expressions of
the ksyk

i
y and ksxk

i
x phasematching conditions when a⊥ is

parallel to the x axis:

ksyk
i
y ≈ −r2AS − ksx0kix0 − a⊥

noω
pβ

2c
(ksx0 + kix0)

ksxk
i
x ≈ −r2AS − ksy0kiy0 ∓ a⊥

noω
pβ

2c

√
κ2⊥ − (ksy0 + kiy0)2.

Note that the analysis in this and in the previous sub-
sections is based on the fulfilment of perfect transverse
and longitudinal phasematching conditions, yielding con-
tours (with zero thickness) on the transverse wavevector
spaces. Under realistic experimental conditions, the full
conditional angular spectrum and transverse wavevector
correlation functions exhibit a width which depends on
the crystal length L and BG cone pump width δκ⊥ . The
expected full CAS and TWC functions, including these
widths, may be obtained theoretically by direct plotting
of |F (ks

⊥, ω
s,ki
⊥, ω

p − ωs)|2 (see for example, Fig. 8 be-
low), and may likewise be appreciated from our experi-
mental measurements (see below).

III. EXPERIMENT

Our experiment exploits a spontaneous parametric
downconversion photon-pair source based on a β-barium-
borate (BBO) crystal in a type-I, frequency-degenerate
phasematching configuration. We have used as pump
zeroth order BG beams and report two different, con-
trasting values of the κ⊥ parameter which defines the
transverse extent of the pump angular spectrum.

The pump beam preparation was accomplished in
three steps (see Fig. 1). The beam from a diode laser
(DL, λp = 406.7nm with ∼ 70mW power) was first trans-
mitted through a telescope (T1) built from lenses (L1 and
L2) with focal lengths f1 = 5cm and f2 = 50cm, so as
to magnify the beam by a factor of 10×. Second, the
magnified beam was transmitted through an axicon (A),
placed at a distance of 10cm from lens L2, with apex
angle of either 1◦ or 2◦; the axicons were manufactured
by Altechna. Third, the beam was propagated through
a second telescope (T2) built from lenses (L3 and L4)
with focal lengths f3 = 10cm, and either f4 = 15cm
or f4 = 30cm. Note that lens L3 is placed one focal
length distance f3 from a specific plane separated by ei-
ther ∼ 24cm or ∼ 4.5cm from the axicon apex on which a
high-quality Bessel-Gauss beam could be observed with
a CCD camera (DCU224M from Thorlabs). The pur-
pose of the second telescope is to magnify the resulting
Bessel-Gauss beam so as to define the value of the κ⊥
parameter.

We have selected two different pump configurations, as
stated above, each with different values of the κ⊥ param-
eter. These two configurations are obtained, as indicated
in Table 1, by appropriate combinations of two differ-
ent choices of axicon, and two different choices of focal
lengths in telescope T2. The two parameters which char-
acterize the pump beam, i. e. the BG cone radius κ⊥
and the Gaussian transverse envelope width δκ⊥ , are de-
termined as best-fit parameters from a measurement of
the angular spectrum for each of the two configurations.
Note that while the resulting values of δκ⊥ are similar in
the two configurations, the parameter κ⊥ exhibits a large
contrast, with κ⊥ = 0.0195µm−1 for configuration 1 and
κ⊥ = 0.147µm−1 for configuration 2. In the first row of
Fig. 2, we show the measured pump angular spectrum for
these two configurations along with an intermediate con-
figuration with κ⊥ = 0.045µm−1 (with increasing value
of κ⊥ from left to right).

We have used a BBO crystal (from Castech) with
length L = 1mm and phasematching angle θpm = 29.3◦,
in order to produce frequency-degenerate, non-collinear
SPDC photon pairs centered at 813.7nm. We have used
two filters (F1 and F2) following the crystal, see Fig. 1:
a longpass edge filter (LP02-488RS-25 from Semrock)
which transmits wavelengths λ > 488nm in order to sup-
press the pump, and a bandpass filter (FBH810-10 from
Thorlabs) centered at 810nm with a bandwidth of 10nm
so as to restrict the bandwidth of the photon pairs.

