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Hybrid quantum systems can often be described in terms of polaritons. These are quasiparticles
formed of superpositions of their constituents, with relative weights depending on some control
parameter in their interaction. In many cases, these constituents are coupled to reservoirs at different
temperatures. This suggests a general approach to the realization of polaritonic heat engines where a
thermodynamic cycle is realized by tuning this control parameter. Here we discuss what is arguably
the simplest such engine, a single qubit coupled to a single photon. We show that this system
can extract work from feeble thermal microwave fields. We also propose a quantum measurement
scheme of the work and evaluate its back-action on the operation of the engine.
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I. INTRODUCTION

Experimental advances in single atom and ion manip-
ulation and in nanofabrication have led to an increased
interest in quantum thermodynamics, and more specif-
ically in quantum heat engines (QHE) [1]. Abah and
coworkers proposed [2, 3] and demonstrated [4] a scheme
to realize a nanoscale QHE with a single ion. A trapped-
ion system was also recently used [5] to carry out an ex-
perimental test of the quantum Jarzynski equality [6, 7].
Other approaches and related fundamental questions in
quantum thermodynamics have been considered in sys-
tems ranging from quantum degenerate bosonic atoms [8]
to superconducting quantum circuits [9] and from macro-
scopically separated quantum-dot conductors coupled to
a microwave cavity [10] to atomic [11, 12] or photon
gases [13] in optical resonators.

Many hybrid quantum systems can be conveniently de-
scribed in terms of polaritons. These quasiparticles are
quantum superpositions of the system constituents with
relative weights that depend on some coupling parame-
ter. The fact that these constituents are typically coupled
to reservoirs at different temperatures suggests a gen-
eral approach to the realization of quantum heat engines
where a thermodynamic cycle is realized by periodically
varying the control parameter. To an excellent approxi-
mation the nature of the quasiparticles is then changed
from one to the other of their constituents, so that they
are alternatively coupled to one or the other reservoir.

In previous work [14, 15] we exploited this feature in a
phonon polariton based optomechanical QHE [16]. Here
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we expand the same idea to what is arguably the sim-
plest such engine, a single two-state atom or artificial
atom (e.g. a superconducting qubit) coupled to a single
photon. In this case the polariton modes are the famil-
iar dressed states of quantum optics [17]. This system
could be demonstrated experimentally in a circuit QED
environment [18, 19].

The paper is organized as follows. Section II estab-
lishes our notation and outlines the quantum model of
coupled qubit-photon system, including dissipation due
to the the coupling of the qubit and the photon to a ‘cold’
and a ‘warm’ reservoir, respectively. Section III describes
a quantum Otto cycle based on that qubit-photon sys-
tem first for the simplest single-photon case, and then
the multi-photon and the two-qubit cases. It also de-
rives expressions for the work of the heat engine. Section
IV discusses the parameters requirements of the engine
working and designs a specific experimental realization
based on the circuit QED system. Section V turns to
measurement protocols of the work output. It compares
explicitly the quantum backaction of dispersive and ab-
sorptive measurements on the statistics of the measured
results. Finally, Section VI is a summary and outlook.

II. THE CQED SYSTEM

We consider a single qubit, which could be either an
atom or an artificial atom, trapped inside a high-Q single-
mode resonator in a standard cavity QED or circuit QED
geometry [18, 19]. In the absence of dissipation and driv-
ing and under the rotating wave approximation it is de-
scribed by the Jaynes-Cummings Hamiltonian

H =
1

2
~ω(σ̂z + 1) + ~ωLâ†â+ ~g(âσ̂+ + adj.) (1)
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FIG. 1. Solid lines: dressed qubit energy levels as a function
of the qubit-field detuning ∆ = ω − ωL with ω the qubit
transition frequency and ωL the cavity field frequency for g =
0.1ωL. Dashed lines: corresponding energy eigenvalues in the
absence of interaction, g = 0. The dressed and bare states are
labeled beside the lines. ∆1,2 denote the working frequency
range of the quantum heat engine.

with eigenstates

|2, n〉 = cos θn|e, n〉 − sin θn|g, n+ 1〉 ,
|1, n〉 = sin θn|e, n〉+ cos θn|g, n+ 1〉 , (2)

and eigenenergies

E2,n = ~
[
ω + nωL −

1

2
(Ωn + ∆)

