
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Self-organization in Kerr-cavity-soliton formation in
parametric frequency combs

Y. Henry Wen, Michael R. E. Lamont, Steven H. Strogatz, and Alexander L. Gaeta
Phys. Rev. A 94, 063843 — Published 19 December 2016

DOI: 10.1103/PhysRevA.94.063843

http://dx.doi.org/10.1103/PhysRevA.94.063843


Self-organization in Kerr cavity soliton formation in parametric frequency combs

Y. Henry Wen,1, 2, ∗ Michael R. E. Lamont,1 Steven H. Strogatz,3 and Alexander L. Gaeta4

1School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA
2Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
3Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA

4Department of Applied Physics and Applied Mathematics,

Columbia University, New York, New York 10027, USA

We show that self-organization and synchronization underlie Kerr cavity soliton formation in
parametric frequency combs. By reducing the Lugiato-Lefever equation to a set of phase equations,
we find that self-organization arises from a two-stage process via pump-degenerate and pump-
nondegenerate four-wave mixing. The reduced phase equations are akin to the Kuramoto model
of coupled oscillators and intuitively explain the origin of the pump phase offset, predict anti-
symmetrization of the intracavity field before phase synchronization, and clarify the role of chaos in
Kerr cavity soliton formation in parametric combs.
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I. INTRODUCTION

Coupled oscillators with slightly different natural fre-
quencies can self-organize to a synchronized state. This
phenomenon appears throughout biology, chemistry, neu-
roscience, and physics [1, 2]. Examples include power
grid networks, neural networks, chemical oscillators, and
arrays of Josephson junctions and semiconductor lasers
[3–7]. Self-organization in such systems has been mod-
elled with a set of mean-field equations proposed by Ku-
ramoto:

φ̇p = ωp + (κ/N)

N∑

m

sin(φm − φp), (1)

where φp(t) is the phase of the pth oscillator, ωp is its
natural frequency, and κ is the coupling strength [1, 2].
This model can be recast in an order-parameter formula-
tion, where an average phase ψ(t) and a coherence R(t)
are defined via

Reiψ =
1

N

N∑

m

eiφm , (2)

and visualized in Fig. (1a,b). The Kuramoto model then
reduces to

φ̇p = ωp + κR(t) sin(ψ − φp). (3)

Viewed in this way, the φp’s are no longer coupled to
each other, but only to the average phase ψ. Moreover
the effective coupling strength is proportional to the
coherence R(t). This proportionality between coupling
and coherence creates a positive feedback which, above
a critical κ, triggers a transition in which a macroscopic
fraction of the oscillators’ frequencies spontaneously
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FIG. 1. (a) Synchronization of oscillators with distinct natu-
ral frequencies to a phase-locked state with a single frequency.
A large fraction of the oscillator phases lock to ψ, the aver-
age phase. (b) Synchronization transition of the coherence
R. (c) Broadband frequency comb-generation via continous-
wave pumped four-wave mixing in silicon nitride micro-rings.
(d) Modelocking of the cavity modes results in equidistant
frequency spacings.

synchronizes to a single frequency.
In optics an alternative form of phase locking can

occur in lasers and parametric oscillators between a large
collection of cavity modes with nearly equally spaced
frequencies. In these systems the nearest-neighbor
mode spacing varies due to dispersion within the cavity.
Sufficient nonlinearity within the cavity can cause
spontaneous modelocking such that the mode spacings
become identical (Fig. 1c,d). This behavior has been
studied in ultrashort pulse generation in lasers [8–11]
and in microresonator-based four-wave mixing (FWM)
parametric oscillators [13, 15–18] where they are known
as temporal dissipative Kerr cavity solitons. Such oscil-
lators have applications in optical information storage
and processing [19], broadband frequency combs [20],
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optical spectroscopy, and frequency metrology [21–23].
While several theoretical [24–26] and experimental

studies [27, 28] have elucidated the phase dynamics of
the initial formation of parametric combs, no corre-
sponding analysis exists for soliton modelocking. It has
been noted that passive modelocking in lasers is thermo-
dynamically equivalent to a first-order phase transition,
though no treatment of phase dynamics is provided [29].
Furthermore, although Kerr-based parametric frequency
combs have been suggested as the most fundamental
example of self-organization in nonlinear optics [19, 30],
no direct connection has been made to the concepts of
synchronization and self-organization.
In this paper, we reduce the Lugiato-Lefever equation