The signal and idler photons are transmitted through
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configuration κ⊥ [µm−1] δκ⊥ [µm−1] apex [◦] second telescope (T2)
(magnification, focal lengths for L3 and L4)

1 0.0195 0.00076 1 3×, f3 = 10 cm, f4 = 30 cm
2 0.147 0.0008 2 1.5×, f3 = 10 cm, f4 = 15 cm

TABLE I. For configurations 1 and 2, we show the parameters for the BG pump beam, κ⊥ and δκ⊥ (second and third columns),
obtained through a fit of the measured pump angular spectra (first row of Fig. 2) to |ψ(kp

⊥)|2 (see Eq. 3). In this table we
have also indicated the axicon apex angle (fourth column) and the parameters for the second telescope (T2) (fifth column).
The notation coincides with that used in Fig. 1.

FIG. 1. Experimental setup. Back: beam preparation ap-
paratus. Front: photon pair generation and measurement.
Left-hand inset: schematic of the nonlinear crystal indicating
the orientation of the optic axis. Right-hand inset: schematic
of the SPDC angular spectrum, as resolved on the Fourier
plane.

a lens (L5) with focal length f5 = 5cm, placed at a dis-
tance f5 from the crystal which defines a Fourier plane
(FP) at a further distance f5 from the lens. Each point
on the plane FP corresponds to a specific transverse
wavevector value, so that a pair of displaceable ideal
point-like detectors on this plane, set to record counts
in coincidence, may be used to obtain a measurement of
|F (ks

⊥, ω
s,ki
⊥, ω

p−ωs)|2, as a function of any two of the
four transverse wavevector components, while the other
two are kept constant. Let us note that throughout this
paper, the coordinate system is chosen so that z is de-
fined by the propagation of the pump and the zy plane is
parallel to the optical table; the walkoff in the nonlinear
crystal occurs on the xz plane.

We have taken three different types of spatially-
resolved measurements on the FP plane. First, moni-
toring the number of counts per unit time recorded as a
function of the position of a single detector on FP, we
were able to measure the marginal SPDC angular spec-

trum, i. e., the SPDC angular spectrum. Second, fixing
one detector at a certain location on FP, corresponding
to wavevector k⊥0, and monitoring the counts measured
in coincidence with a second detector as a function of
the position of this second detector on FP, we obtained
the conditional angular spectrum. Third, we measured
signal-idler transverse wavevector correlations by moni-
toring the coincidence counts as a function of the position
(along the x or y axes) of one detector, and the position
(likewise along the x or y axes) of the second detector.

For measuring the AS, we placed an intensified charge-
coupled device (ICCD) camera (iStar DH334T-18-F-73
from Andor), which is sensitive at the single photon
level in each of 1024 × 1024 pixels, on the plane FP.
We have measured the AS for configurations 1 and 2 of
the pump, with transverse pump wavevector values of
κ⊥ = 0.0195µm−1 and κ⊥ = 0.147µm−1, respectively,
and in addition for an intermediate configuration with
κ⊥ = 0.045µm−1. The results are presented in the sec-
ond row of Fig. 2, along with corresponding simulations,
obtained by numerical integration of Eq. (8) in the third
row; note the excellent agreement between the numeri-
cal simulations and our measurements. Note, also, that
while the smallest value of κ⊥ leads to an AS which is
very similar to the one that would be expected for a type-
I SPDC source with a paraxial Gaussian-beam pump, the
AS for the largest κ⊥ value exhibits a dual ring structure
with a high degree of azimuthal asymmetry. Note that
this structure is qualitatively different from that gener-
ated by a highly-focused Gaussian-beam pump, which
exhibits a single, azimuthally-asymmetric ring [30–32].