]
,

E1,n = ~
[
(n+ 1)ωL +

1

2
(Ωn + ∆)

]
. (3)

Here |e〉 and |g〉 are the excited and ground state of the
qubit, with energy separation ω, |n〉 are Fock states of the
field mode of frequency ωL, σ̂i are Pauli matrices, â and
â† are bosonic annihilation and creation operators, g is
the vacuum Rabi frequency, ∆ = ω−ωL is the qubit-field
detuning, Ωn is the quantized generalized Rabi frequency

Ωn =
√

∆2 + 4g2(n+ 1) , (4)

and

cos θn =
Ωn −∆√

(Ωn −∆)2 + 4g2(n+ 1)
,

sin θn =
2g
√
n+ 1√

(Ωn −∆)2 + 4g2(n+ 1)
. (5)

Fig. 1 shows the first few eigenenergies, illustrating the
avoided crossing resulting from the dipole coupling be-
tween the qubit and the field at ∆ = 0. Importantly for

our discussion, the dressed states (qubit-photon polari-
tons), |2, n〉 are photon-like for large positive detunings
and qubit-like for large negative detunings, and the op-
posite for the dressed states |1, n〉.

The qubit and optical mode are also coupled to ther-
mal reservoirs at temperatures Ta and Tf , respectively.
In the following we consider the situation where Ta ≈ 0
and Tf > 0, a situation that would be characteristic of
qubits confined in a cryogenic environment typical of cir-
cuit QED experiments and driven by a feeble thermal
microwave field. The qubit-field system density operator
ρ is therefore governed by the master equation

dρ

dt
= − i

~
[H, ρ] + γLσ̂−ρ+ κ(n̄+ 1)Lâρ+ κn̄Lâ†ρ , (6)

where the Lindblad superoperators are Lx̂[ρ] = x̂ρx̂† −
1
2 x̂
†x̂ρ − 1

2ρx̂
†x̂, κ is the cavity mode decay rate, γ the

qubit spontaneous decay rate, and n̄ the mean number
of thermal photons within the resonator bandwidth.

III. HEAT ENGINE

The difference in temperatures of thermal reservoirs
for the qubit and the photon field allows one to operate
a quantum Otto cycle. The following section discusses
the operation of a single atom-single photon heat engine
that exploits that cycle by varying the detuning ∆.

A. Single-photon case

The lowest state |g, 0〉 of the qubit-field system cor-
responds to the vacuum field state |0〉 and is therefore
qubit-like. The simplest way to operate the qubit-photon
heat engine is to limit its operation to the ground state
|g, 0〉 and the lowest energy dressed state (lowest polari-
ton branch) |2, 0〉. By varying the detuning ∆ from a
negative to a positive value that state changes its nature
from qubit-like to photon-like, thereby changing the ther-
mal coupling from being to a bath at temperature Ta to
a bath at Tf . Ideally, in the polariton picture the engine
is then effectively a two-state system, while in the bare-
mode picture it actually consist of two coupled qubits
like the quantum engine proposed in Ref. [20].

The operation of the engine relies on a four-stroke
quantum Otto cycle [21]. The starting point of the cycle
is the ground state |g, 0〉 with transition frequency ω =
ω1 < ωL and corresponding detuning ∆1 = ω1 − ωL < 0,
in thermal equilibrium at the qubit reservoir temperature
Ta ≈ 0. The first, isentropic stroke consists of changing
ω to a new value ω2 > ωL and detuning ∆2 > 0. This
step can be carried out relatively fast since it does not
involve the approach of an avoided crossing where nona-
diabatic transitions could be an issue. The second, iso-
choric stroke is the thermalization of the system with the
two thermal reservoirs. Since Ta ≈ 0 nothing much hap-
pens to the qubit constituent of the system, but the field
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part acquires a finite probability to be excited to Fock
states |n〉 with n = 1, 2, . . . For thermal microwave fields
in the 100 GHz range and at temperatures Tf around 1
K the only state that becomes significantly populated is
the Fock state |n = 1〉, with small probability p1. At the
end of that step the qubit-field system is then left to a
good approximation in the mixed state