(LLE) to a set of phase equations. These equations
display self-organized dynamics akin to those in the
Kuramoto model, including meaningful order parame-
ters and coherence-coupling feedback, which we show
underlies the formation of Kerr cavity solitons. These
equations capture much of dynamics of the LLE despite
neglecting the amplitude dynamics of the non-pump
modes. They predict that this self-organization arises
from a two-stage process. First the pump-degenerate
(PD)-FWM processes anti-symmetrize the phases of
symmetric modes about the pump mode, which con-
strains the phase averages of the symmetric modes. This
in turn allows the pump-nondegenerate (PND)-FWM
processes to synchronize the phase differences through a
coherence-coupling feedback mechanism. The equations
also predict an offset of the pump phase from the rest
of the modal phase profile in the cavity soliton state.
This offset cannot be accounted for by the detuning of
the pump field alone; rather it stems from the need for a
sine-like restoring force on phase averages. We compare
the evolution of the phase equations to that of the
full LLE system and observe a strong correspondence
between them, indicating that the phase model captures
the dynamics leading to the formation of cavity solitons.
These observations provide novel insight into a highly
important problem in laser and nonlinear optical physics,
which is to understand the way in which many modes
participate in the formation of localized structures.
The paper is organized as follows. In section II

we reduce the Lugiato-Lefever Equation into a set of
dynamical phase and amplitude equations by taking a
spectral-modal plane wave ansatz, assuming a slowly
varying modal envelope approximation and neglecting
the spectral mode amplitude dynamics. In section III we
consider the case of a single-mode parametric pumping
which allows us to further reduce the dynamical phase
equation into two coupled equations that describe the
dynamics of the phase average and phase difference, re-
spectively, of symmetric pairs of modes about the pump
mode. We call these the Kerr phase equations (KPE),
and from these equations we are able to draw several
key insights into the cavity soliton formation process.
In section IV we compare the temporal dynamics of
the KPE with the LLE and show strong qualitative

similarity between the KPE and the LLE.

II. REDUCTION OF THE LLE INTO PHASE

AND AMPLITUDE EQUATIONS

The governing equation of modelocked parametric fre-
quency combs is the LLE (a damped, driven nonlin-
ear Schrödinger equation inside a cavity) with periodic
boundary conditions [31]:

Tr
∂A

∂t
= Ain−

[α

2
+iδo

]
A+iL

[ 3∑

k≥1

βk
k!

(

i
∂

∂τ

)k

+γ|A|2
]

A,

(4)
where A is the intra-cavity field, t and τ are the slow
and fast times of the system, Ain is the pump field
coupled into the cavity at frequency ωδ0 = ω0 + δo/Tr
where δo/Tr is the detuning of the pump field from
the center of the cavity resonance, βk are dispersion
coefficients, γ is the nonlinear coefficient, α is the to-
tal linear loss per round trip of the cavity of length
L, and Tr = L/vg is the round trip time. We con-
sider the intra-cavity field as a sum of the discrete cav-
ity modes and define a phase φ

′

p(t) for each mode at
the frequency corresponding to the equidistant comb de-
fined by the detuned pump field such that A(t, τ) =
∑N+1
p Ap exp i(ωp − ωδo)t− i(Ωp − Ω0)τe

iφ
′

p
(t). By let-

ting the pump mode index p0 = 0, where N is even
and −N/2 ≤ p ≤ N/2, the slow and fast frequencies
of the field become ωp = 2πvgp/L + ωδo and Ωp =
2πvgp/L + Ωδo. For a sufficiently strong pump field

Ain(t, τ) = A0e
i(φ0+δot) with appropriate cavity detuning

δo and constant phase φ0, a broadband comb of frequen-
cies is generated near the modes of the cavity (Fig.1c).
After an initial build-up period, the amplitudes of the
cavity modes reach a near steady state. Thus, we are
able to neglect the amplitude variations of the modes
and consider only the phases. By using normalized dis-
persion coefficients ξk = (2πvg/L)

kvgβk, we transform
into a generalized form of the LLE[32]:

∂A

∂t
= i

3∑

k≥1

ξk
k!