For the particular experimental situations considered
in this paper, the radii and centers of the emission
cones inferred from our experimental measurements ex-
hibit a reasonable agreement with the corresponding
values obtained from the theoretical expressions given
in Section II.A. The formalism predicts, for κ⊥ =
0.0195µm−1 (configuration 1, which may be consid-
ered essentially paraxial), an angular spectrum radius
of rAS = 0.484µm−1 with width parameter of ∆AS =
σAS/rAS = 0.081µm−1; note that we have relied on
the Sellmeier expressions for the BBO electric suscep-
tibilities in computing these predictions. The corre-
sponding values inferred form measurements are r̃AS =
0.473µm−1 and ∆̃AS = 0.080µm−1. For the case κ⊥ =
0.147µm−1 (configuration 2, which departs from the
paraxial regime), the theoretical radii of the two emis-
sion cones in wavevector space are r+ = 0.55µm−1
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and r− = 0.27µm−1, with their centers located at
A± = ∓0.1µm−1 along a⊥. From our measurements
we may infer the corresponding values r̃+ = 0.58µm−1,

r̃− = 0.30µm−1, and Ã± = ∓0.1µm−1. These results
are summarized in Table II.

Note that there are a number of factors which con-
tribute to determine the observed widths of the SPDC
emission cones. First, the parameter σAS in Eq. (9) is
highly dependent on the crystal length L; in addition,
while Eq. (9) assumes δκ⊥ → 0, the BG cone width δκ⊥
also influences the width of the SPDC cones. Second,
while the theoretical description assumes that the pump
is normally-incident, unavoidable small tilts in the ex-
periment may also contribute. Third, while the form of
the theory presented here assumes ideal spectral filters of
zero width applied to the signal and idler photon pairs,
the actual width of the spectral filters used (10nm) also
has an important effect. In the numerical simulations all
these factors can be incorporated, in particular distribu-
tions (e.g. described by Gaussian functions), introduced
so as to describe both the spectral filtering and the pump
spectral envelope [30, 34]. The simulations show that a
tilt between the incident pump and the normal to the
crystal surface (while leaving the crystal cut angle fixed)
of less than 0.2◦ is enough to surmount almost completely
the slight discrepancies between Figs. 2 (e) and (h), and
(f) and (i). Let us emphasize that Figs. 2 (g-i) illustrate
the predictions of the ideal model described in Section
II.B (which excludes such tilting) and from which the
parameters shown in Table II were obtained.

For measuring the CAS, we placed the fiber tips of
two different multimode fibers (with 64µm core radius)
on the FP plane, each fiber leading to a Si avalance pho-
todiode (APD). Each of the two fiber tips was mounted
so that it could be displaced on the FP plane with the
help of two computer-controlled linear micro-translation
stages (M-111.1DG from Physik Instrumente, with 50nm
resolution and 1.5cm travel). A given position on FP
of the idler-mode fiber tip, corresponding to wavevec-
tor value ki

⊥ is then selected and the signal-mode fiber
tip is scanned around the position corresponding to
the transverse wavevector −ki

⊥, while monitoring coinci-
dence counts between the signal and idler photons.

We set out to compare measurements of the CAS per-
formed for our two different pump beam configurations.
In order to test the azimuthal distinguishability of the
two-photon state, we selected five different positions of
the idler-mode fiber tip around the upper half of the an-
gular spectrum. In Fig. 3 we show– for pump configura-
tion 1 –the angular spectrum along with the five selected
idler detector locations, labelled i, ii, iii, iv, and v. We
also show, superimposed on the plot of the AS, plots for
the CAS function measured for each of these points, each
labelled with the corresponding primed Roman numeral.
While in this plot the relative locations with respect to
the AS of these five different CAS functions can be ap-
preciated clearly, we also show in five additional panels
each of the CAS measurements for easier visualization of
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FIG. 2. For pump configurations 1 (first column), 2 (third col-
umn), along with an intermediate configuration (second col-
umn), we show the following: in the first row, the measured
angular spectrum of the pump, in the second row the mea-
sured SPDC angular spectrum obtained through spatially-
resolved, single-channel photon counting on the Fourier plane,
and in the third row: simulated SPDC angular spectrum using
the parameters from Table 1 for the first and third column.