ρ ≈ (1− p1)|g, 0〉〈g, 0|+ p1|2, 0〉〈2, 0|. (7)

The ground state component (1−p1)|g, 0〉〈g, 0| of ρ plays
no active role in the following third, isentropic stroke, so
we concentrate of the state |2, 0〉 for now. In that stroke
ω is changed back to its initial value ω1, and the na-
ture of the dressed state |2, 0〉 changes adiabatically from
its approximate photon-like nature, |2, 0〉 ≈ |g, 1〉, to its
qubit-like form |2, 0〉 ≈ |e, 0〉. This step must be carried
out slowly enough that nonadiabatic transitions between
the dressed states |2, 0〉 and |1, 0〉 remain negligible at
the avoided crossing. Finally the last stroke is the spon-
taneous decay of the qubit-like state |2, 0〉 to the ground
state |g, 0〉 at rate γ.

The thermalization strokes 2 and 4 are isochoric. Ide-
ally no work is performed on the control field used to
change ω(t) during stroke 1 either, due to the vanishing
population on the excited state |e〉. The only work con-
tribution occurs during stroke 3, a result of the reduction
in energy of the excited state population. The average
work associated with a full Otto cycle is therefore

W = p1 [E2,0(ω1)− E2,0(ω2)] . (8)

It is always negative, i.e. work is produced by the engine.
Noting that E2,0(ω2) ≤ ~ωL and E2,0(ω1) ≤ ~ω1 we have

|W | ≤ p1~|∆1| = p1~(ωL − ω1). (9)

We note for completeness that this system can also
be operated as a heat pump, provided that Ta > Tf , and
that the cycle is reversed, with the initial state |g, 0〉 asso-
ciated with a positive detuning ∆, which is then changed
to a negative value in the first stroke. The thermaliza-
tion of the qubit at Ta > 0 leads then to a population
p1 on the state |e, 0〉. After an adiabatic change of the
detuning back to a positive value the photon-like polari-
ton |2, 0〉 ≈ |g, 1〉 decays back to the ground state |g, 0〉
at rate κ. In that mode of operation the average work
is equal to −W which is positive, indicating that work is
done on the system. This shows that in case the qubit
thermalization dominates the system can operate as a
heat pump, but if the thermalization of the field domi-
nates it is a heat engine.

B. Multi-photon case

For Tf ≈ 0 only the lowest polariton branch |2, 0〉 and
the ground state |g, 0〉 are involved in the Otto cycle. In
that limit the engine operation is formally identical with

that of the optomechanical heat engine [14]. For larger
Tf , however, higher polariton branches come into play.
Specifically, at the end of the thermalization stroke 2 the
branches |2, n〉 with n ≥ 1 are populated with thermal
probabilities pn ≈ n̄n+1/(n̄+ 1)n+2 where n̄ is the aver-
age photon number. The result is the appearance of the
superposition of several Otto cycles. The average work
output Wn produced in stroke 3 by the cycle associated
with the polariton mode |2, n− 1〉 is

|Wn| ≤ ~(ωL − ω1)pn. (10)

Following the thermalization stroke 4 the dressed state
|2, n〉 has relaxed to |1, n− 1〉, n ≥ 1. But in contrast to
the situation for the |2, 0〉 polariton which is thermalized
to the ground state |g, 0〉, the first stroke of the next cycle
now costs work. For the symmetric case |∆1| = ∆2 and
perfect adiabaticity that work is precisely equal to the
work output of stroke 3 of the previous cycle, and the
cycles associated with higher polaritonic modes produce
no net work. As shown below the situation is slightly
more favorable for the asymmetric situation |∆1| > |∆2|,
in which case some additional work can be extracted from
the engine. For the opposite case |∆1| < ∆2, in contrast,
stroke 1 costs more work than extracted during stroke 3.