(

i
∂

∂η

)k

A− iΓ|A|2A−
∆ωo
2

A (5)

A(t, η) =

N∑

p

Ap exp i
[

(ωp − ωδo)t− (p− po)η + φ
′

p(t)
]

,

(6)
where η is the angle around the circumference of the cav-
ity and ξ’s correspond to the dispersion coefficients. ωo
and po are the frequency and the mode number of the
pumped mode, and Γ = γL/Tr is the four-wave mixing
gain coefficient.
By inserting the modal ansatz into the general LLE

and following the derivation detailed in Appendix A we
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FIG. 2. Scheme for (a) pump-degenerate and (b) pump-
nondegenerate four-wave mixing. The amplitude of the cen-
tral pump-mode is ρ times stronger than the non-pump
modes.(d) Energy diagrams for the PD-FWM, PND-FWM
and nondegenerate (ND)-FWM processes.

obtain the following pair of equations for the phases and
amplitudes of comb modes,

φ̇p =

3∑

k≥2

ξk
k!
(p)k − Γ

N∑

lmn

A2
lpδ

ln
mp cos(φ

ln
mp) (7)

Ȧp = −
∆ωo
2

− Γ

N∑

lmn

A2
lpδ

ln
mp sin(φ

ln
mp), (8)

where Alp =
√

AlAmAn/Ap, φ
ln
mp(t)=φl(t) − φm(t) +

φn(t) − φp(t) and δlnmp is a generalized Kronecker delta
that is unity when l−m+ n− p = 0 and zero otherwise.
This set of equations is numerically identical to the
LLE. However, it does explicitly show the dependence
of the phase of each mode on the phases and amplitudes
of other modes. Equation 7 also shows structural
similarities to the Kuramoto model with phase dynamics
defined as an interplay between frequency disorder
terms, arising from dispersion, and a coupling arising
from the Kerr nonlinearity. However, the Kerr coupling
term, with four-phase interactions, is significantly more
complicated than the two-phase interactions of the
Kuramoto model.

III. THE KERR PHASE EQUATIONS: THE

PHASE-AVERAGE AND PHASE-DIFFERENCE

EQUATIONS

In the rest of the paper we focus on the dynamical
phase equation (Eq.7), since we are interested in the
phase dynamics of the cavity soliton formation process.
In the following section we reduce this equation, in the

case of single frequency parametric pumping, into two
coupled equations for the phase average and phase dif-

ference of symmetric modes about the pump. We first
consider the role of the amplitudes on the terms in the
coupling term. If all the amplitudes are identical (i.e.
Al = Am = An = Ap = Ac), then Eq.7 has no globally
stable solution. The cosine coupling function pulls its
argument towards a value of −π/2. However, this crite-
rion cannot be satisfied by all energetically appropriate
combination of phases simultaneously. So it is apparent
that a comb with all modes having equal amplitude can
not be stable.
Under conditions of comb generation, the pump field

is typically several orders of magnitude stronger than
the non-pump modes. We assume all non-pump modes,
ranging from −No/2 to No/2, have the same amplitude
(Ac). The pump mode then has amplitude A0 = ρAc as
shown in Fig. 2, with ρ having values typically from 10-
100. This allows the decomposition of the Kerr coupling
term and its constituent FWM process via the ampli-
tude coefficients A2

lp into classes of terms with relative

strengths ρ2, ρ, 1, and ρ−1. In our analysis we keep only
the strongest FWM processes, which scale as ρ2 and ρ.
The terms that scale as ρ2 are a result of the PD-FWM
processes, where two pump photons are annihilated to
create a photon pair at modes symmetric about the pump
mode (Fig.2a). The terms that scale as ρ are due to the
PND-FWM processes, in which one pump photon and
one comb photon are annihilated and create two photons
at the energetically appropriate modes (Fig.2b). This de-
composition leads to the following Kerr coupling terms:

PD−FWM
︷ ︸︸ ︷

ΓA2
cρ

2 cos
[
2φ0 − (φp + φ−p)

]
−

ΓA2
cρ

No/2∑

m=−No/2

cos
[
φ0 + (φm − φm−p)− φp

]

︸ ︷︷ ︸

PND−FWM

. (9)