their structure.
Note that, interestingly, the CAS exhibits essentially

the same structure for the five selected positions of the
idler detector. This is consistent with the relatively small
value of κ⊥ for pump configuration 1, for which the two-
photon state is determined mainly by the pump proper-
ties. In fact, as explained in Section II.B, in this case the
CAS has a similar structure to the pump angular spec-
trum, except for a transverse displacement according to
the position of the idler detector. This is a consequence
of the fact that for a sufficiently small value of κ⊥ (in
combination with a sufficiently thin crystal) the width of
the function S (ks⊥, k

i
⊥)– see Eq. (18) – is considerably

less than that of the function L (ks⊥, k
i
⊥)– see Eq. (19 ) –

so that the former dominates. Note that the fact that the
CAS has an unchanging structure around the AS leads
to the azimuthal symmetry (i. e. single SPDC ring with
constant width) of the AS.

Let us now compare this behavior with that resulting
from pump configuration 2, which is characterized by a
much larger value of κ⊥. In this case, we have likewise
selected five positions for the idler detector around the
SPDC angular spectrum, labelled as i, ii, iii, iv, and v, in
the large panel of Fig. 4. We also show superimposed on
the SPDC angular spectrum, as we did for configuration
1, the CAS corresponding to each of these idler detector
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Configuration Theory Experiment
κ⊥ = 0.0195µm−1 rAS = 0.484µm−1 r̃AS = 0.473µm−1

κ⊥ = 0.0195µm−1 ∆AS = 0.081µm−1 ∆̃AS = 0.080µm−1

κ⊥ = 0.147µm−1 r+ = 0.55µm−1 r̃+ = 0.58µm−1

κ⊥ = 0.147µm−1 r− = 0.27µm−1 r̃− = 0.30µm−1

κ⊥ = 0.147µm−1 A± = ∓0.1µm−1 Ã± = ∓0.1µm−1

TABLE II. Comparison between the experimental and expected parameters describing the angular spectra of SPDC with
Bessel-Gauss pump beams. In the paraxial regime, illustrated by a pump beam with κ⊥ = 0.0195µm−1, the emission cone
is expected to have an rAS radius in wavevector space given by Eq. (10), and a width ∆AS = σAS/rAS with σAS given by
Eq. (11). Outside this regime, illustrated by a pump beam with κ⊥ = 0.147µm−1, two non-collinear cones exhibit radii given
by r±, Eq. (14) and are centered at A±, Eq. (15).
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FIG. 3. (a) SPDC angular spectrum for pump configuration 1 (also shown in Fig. 2d), in which we have indicated 5 different
locations distributed around the upper circumference of the SPDC angular spectrum, labelled as (i) through (v), of the fixed
conditioning detector along with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed
portion of the ring, labelled as (i’) through (v’). In each of panels (i’) through (v’) we have shown the CAS for each of the fixed
conditioning detector positions (i) through (v), in individual plots for enhanced clarity.

positions, each labelled with the corresponding primed
Roman numeral; in addition, we have presented in five
additional panels each of the CAS measurements for eas-
ier visualization of its structure. It is no surprise that
each CAS function covers a larger area of the transverse
wavevector space, as compared to configuration 1, since
the CAS transverse extent is ‘inherited’ from the pump
angular spectrum. More interestingly, in this case the
CAS function leads to signal photons that have a condi-
tional angular spectrum which differs significantly from
that of a Bessel-Gauss photon. The resulting azimuthal
angular structure in the transverse wavevector space can
be written as a superposition of cos(nϕk) functions (that
would be related to stationary Bessel-Gauss photons [22])
or Mathieu cen(ϕk) functions (that would be related to
stationary Mathieu photons [33]). This effect is a con-
sequence of the fact that the S (ks⊥, k

i
⊥) function is now

much wider as compared to configuration 1, to the extent
that the function L (ks⊥, k

i
⊥) (which does not depend on

the pump spatial structure) now clips the displaced pump
angular spectrum in a different manner at each location
of the SPDC angular spectrum.