As illustrated in Fig. 1, during the second, isochoric
stroke of the engine, the dressed state |2, n〉 is approx-
imately identical with the bare state |g, n + 1〉 while
|1, n〉 ≈ |e, n〉 provided that ω2 − ωL � g. Then at
the end of the stroke, owing to the thermalization by
an effectively zero-temperature qubit reservoir and a hot
microwave reservoir, the state |1, n〉 is essentially empty,
while the ground state |g, 0〉 and the state |2, n〉 are pop-
ulated with an approximate microwave thermal distribu-
tion, resulting in an average energy

〈HA〉 ≈
∞∑
n=0

n~ωLpn, (11)

where pn = n̄n/(n̄+ 1)n+1 and n̄ = 1/[exp(~ωL/kBTf )−
1] is the mean thermal photon number of the microwave
field. During the third, isentropic stroke, ω is adia-
batically changed back to ω1. Then the dressed states
|2, n〉 and |1, n〉 approach qubit-excited states |e, n〉 and
photon-excited states |g, n + 1〉, respectively, with their
population unchanged, so the average energy at the end
is

〈HB〉 ≈
∞∑
n=1

~[(n− 1)ωL + ω1]pn. (12)

The cooling of the heat engine takes place in the fourth,
isochoric stroke by coupling it to the qubit reservoir at
Ta ≈ 0. During that stroke the heating from the mi-
crowave reservoir remains negligible for γ � κ. This re-
sults in the transfer of population from the states |e, n〉 to
states |g, n〉, resulting in the occupation of dressed states
|1, n〉. At the end of that stroke the average energy of
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the system is therefore

〈HC〉 ≈
∞∑
n=1

n~ωLpn+1. (13)

Finally, during the following isentropic stroke that brings
the qubit frequency back from ω1 to ω2 the mean energy
becomes

〈HD〉 ≈
∞∑
n=1

~[(n− 1)ωL + ω2]pn+1. (14)

The work output is therefore

W = 〈HB〉 − 〈HA〉 ≈
∑
n=1

~(ω1 − ωL)pn, (15)

where the sum
∑∞
n=1 pn increases with the raising of tem-

perature Tf with the upper limit 1 for Tf → ∞. The
maximum work output is therefore equal to the differ-
ence between the energy of a single photon and a single
qubit,

|Wmax| = ~(ωL − ω1). (16)

The work input, on the other hand, is

W ′ = 〈HD〉 − 〈HC〉 ≈
∞∑
n=1

~(ω2 − ωL)pn+1, (17)

So the total work reads

Wtot = W +W ′

≈ ~(ω1 − ωL)p1 (18)

+~(ω1 + ω2 − 2ωL)(1− p0 − p1),

from which we can find that if ω1 and ω2 are chosen to be
symmetrically detuned from ωL, ∆2 ≡ ω2−ωL = −∆1 ≡
ωL−ω1, the last term in Eq. (18) vanishes and the total
work is precisely equal to the work output in the case of
low-temperature microwave reservoir (see Eq. (9)). This
is because except for the lowest two dressed states |g, 0〉
and |2, 0〉, the work output and input arisen from the
population of the higher dressed states cancel out each
other in the Otto cycle, attributing to the symmetric
structure of the energy spectrum of the states |1, n〉 and
|2, n + 1〉. Then the total work reaches its maximum
value at the precise temperature Tf such that n̄ = 1 and
p1 = 0.25. It then decreases Tf is raised past that point.

There is however nothing fundamental about this re-
sult. This upper limit can easily be broken when the
condition ∆1 = −∆2 is no longer imposed. Specifically,
for |∆1| > ∆2 the last term becomes negative so the total
work increases (the work output is negative, correspond-
ing to an energy produce by the heat engine), while for
the opposite case |∆1| < ∆2, the total work decreases.

Finally we note the unique role of p1 in the work per-
formed of the engine. Interestingly, this implies that for
some non-equilibrium quantum reservoirs with lowered
probability p1, e.g., a squeezed vacuum reservoir with
ρ =

∑∞
n=0 p2n|2n〉〈2n|, the total work can be significantly

reduced, see Eq. (18).

C. Two-qubit case

One can gain some intuition on the origin of the work
generated by the engine by observing that provided there
is at most one photon in the system the average work W
is independent of the number of qubits. Consider for
concreteness the case of two qubits. The total qubit-field
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FIG. 2. Dressed states picture for the two-qubit case. See the

text for the definitions of the states |φ(+)
0 〉 and |φ(−)

0 〉. Other
parameters as in Fig. 1.