There is only one PD-FWM term, and it has in its argu-
ment the value (φp+φ−p), which corresponds to a phase
average of the pth modes symmetric about the pump.
The presence of the phase average term in the Kerr

coupling term suggests that the natural variables to
describe the system are not the individual phases but
are rather the phase average and difference for pairs
of modes symmetric about the pump mode, that is,
φ̄p = (φp + φ−p)/2 and θp = (φp − φ−p)/2p, respec-
tively. Additionally, since the PD-FWM term is ρ times
stronger than the PND-FWM term, and the PND-FWM
term is close to zero due to random initial phases, the
PD-FWM dominates the initial dynamics, with the co-
sine having the effect of anti-symmetrizing the phases of
symmetric modes such that (φp − φo) ≈ −(φ−p − φo).
Following the derivation detailed in Appendix B we ob-
tain the following set of equations for the phase average
and phase difference of symmetric pairs of modes, which
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together comprise the Kerr phase equations(KPE),

˙̄φp =
ξ2
2
p2 − 2Γρ2A2

c cos[2(φ0 − φ̄p)]− ΓρA2
cNoR(t) cos(φ0 − φ̄p) cos[p(θp − θo)], (10)

θ̇p =
ξ3
3
p2 −

2ΓρA2
cNo
p

R(t) sin(φ0 − φ̄p) sin[p(θp − θo)], (11)

where θo is the normalized average phase difference, anal-
ogous to ψ in the Kuramoto model (Eq. 3). It corre-
sponds to the slope of the phase profile which yields a
temporal translation of the pulse profile along the cavity
length. The coherence R(t) measures the extent to which
the phase differences θm align to their average θo, and are
given by,

θo(t) =
8

N2
o

No/2∑

m=1

mθm, (12)

R(t) =
2

No

∣
∣
∣
∣
∣
∣

No/2∑

m=1

exp im(θm − θ0)

∣
∣
∣
∣
∣
∣

, (13)

The triple sum reduces to a single sum, and the phase-
average and phase-difference parameters are separable
due to the phase anti-symmetry induced by the PD-
FWM term.

IV. CAVITY SOLITON FORMATION IN THE

KERR PHASE EQUATIONS

In this section we analyze the dynamics of cavity
soliton formation as described by the KPE and compare
these results to those of the full LLE. Since the KPE is a
set of reduced phase equations for which the amplitude
variations have been neglected, we should seek qualita-
tive agreement between the two models and intuitive
understanding of the dynamics via the analytical nature
of the KPE.
We begin by considering the evolution of the KPE

system starting from a random phase profile. Since the
PD-FWM term scales as ρ2, it initially dominates the
dynamics. Its presence in the phase-average equation
(Eq. 10) tends to anti-symmetrize the phase profile
about the pump phase φ0. The PND-FWM terms do
not initially play a role since the coherence R(t) is zero
(due to the initially random phases), sin(φ0 − φ̄p) is
typically zero as well, and since they are inherently ρ
times smaller than the PD-FWM terms. Once anti-
symmetrization of the phases occurs the sin(φ0 − φ̄p)
factor become non-zero and the coherence builds up via
in the phase-difference equation. This self-organization
results in a near-linear spectral phase profile, which is
consistent with evolution to a well-defined pulse (i.e. a

(a)

Lugiato-Lefever Eq.

(b)

(c) (d)

Kerr Phase Equations

∆φ=π/3

∆φ=π/4

∆φ=π/2

∆φ=π/3

FIG. 3. (a,b) Three stages of evolution of the intra-cavity field
predicted by (a) the KPE and (b) the LLE. Solid grey curves
represent the initial random phase profile. Dotted red curves
show the phase evolution after 370 (KPE) or 308 (LLE) round
trips; both phase profiles depict the anti-symmetrization of
the spectral phase due to the pump degenerate FWM pro-
cesses. Black curves show the final phase profile after 3394
round trips (both models). The phases have become synchro-
nized by the pump non-degenerate terms. Note the slight
offset of the pump phase from the phases of the other cavity
modes. (c,d) The final spectral phase profiles of the KPE and
LLE systems deviate from a pure linear profile, including the
pump phase offsets. (insets) Temporal pulse shapes of the
KPE and LLE.

cavity soliton) as predicted by the LLE model. Thus,
the initial dynamics leading to synchronization and
soliton formation consists of the following two stages:
the PD-FWM term entrains the phase averages to a
fixed input phase; whereas the PND-FWM term uses
coherence-coupling feedback to self-organize the system
around a non-fixed normalized average phase difference.
We perform numerical simulations of the tempo-

ral evolution of the KPE and the full LLE systems
using parameters presented in [35] and verify the
self-organization route to cavity soliton formation. For
both models, Figs. 3(a,b) show the predicted two-stage
progression from an initially random phase profile to an
anti-symmetric profile and then to full synchrony. A
notable feature of the LLE cavity soliton phase profile
is a static offset of the pump phase from the rest of
the phase profile. This offset cannot be explained by
time-constant phase shifts such as the pump field detun-
ing, self-phase modulation, or cross-phase modulation.
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Kerr Phase Equations Lugiato-Lefever Equation