In order to further study the anisotropy induced by the

direction of the optic axis on the CAS, we show in Fig. 5
our measurement of the CAS for pump configuration 2,
for three different positions labelled as i, ii, and iii, of the
idler detector across the right flank of the SPDC ring.
It becomes clear that as we displace the idler detector,
different portions of the S (ks⊥, k

i
⊥) function, which has

an annular structure, are revealed.

In order to measure the signal-idler transverse
wavevector correlations we use the same setup as was
used for measuring the CAS function. First, we choose
two reference locations on the FP plane for the signal
and idler detectors, around which the detectors will be
displaced. Second, we choose directions of detector dis-
placement, x or y, for each of the signal and idler detec-
tors. Third, for each position of the signal detector, we
scan the idler detector along the full range permitted. In
this manner, we build a matrix of coincidence counts cor-
responding to different combinations of positions, along
the selected directions and around the selected reference
locations, for the two detectors.

In the large panel of Fig. 6 we show a contour plot
of the SPDC angular spectrum, for pump configuration
1, and show two pairs of axes with their respective ori-
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FIG. 4. (a) SPDC angular spectrum for pump configuration 2 (also shown in Fig. 2f), in which we have indicated 5 different
locations distributed around the upper circumference of the SPDC angular spectrum, labelled as (i) through (v), of the fixed
conditioning detector along with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed
portion of the ring, labelled as (i’) through (v’). In each of panels (i’) through (v’) we have shown the CAS for each of the fixed
conditioning detector positions (i) through (v), in individual plots for enhanced clarity.
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FIG. 5. (a) SPDC angular spectrum for pump configuration 2 (also shown in Fig. 2f), in which we have indicated 3 different
locations distributed radially on the right-hand-side of the SPDC angular spectrum, labelled as (i) through (iii), of the fixed
conditioning detector along with the corresponding conditional angular spectrum (CAS) appearing in the diametrically opposed
portion of the ring, labelled as (i’) through (iii’). In each of panels (i’) through (iii’) we have shown the CAS for each of the
fixed conditioning detector positions (i) through (iii), in individual plots for enhanced clarity.

gins indicating the selected reference locations. While in
the top row of smaller panels we show our measurements
of the x − x, y − y, and x − y TWC functions, in the
second row we show corresponding simulations obtained
from numerical integration of Eq. (8). It is notable that
there is excellent agreement between theory and experi-
ment. As discussed in Section II.B, the most striking dif-
ference with respect to similar measurements that would
be obtained for a standard Gaussian-beam pump [35], is
that both x − x and y − y correlations become “double
correlations” in the sense that the diagonal region with
non-zero coincidence counts becomes, for a Bessel-Gauss
beam, duplicated.

Note that the x − y TWC function measurement re-
veals a structure which is essentially that of the pump
angular spectrum, as expected from the discussion in Sec-

tion II.B. Note also that the y − y TWC function mea-
surements yields significantly longer coincidence count
regions as compared to the x−x TWC function measure-
ments. This is because while the y direction is tangent to
the SPDC angular spectrum, the x direction cuts radi-
ally through the angular spectrum. It is interesting that
the same source can yield very different degrees of corre-
lation according to whether detectors are scanned in the
x or y directions. Note that it becomes possible to scan
the detectors in rotated x and y axes with the possibil-
ity of continuously tuning between the two extremes of
shorter x− x and longer y− y correlations, as controlled
by the axis rotation. This represents an interesting added
versatility of this type of source.