Hamiltonian is then

H2 =
1

2
~ω(Ŝz + 2) + ~ωLâ†â+ ~g(âŜ+ + adj.) , (19)

where we have introduced the collective spin operators
Ŝi = σ̂1i + σ̂2i, i ∈ {z,±}. Much like for a single qubit,
the Hamiltonian can be decomposed into invariant sub-
spaces Hn with n excitations. The subspace H0 is charac-
terized by the ground state |gg, 0〉, and the one excitation
subspace spanned by the two dressed states [22]

|φ(+)
0 〉 = sin

θ

2
|1,−1〉+ cos

θ

2
|0, 0〉, (20)

|φ(−)0 〉 = cos
θ

2
|1,−1〉 − sin θ2|0, 0〉 . (21)

Here

|1,−1〉 = |gg, 1〉, (22)

|0, 0〉 =
|ge, 0〉+ |eg, 0〉√

2
, (23)

cos
θ

2
=

√
Ω1 + ∆

2Ω1
, (24)

sin
θ

2
=

√
Ω1 −∆

2Ω1
, (25)

Ω1 =
√

∆2 + 8g2. (26)

The corresponding energies are

E
φ
(±)
0

=
~(ω + ωL ± Ω1)

2
, (27)
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with energy gap at the avoided crossing between |φ(+)
0 〉

and |φ(−)0 〉 increased to 2
√

2g, see Fig. 2. Then for an
Otto cycle involving the same sequence of strokes as in
the single-qubit case the average work is

W = p1[E
φ
(−)
0

(ω1)− E
φ
(−)
0

(ω2)], (28)

which is same as Eq. (8) with E2,0 replaced by E
φ
(−)
0

,

and is again bounded by Eq. (9). Having more than one
qubit but only one photon doesn’t allow one to extract
more work from the heat engine, demonstrating that it
originates from the photon field. The generalization to
N qubits is straightforward, with the energy gap at the
avoided crossing increasing to 2

√
Ng. This larger gap

relaxes the time constraints associated with suppression
of non-adiabatic transitions.

IV. EXPERIMENTAL CONSIDERATIONS

In the following sections we focus for concreteness on
the simplest case of a single qubit coupled to a single
photon. Maintaining quantum adiabaticity in the isen-
tropic stroke 3 requires that changes in the qubit fre-
quency ω(t) should be slow enough to avoid transitions
to the dressed state |1, 0〉, yet faster than the qubit and
cavity field decays. Also, |ω2 − ω1| must be much larger
than g to guarantee a full photon-like to qubit-like con-
version of the nature of the polariton, but the detuning
must remain sufficiently small, |∆|1,2 � ω, ωL, for the
rotating wave approximation and two-level approxima-
tion implicit in the Jaynes-Cummings Hamiltonian to re-
main valid. Turning to the two isochoric thermalization
strokes, we note that stroke 2 only necessitates a time
long compared to κ−1, while stroke 4 needs to occur in
a time long compared to γ−1 but short compared to κ−1

to avoid a significant excitation of |1, 0〉. Denoting the
duration of the ith stoke as τi the hierarchies of system
parameters required for the operation of the heat engine
are therefore

ω(t), ωL � |∆1,2| � g , (29)

τ2 � κ−1 � τ4 � γ−1 � τ3 � g−1 . (30)

Although these conditions are challenging for tradi-
tional cavity QED experiments, they should be realizable
in circuit QED devices [23]. For a resonator frequency
ωL ≈ 2π × 15 GHz [24] the mean photon number n̄ for
a thermal blackbody spectrum at 0.3K is about 0.1, the
single photon probability p1 ≈ 0.08, and the occupation
probability of the |n = 2〉 state is a negligible p2 ≈ 0.007.
The photon decay rate κ of the resonator and the qubit
decay rate γ can be about 2π × 10kHz and 2π × 1MHz,
respectively [25], and the dipole coupling frequency can
be as high as g ≈ 2π × 200MHz [26, 27], which leaves
sufficient time for the adiabatic strokes.