FIG. 4. Coherence R (red-dotted) and normalized average
phase difference θo (green) for the (a) Kerr Phase Equa-
tions (KPE) and the (b) Lugiato-Lefever Equation (LLE).
Both systems show an abrupt transition to a stable phase-
synchronized state. Coherence R (red-dotted) and phase sym-
metry Rasym (blue) for the (c) KPE and (d) LLE.

Rather it results from phase matching conditions of
the dominant FWM processes identified above. It can
also be understood from the KPE system: In order for
the PD-FWM term to act as a restoring force on the
phase averages as in the Kuramoto model, it must have
a sinusoidal, rather than co-sinusoidal, dependence on
the phase averages. We compare in detail the spectral
phase profiles in Fig. 3(c,d). Both systems stabilize to
a broadband phase-locked state with an offset of the
pump phase from the rest of the phase profile. Due
to the factor of 2 in the argument of the PD-FWM
cosine term, this offset should be 0 < ∆φ < π/2 and
centered at π/4 for the term to have a significant
sine-like contribution. Both the KPE and the LLE
predict pump phase offsets within these bounds. The
LLE system has a slightly larger pump phase offset due
to self-phase and pump-induced cross-phase modulation
effects neglected in the KPE. The insets in Fig. 3(c,d)
confirm that the broadband phase-locked state gives a
solitary pulse in the time domain. The exact pulse shape
for the KPE is not particularly meaningful since the
modes have equal amplitude, yielding a sinc-like pulse
without a CW background. This is, to our knowledge,
the first explanation of the pump phase offset of the
cavity soliton-modelocked states in a Kerr comb.
The evolution of the order parameters further val-

idates our claims that 1) the amplitude dynamics of
the comb are negligible and 2) the PD-FWM processes
anti-symmetrize the phases prior to the onset of phase
synchronization. Figure 4(a,b) compares how R(t) and
θo(t) evolve in the KPE and LLE systems. Despite slight
quantitative differences, both systems exhibit abrupt
transitions to an ordered state, as indicated by the sharp
rise and subsequent stabilization of the coherence R.
Likewise, θo(t) behaves similarly in both systems; after
an initial rapid increase, it declines and stabilizes at a
constant value. Closer inspection of the two parameters

N
o
 = 140

N
o
 = 170

N
o
 = 200

FIG. 5. Time evolution of the coherence for the KPE for three
values of No= 140, 170, 200. The equations are only stable
for 185 > No > 155, which is consistent with the soliton
condition of the LLE.

(insets) reveals relaxation behavior on the order of 1 ns,
close to the cavity lifetime of 1.42 ns. The remarkable
quantitative similarity of dynamics indicates that the
cavity soliton formation process is truly dominated by
phase rather than amplitude dynamics.

Next we consider the parameter Rasym =
2
No

∣
∣
∣
∑No/2

m=1 e
i(φ̄m−φ0)

∣
∣
∣, which quantifies the extent

to which the phase profile is anti-symmetric about
the pump phase and is equivalent to a coherence of
the phase averages. Figure 4(c,d) shows that in both
systems, phase anti-symmetry occurs before coherence is
achieved, and the coherence cannot grow until the phase
anti-symmetry has reached a high value. This confirms
our initial prediction that the PD-FWM term must
anti-symmetrize the phase profile before the PND-FWM
term can synchronize the phases to a near linear profile.
These dynamics are only observed in cavity soliton
formation, not in the Turing pattern or chaotic states.
Furthermore, the phase symmetry does not fully stabilize
until the coherence has reached a high value, and in
turn, the coherence does not stabilize until the phase
symmetry has fully stabilized. These results illustrate
the necessity of phase anti-symmetrization to precede
phase synchronization in cavity soliton formation and
the complex interplay between phase symmetry and
phase coherence. We further find that synchronization
in the KPE is stable only for 185 > N0 > 155 as shown
in Fig. 5. Choosing the most stable number N0 =
170 results in synchronization of 152 modes, in close
correspondence to the LLE where 155 modes are locked.
This indicates that the KPE synchronization bandwidth
depends on the balance of disorder and coupling and is
not simply constrained to N or No.
Passage through a chaotic state has been suggested