Let us now compare this behavior with that resulting
for pump configuration 2. The large panel in Fig. 7
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FIG. 6. (a) SPDC angular spectrum for pump configuration 1 (also shown in Fig. 2d), on which we have indicated (origins of
the two sets of red-colored axes) the central locations from which we scan the signal and idler detectors for our x−x, y− y and
x − y transverse wavevector correlation measurements. In panels (b), (c), and (d) we have shown our measured x − x, y − y,
and x− y transverse wavevector correlations. In panels (e), (f), and (g) we have shown corresponding simulations for each of
the x− x, y − y and x− y correlations.
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FIG. 7. (a) SPDC angular spectrum for pump configuration 2 (also shown in Fig. 2), on which we have indicated (origins of
the two sets of red-colored axes) the central locations from which we scan the signal and idler detectors for our x−x, y− y and
x − y transverse wavevector correlation measurements. In panels (b), (c), and (d) we have shown our measured x − x, y − y,
and x− y transverse wavevector correlations. In panels (e), (f), and (g) we have shown corresponding simulations for each of
the x− x, y − y and x− y correlations.

shows a contour plot of the SPDC spectrum, and as for
the previous case, the origins of the two sets of shown axes
indicate the two chosen reference locations. While in the
first row of smaller panels we have shown x−x, y−y, and
x−y TWC function measurements, in the second row we
have indicated corresponding simulations obtained from
numerical integration of Eq. (16). Note that in this case,
the two coincidence count regions in the x − x correla-
tion measurement become highly unequal, and further-
more these two regions no longer overlap in ksx the coordi-
nate, and essentially do not overlap in the kix coordinate.
This is necessarily due to dependence of the longitudi-
nal phasematching function L on the orientation of the

optic axis (in our configuration a = (ax, 0, az)). Notice
also that the relevant values of ksx are negative while kix
are positive; evidently, the phasematching effective equa-
tion, Eq. (26) cannot be fulfilled for ksx and kix with the
same sign in this configuration. Also note that the x− y
measurement once again shows essentially the structure
of the pump angular spectrum, except clipped by L , for
this larger value of κ⊥ as expected from Eq. (25).

In Fig. 8 we have shown, for pump configuration 2,
how the structure of the transverse x − x, y − y and
x− y correlations is determined by functions S (ks⊥, k

i
⊥)

and L (ks⊥, k
i
⊥). The case of x − x correlations (with

ksy = ksy0 and kiy = kiy0) is shown in the first row. Pan-
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els (a), (b), and (c) show resulting plots of the functions
S (ks⊥, k

i
⊥), which contains information about the pump

angular spectrum, L (ks⊥, k
i
⊥), which contains informa-

tion about the crystal phasematching properties, and the
product S (ks⊥, k

i
⊥)L (ks⊥, k

i
⊥), which represents the x−x

TWC function. The second row is similar to the first
row, except now for the case of y − y correlations (with
ksx = ksx0 and kix = kix0). It becomes evident that while
function S (ks⊥, k

i
⊥) defines the doublet stripe structure,

function L (ks⊥, k
i
⊥) determines the transverse extent of

these stripes. The third row is similar to the previous one,
illustrating now the x− y correlations; while S (ks⊥, k

i
⊥)

carries direct information from the pump beam, the vary-
ing magnitude along the circumference in the CAS is due
to the L (ks⊥, k

i
⊥) factor.

One of the salient features of SPDC with BG pump
beams is that as the value of κ⊥ increases, the angular
spectrum of the signal and idler photon pairs becomes
increasingly concentrated on the transverse wavevector
plane. This effect is evident for example in Fig. 5(a),
where the probability of emission is greater on the right
flank of the angular spectrum. Let us note that in typi-
cal type-I SPDC sources, with an azimuthally-symmetric
cone of emission, all of the flux emitted which does not
correspond to two diametrically-opposed portions of the
ring is effectively wasted. In this context, the breaking
of azimuthal symmetry and concentration of the flux on
the transverse wavevector plane could prove to be a use-
ful resource for a boosted flux along a specific, desired
direction of propagation.