A specific experimental design of the engine that per-
mits to extract work in an exploitable form, we con-
sider a superconducting transmon qubit. Its frequency

can be adjusted by controlling the magnetic flux Φ, with
ω = ω0

√
| cos(πΦ/Φ0)| [28]. In the bare-mode picture the

quantum expression for the infinitesimal average work is

dW = Tr[ρ dH] =
~
2

(〈σz〉+ 1)dω. (31)

Because ω is an implicit function of the magnetic field
intensity B Eq. (31) is equivalent to dW = −µdB. This
suggests that the engine can be treated as an artificial
magnetic substance with effective average magnetic mo-
ment µ = −[~(〈σz〉 + 1)/2]∂ω/∂B located in a circuit
loop. In stroke 1, besides adjusting ω, the change in B
also induces a current in the circuit according to Fara-
day’s law, but no work is done by the magnetic substance
since 〈σz〉 = −1 and µ = 0. However in the third stroke
µ 6= 0 so that even when applying an equal change in B
the induced current is different. The work outputed by
the magnetic substance, i.e. the engine, is responsible for
the increase in current, which could be further extracted
via coupling to additional elements.

V. WORK MEASUREMENT

A straightforward two-point energy measurement
based on Eq. (8) is unsuitable to measure the work of
the polariton engine since polaritons are quasiparticles
that cannot be directly detected [29]. The integral from
ω2 to ω1 of Eq. (31) provides an equivalent expression
for the work and suggests that the average work and its
fluctuations can be measured by monitoring 〈σz〉. How-
ever, as should be expected the statistical properties of
the measured work depend on the measurement proto-
col, since different schemes result in general in different
measurement backaction. We now compare the results
obtained from two different types of measurement.

A. Dispersive quantum measurements

If we use a secondary probe beam dispersively coupled
to the qubit by the interaction

Vd = ~χb̂†b̂ σz, (32)

where b̂ and b̂† are the annihilation and creation opera-
tors of the probe [19], then the repeated homodyne de-
tection of the probe provides a sequence of measurements
of 〈σz〉.

Ignoring for now effects due to dissipation during the
work-producing isentropic stroke 3, the time evolution
of the system is described by the stochastic Schrödinger
equation [30–32]

d|ψj〉 =

[
− i
~
H − λ (σ̂z − 〈σ̂z〉)2

]
|ψj〉dt

+
√

2λ(σ̂z − 〈σ̂z〉)|ψj〉dw, (33)
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where λ characterizes the measurement strength and dw
is an infinitesimal Wiener increment. Repeatedly solving
Eq. (33) with the initial state (7) and a slowly-varied ω(t)
generates a set of quantum trajectories |ψj(t)〉. The mean
and variance of the work, as well as the back-action of the
measurements are readily obtained from the statistical
properties of these trajectories [33, 34]. This also means
that the statistics of the work depends on the quantum
measurement schemes.

P

P

ω
L t

W/ћω
L

λ/ωL

λ/ωL0

10-4

10-3

100

10-1

10-2

10-3

10-4

10-5

FIG. 3. Upper plot: Dressed states and bare states popula-
tion dynamics during the isentropic stroke 3 in the absence
of measurements (λ = 0), and for measurement strengths
λ = 10−4ωL and λ = 10−3ωL. Here the qubit frequency ω(t)
varies linearly in time from 1.2ωL to 0.8ωL and g = 0.013ωL.
Lower plot: Log scale probability distribution P (W ) of the
measured work obtained from 1000 stochastic quantum tra-
jectories for the same measurement strengths.

Fig. 3 summarizes the results of simulations for a set
of parameters within state-of-the-art experimental reach.
The upper part of the figure plots the evolution of the av-
erage populations of the relevant states of the qubit-field
system during the third stroke of the cycle, and the lower
part shows the probability distribution of the work P (W )
extracted in a single cycle of the engine in the absence of
measurements and for two measurement strengths λ.

In the absence of measurements the bare states |g, 1〉
and |e, 0〉 exchange their populations almost perfectly
as ω is decreased slowly from ω2 to ω1 across the
avoided crossing. The occupation probability p1 of the
dressed state |2, 0〉 remains nearly unchanged, confirm-
ing the almost perfect adiabatic conversion of the polari-

ton from photon-like to qubit-like. As expected P (W )
is a double-peaked distribution with W taking the value
W = ~(ω1 − ωL) with probability p1 and W = 0 with
probability 1− p1. That latter dominant component [35]
is due to the population (1−p1) of the state |g, 0〉, which
is not involved into the heat engine cycle.