as necessary for cavity soliton modelocking to occur
[35, 36]. The correspondence between Fig. 4(a,c) and
(b,d) suggests that the role of the chaotic stage is to
randomize the phase profile, thereby preventing Turing
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pattern and mini-comb-related FWM processes from
dominating the phase matching of the comb [25, 37].
Turing states and the associated mini-combs have phase
profiles that lack global symmetry about the pump
phase and thus cannot directly enter into a cavity
soliton state. However, some parameter regimes of the
KPE yield phase profiles with multiple phase-offset
modes and phase-steps, similar to states measured by
Del’Haye et al. [27], and are the subject of ongoing
work. In saturable-absorption-based modelocked lasers
the coupling term in Eq. (A7) will include a significant
sine component, and phase synchronization is possible
without a coherent pump field. Given the generality
of the root equation of the LLE, which is the complex
Ginzburg-Landau equation, this synchronization model
may be applicable to the phase transition dynamics in a
wide range of nonlinear dissipative systems.

Appendix A: Reduction of the LLE into phase and

amplitude equations

In Appendix A we detail the derivation that reduces
the LLE equation with discrete modes (Eqs. 5, 6) into
a pair of dynamical equations for the amplitude and
phases of the modes (Eqs. 8, 7). Since the modes
represented in Eq. 6 exist on a nearly equidistant
grid of frequencies, all of the phase dynamics of each
mode can be parametrized by the factor φ

′

p(t) . We
can transform into the group velocity frame by using
η → η − ξ1t. By expanding the modal frequencies ex-
plicitly in terms of the mode number and dispersion
(ωp ≈ ωpo+ξ1(p−po)+

1
2ξ2(p−po)

2)and letting po = 0 we

obtain A(t, η) =
∑N
p ap exp i

[
ξ2
2 p

2t− pη + φ
′

p(t)
]

. Fur-

thermore, we can include dispersion effects into the phase
factor without losing generality, φ

′

p(t)+
1
2ξ2p

2t+ 1
6ξ3p

3t→
φp(t). Injecting the field into the left hand side (LHS) of
the LLE we obtain,

∂A

∂t
=

N∑

p

Ap exp i
[
pη + φp(t)

] (

Ȧp + iφ̇p(t)
)

(A1)

For the right hand side (RHS) of Eq. (5) we examine
each term. The dispersive terms:

i
3∑

k≥2

ξk
k!

(

i
∂

∂η

)k

A =

− i
N∑

p

Ap exp
(
iφp(t)

)
3∑

k≥2

ξk
k!

(

i
∂

∂η

)k

exp (−ipη)

= iA

3∑

k≥2

ξk
k!
pk (A2)

and results in a term linear in the field A. The Kerr term
becomes:

iΓ|A|2A = iΓ
N∑

l,m,n

AlAmAn
Ap

exp i [φl − φm + φn]. (A3)

The loss term is a scalar multiple of the field, that is,
−∆ωo

2 A. Next we recombine the LHS and RHS of Eq. 5
and factor out the quantity iA(t) from both sides of the
equation, which results in the following:

φ̇p(t)− iȦp(t) = i
∆ωo
2

+
3∑

k≥2

ξk
k!
pk −

iΓ|A|2A

Ap exp
[
iφp(t)

] .

(A4)
The Kerr term (i.e., the final term in Eq. (A4)) can be
further simplified:

= iΓ

N∑

l,m,n

A2
lp exp i[φl(t)− φm(t) + φn(t)− φp(t)] (A5)

where Alp =
√

AlAmAn/Ap and where energy conserva-
tion constrains the indices to the condition l−m+n−p =
0. Putting this back in Eq. (5) we obtain,

φ̇p(t)− iȦp(t) = i
∆ωo
2

+
3∑

k≥2

ξk
k!