In this paper we have focused our attention on the
appearance of double transverse wavevector correlations.
As we have discussed, the ring structure of the pump an-
gular spectrum directly implies that the TWC function
splits into characteristic doublet stripes. It is interest-
ing to point out that a pump formed by the coherent
addition of two BG beams with different values of κ⊥,
i. e. exhibiting a dual-ring angular spectrum, would
lead to TWC functions exhibiting four instead of two
stripes. Likewise, the coherent addition of a Gaussiam
beam and a BG beam would result in TWC functions
showing three characteristic stripes. Appropriate com-
binations of Gaussian and BG pump modes could then
result in a certain scalability in the splitting of transverse
wavevector correlations [36]. One possibility would be to
employ such a source in a ghost imaging setup [37, 38]
so as to obtain multiple ghost images, one per stripe ap-
pearing in the TWC functions.

IV. CONCLUSIONS

The two-photon state produced by spontaneous para-
metric downconversion is constructed from the coherent
addition of the individual contributions due to all avail-
able pump wavevectors. In this paper we have focused
on the use of a Bessel-Gauss (BG) pump, which cor-
responds to a conical superposition of Gaussian beams;
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FIG. 8. In the first row we show plots of the functions
S (ks⊥, k

i
⊥), panel (a), L (k⊥s, k⊥i), panel (b), and of the

product S (ks⊥, k
i
⊥)L (ks⊥, k

i
⊥), panel (c), for the specific case

of x − x wavevector correlations, with kiy0 = ksy0 = 0. In the
second row we show similar plots for the case of y − y trans-
verse wavevector correlations with kix0 = ksx0 = 0. In the third
row similar plots are shown for x − y transverse wavevector
correlations.

we have characterized BG beams with two parameters:
the transverse wavevector cone radius κ⊥ and its width
δκ⊥ . While in our experiments we have oriented the main
pump propagation axis parallel to the normal to the crys-
tal front surface, BG pump beams imply a significant
spread of pump wavevectors impinging non-symetrically
with respect to the optic axis, leading to a considerable
departure from cylindrical symmetry in the two-photon
state. This is reflected in a non-concentric double-cone
SPDC angular spectrum, with the conditional angular
spectrum exhibiting a shape which depends on the az-
imuthal location of the heralding detector. In addition,
as the pump becomes increasingly non-paraxial (quan-
tified by larger values of κ⊥), the signal-idler wavevec-
tor correlation region splits into characteristic doublet
stripes implying that each signal-photon wavevector is
correlated with two distinct idler wavevectors.

We have presented a general theory which describes
SPDC two-photon states involving a BG pump which can
range from paraxial to highly non-paraxial. We have also
presented measurements which agree extremely well with
corresponding simulations based on our theory. We be-
lieve that the double transverse wavevector correlations
which we have demonstrated represents an interesting
new resource for photon-pair quantum state engineering.
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eration of propagation invariant photons with orbital an-
gular momentum , Phys. Rev. A 90, 013833 (2014).

[23] S. Prabhakar, S. Gangi Reddy, A. Aadhi, A. Kumar, P.
Chithrabhanu, G. K. Samanta, and R. P. Singh, Spatial
distribution of spontaneous parametric down-converted
photons for higher order optical vortices, Opt. Commun.
326, 64 (2014).

[24] M. V. Jabir, N. Apurv Chaitanya, A. Aadhi, and G. K.
Samanta, Generation of “perfect” vortex of variable size
and its effect in angular spectrum of the down-converted
photons, Sci. Rep. 6, 21877 (2016).

[25] C. I. Osorio, G. Molina-Terriza, and, J. P. Torres, Cor-
relations in orbital angular momentum of spatially en-
tangled paired photons generated in parametric down-
conversion, Phys. Rev. A 77, 015810 (2008).

[26] O. Calderón-Losada, J. Flórez, J. P. Villabona-Monsalve,
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and G. A. Barbosa, Quantum imaging of nonlocal spatial
correlations induced by orbital angular momentum, Phys.
Rev. Lett 94, 123601 (2005).

[37] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and
Y. H. Shih, Observation of two-photon ghost interference
and diffraction, Phys. Rev. Lett. 74, 3600 (1995).

[38] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V.
Sergienko, Optical imaging by means of two-photon quan-
tum entanglement, Phys. Rev. A 52, R3429 (1995).