Because the dispersive coupling Vd of the qubit to the
probe field does not commute with the Jaynes-Cummings
Hamiltonian (1) it couples the two dressed states |2, 0〉
and |1, 0〉 and with an imperfect conversion between the
two bare states |g, 1〉 and |e, 0〉. This results in a measure-
ment back-action whereby the peak in P (W ) at W < 0
broadens and spreads towards the zero, as visible in the
upper part of Fig. 3. As λ increases the adiabatic conver-
sion gradually breaks down and the populations of states
|2, 0〉 and |1, 0〉 approach equal values, with the system
evolving toward the deterministic steady-state

ρ = (1−p1)|g, 0〉〈g, 0|+ p1
2

(|2, 0〉〈2, 0|+|1, 0〉〈1, 0|). (34)

with a significantly reduced average work.
In addition to measurement-induced dissipation, the

effects of qubit and cavity dissipation on the average work
during the isentropic stroke 3 can be evaluated quanti-
tatively by solving Eq. (6). Physically, the spontaneous
decay of the qubit from |e, 0〉 ≈ |2, 0〉 to |g, 0〉 is domi-
nant for ω < ωL, and results in a reduction of the average
work. For ω > ωL the thermalization of the cavity mode
causes transitions from |g, 0〉 to |g, 1〉 ≈ |2, 0〉, increasing
the work produced by the QHE. In contrast, for ω < ωL
it induces transitions from |e, 0〉 to |e, 1〉, whose popula-
tion then transfers to the state |g, 1〉 ≈ |1, 0〉 during the
thermalization stroke 4, thereby opening up a leak in the
Otto cycle. That leak is minimized by imposing κ� γ.

B. Absorptive quantum measurements

To illustrate the dependence of the statistical proper-
ties of the measured work on the measurement protocol
we compare the homodyne detection with large-detuned
probe to a resonant absorption measurement scheme.
This can be realized by resonantly coupling a low-density
ground state beam of probe two-state systems with the
qubit through the interaction

Va = ~χ(σ̂+σ̂
p
− + σ̂−σ̂

p
+), (35)

where the superscripts “p” labels the spin operators of
the probe qubits. Ignoring the effects of dissipation dur-
ing the adiabatic stroke 3 (same as in the dispersive case),
the time evolution of the system is then described by the
stochastic Schrödinger equation [30],

d|ψj〉 = [− i
~
H +

λ

2
(〈σ̂+σ̂−〉 − σ̂+σ̂−)]|ψj〉dt

+ (
σ̂−√
〈σ̂+σ̂−〉

− 1)|ψj〉dN, (36)
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FIG. 4. Same plots as Fig. 3 but for the resonant absorptive
measurement.

where λ is a measure of the strength of the measurement
and dN is an infinitesimal Ito increment. The results of
simulations are shown in Fig. 4 with all parameters as
in Fig. 3. In the absence of measurements the evolution
of the population of the relevant states and the statis-
tics of the work output are the same in the two figures,

as should of course be the case, but as the strength of
the measurement increased, the populations of the states
|2, 0〉 and |e, 0〉 now decay to zero and the populations of
the states |1, 0〉 and |g, 1〉 remain equal to zero in the end
of stroke 3. This is attributed to the absorption from the
probe, which results in a measurement-induced energy
loss. As a result the average work decreases dramati-
cally, with an associated broadening of the distribution
of P (W ) towards zero.

VI. CONCLUSION

To summarize, we have proposed and analyzed what
is arguably the simplest polaritonic QHE, a single qubit
coupled to a single photon that operates by absorbing en-
ergy from feeble thermal microwave fields. Irrespective
of its experimental implementation it offers a straightfor-
ward and pedagogically appealing platform for quantita-
tive studies of quantum thermodynamics. Circuit QED
realizations of this system seem particularly promising,
in which case the work output is readily controllable and
extractable, and the influence of the quantum measure-
ment can be demonstrated efficiently.
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