(q)k

− Γ
N∑

l,m,n

δlnmpA
2
lp exp i

[

φlnmp(t)
]

, (A6)

where φlnmp(t)=φl(t)−φm(t) +φn(t)−φp(t) and δ
ln
mp is a

generalized Kronecker delta that is unity when (l+ n) =
(m + p) and zero otherwise. We separate the real and
imaginary parts of the equation to obtain the following
pair of equations for the phases and amplitudes, respec-
tively,

φ̇p =
3∑

k≥2

ξk
k!
(p)k − Γ

N∑

lmn

A2
lpδ

ln
mp cos(φ

ln
mp) (A7)

Ȧp = −
∆ωo
2

− Γ

N∑

lmn

A2
lpδ

ln
mp sin(φ

ln
mp). (A8)

Appendix B: Derivation of The Kerr phase equations

In Appendix B we detail the derivation that transforms
the dynamical phase equation (Eq. 7) into the Kerr phase
equations (Eqs. 10, 11), a pair of coupled equations for
the phase averages and phase differences of symmetric
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pairs of modes.

˙̄φp =
ξ2
2
p2 − 2ΓA2

cρ
2 cos[2(φ0 − φ̄p)]

− 2ΓA2
cρ

No/2∑

m=1

(
cos[φ0 + (φm − φm−p)− φp]

+ cos[φ0 + (φ−m − φp−m)− φ−p]
)
. (B1)

Due to the frequency-symmetric nature of the phase
average, this equation represents the “even” behavior of
the system, which includes the second order dispersion,
PD-FWM and the sum of the PND-FWM. PD-FWM is
ρ times stronger than the PND-FWM, and the PND-
FWM is initially zero due to random phases. Thus the
PD-FWM dominates the initial dynamics, with the co-
sine having the effect of anti-symmetrizing the phases of
symmetric modes such that (φp − φo) ≈ −(φ−p − φo).
A key feature of this term is that it predicts a phase
offset of the pump from the rest of the phase profile by
π/4 < ∆φ0 < π/2, since such an offset is necessary to
produce a sine-like coupling term that can compensate
for dispersion and lead to synchronization. We define
the phase difference of the pth modes symmetric on either
side of the pump as pθp = (φp − φ−p))/2. The resulting
equation of motion is given by

pθ̇p =
ξ3
3
p3 − 2ΓA2

cρ

No/2∑

m=1

(

cos[φ0 +(φm−φm−p)−φp]

− cos[φ0 + (φ−m − φp−m)− φ−p]
)

. (B2)

This equation contains the “odd” terms such as the third-
order dispersion and the difference of the PND-FWM
terms. The sum of the two cosine terms becomes

cos
[
φ0 + (φm − φm−p)− φp

]

− cos
[
φ0 + (φ−m − φp−m)− φ−p

]

= −2 sin

[

p

(
θmp − θ−mp

2
+ θp

)]

× sin

[

φ0 − p

(
θmp + θ−mp

2
− φ̄p

)]

, (B3)

where θ±mp = φ±m − φ±(m−p). The same reduction
applies to the PND-FWM term in the phase average
equation except the corresponding angle addition for-
mula must be use in place of the angle difference for-
mula. We recall from the phase average equation that
due to the anti-symmetrizing effect of the PD-FWM,

(φp − φo) ≈ −(φ−p − φo), thus θ−mp = −θmp and the
equation for the phase average simplifies to

pθ̇p =
ξ3
3
p3 + 2ΓA2

cρ sin(φ0 − φ̄p)

×

No/2∑

m=1

sin[mθm + (p−m)θp−m + pθp)], (B4)

allowing the phase average dependence to be pulled out
of the sum, such that the coupling term is now a sum over
one index. It can now be written in the form of an order
parameter, in close analogy to the Kuramoto model, via
the following relations:

R(t) exp ip(θo − θp)

=
2

No

No/2∑

m=1

exp ip(θm + θp−m − θp), (B5)

1

N

N∑

m=1

exp i(mθm + (N −m)θN−m)

≈
1

N





N∑

m=1

exp i(mθm)





2

. (B6)

Equation B6 is an approximation valid in the limit of
large N and a mono-modal distribution of phase differ-
ences. Thus we are able to define the mean phase differ-
ence θo(t) and the coherence R(t):

θo(t) =
8

N2
o

No/2∑

m=1

mθm, (B7)

R(t) =
2

No

∣
∣
∣
∣
∣
∣

No/2∑

m=1

exp im(θm − θ0)

∣
∣
∣
∣
∣
∣

, (B8)

which allows us to fully define the Kerr Phase equations
given by Eqs. 10 and 11.
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