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We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferom-
eter with a coherent state combined with a squeezed vacuum state. This interferometer is formed
with two parametric amplifiers for beam splitting and recombination instead of beam splitters.
We show that the sensitivity of phase estimation approaches Heisenberg limit and give the corre-
sponding optimal condition. Moreover, we derive the quantum Cramér-Rao bound of the SU(1,1)
interferometer.

PACS numbers: 42.50.St, 07.60.Ly, 42.50.Lc, 42.65.Y]

I. INTRODUCTION

High precision metrology has recently been receiving
a lot of attention @@] due to the benefits to advanced
science and technology. One common tool for high pre-
cision measurement is optical Mach-Zehnder interferom-
eter (MZI), which typically contains two beam splitters
(BS). Usually coherent light is split by the first BS, then
one beam experiences a phase shift ¢ while the other is
retained as a reference, and the two beams combine by
a second BS. One can detect the output light to obtain
the phase shift information. However the phase sensitiv-
ity, Ag, is limited by the shot noise limit (SNL), 1/v/n
(7 is the total mean photon number). This limit is due
to the classical nature of the coherent state and can be
surpassed by using nonclassical states of light, such as
squeezed states [5] and NOON states [d, [7]. With the
help of the nonclassical states the phase sensitivity can
achieve Heisenberg limit (HL).

Another possibility for beating the SNL is to use an
interferometer in which the mixing of the optical beams
is done through a nonlinear transformation, such as the
SU(1,1) interferometer as shown in Fig.[[l This type of
interferometer, first proposed by Yurke et al. ﬂé], is de-
scribed by the group SU(1,1), as opposed to the SU(2)
Mach-Zehnder one, where nonlinear transformations are
optical parametric amplifiers (OPA) or four-wave mix-
ers. Yurke et al. B] pointed out that this type of in-
terferometer with vacuum inputs has a phase sensitivity
1/[a(n + 2)]*/? where @ is the total mean photon num-
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ber inside the interferometer and is equal to 2sinh?g
with g as the OPA strength. However, i is small be-
cause the photon number in this scheme is only related
the OPA strength g which is of order of 3 available cur-
rently ﬂQ, @] This phase sensitivity has been also dis-
cussed in Refs. [11, [12].

Recently, a new theoretical scheme was proposed to
inject strong coherent light to “boost” the photon num-
ber in an SU(1,1) interferometer with intensity detection
by Plick et al. Nﬁ] Their scheme circumvents the small-
photon-number problem. Jing et al. ﬂﬂ] reported the
experimental realization of such an interferometer. In
this nonlinear interferometer, the maximum output in-
tensity can be much higher than the input due to the
parametric amplification. Marino et al. ﬂﬁ] investigated
the loss effect on phase sensitivity of the SU(1,1) inter-
ferometers with intensity detection. They showed that
although propagation losses degrade the phase sensitiv-
ity, it is still possible to beat the SNL even with a sig-
nificant mount of loss. Hudelist et al. [10] observed an
improvement of 4.1 dB in signal-to-noise ratio compared
with an SU(2) interferometer under the same operation
condition. More recently, Li et al. HE] showed that an
SU(1,1) interferometer with coherent and squeezed input
states via homodyne detection can approach the HL.

All of the SU(1,1) interferometer schemes mentioned
above involve the all-optical nonlinear process as beam-
splitter. By contrast, experimental realization of the
SU(1,1) all-atomic [17-21] and atom-light hybrid [22]
interferometers have been also reported, respectively.
Gabbrielli et al. ] presented a nonlinear three-mode
SU(1,1) atomic interferometer realized with ultracold
atoms. Chen et al. [22] reported an SU(1,1) atom-light
hybrid interferometer utilizing the interface between the
light and collective atomic excitation. Furthermore, the
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SU(1,1)-type interferometer was also proposed in the cir-
cuit quantum electrodynamics system @], which pro-
vides a different method for basic measurement.

Heisenberg-limited sensitivity of phase estimation is
one goal of quantum optical metrology. For this pur-
pose, the search for the optimal detection scheme still
continues. Here, we consider parity measurement as our
detection scheme. Parity detection was first proposed by
Bollinger et al. ﬂa] in 1996 to study spectroscopy with
a maximally entangled state of trapped ions. It was
later adopted for an optical interferometer by Gerry M]
Mathematically, parity detection is described by a simple
single-mode operator IT = (—=1)V, where N is the photon
number operator. Hence, parity is simply the evenness
or oddness of the photon number in an output mode. In
experiments, the parity operator can be implemented by
using homodyne techniques m] for high power, or ob-
serving the photon-number distribution with a photon-
number resolving detector for small photon numbers.

Here, we still consider input with coherent |y =
|agle?=) (6, is the initial phase of input coherent state)
and squeezed vacuum light 0,6 = 7e¥) (r and 0
are parameters) as in the previous work [16] which fo-
cuses on homodyne detection on SU(1,1) interferome-
ters. With coherent and squeezed vacuum light as in-
puts, one can reduce the required intensity of input co-
herent states and obtain the same interferometric sen-
sitivity, which can eliminate the disadvantages due to
using strong coherent states. Furthermore, as shown in
Ref. [16], these input states in an SU(1,1) interferometer
are shown to approach the HL. when the mean photon
numbers in coherent state and squeezed vacuum state are
roughly equal under the condition of OPA process with
a strength ¢ in the limit of e79 — 0. This optimal con-
dition for SU(1,1) interferometers is similar to the SU(2)
case @] For an MZI injected by coherent and squeezed
vacuum light, the phase sensitivity with parity detection

is 1/\/|0<0|2 2" + sinh® 7. When the coherent input state

and squeezed vacuum input state have a roughly equal
intensity, the phase sensitivity reaches the HL.

In this paper, we study parity detection on an SU(1,1)
interferometer with coherent and squeezed-vacuum in-
put states. Compared with homodyne detection and in-
tensity detection, parity detection has a slightly better
phase sensitivity. We also compared the phase sensitiv-
ity with another quantum limit, the quantum Cramér-
Rao bound (QCRB) [1l, 27] which sets the ultimate limit
for a set of probabilities that originated from measure-
ments on a quantum system. The QCRB is asymptoti-
cally achieved by the maximum likelihood estimator and
gives a detection-independent phase sensitivity A¢qcrs.

This paper is organized as follows: In Section II we
first present the propagation of input fields through the
SU(1,1) interferometer. Then we discuss the HL in an
SU(1,1) interferometer and compare the phase sensitiv-
ity with the HL and the QCRB in Section III. Last, we
conclude with a summary.

Parity
detection

FIG. 1: (Color online) The schematic diagram of SU(1,1) in-
terferometer. Two OPAs take the place of two beam splitters
in the traditional Mach-Zehnder interferometer. g1 (g2) and
01 (02) describe the strength and phase shift in the OPA pro-
cess 1 (2), respectively. a; and b; (i = 0,1, 2) denote two light
beams in the different processes. The pump field between
the two OPAs has a 7 phase difference. ¢: phase shift; M:
mirrors.

II. PARITY DETECTION ON AN SU(1,1)
INTERFEROMETER

A. Model

Fig. M presents the model of an SU(1,1) interferometer,
in which the OPAs replace the 50-50 beam splitters in a
traditional MZI. Here we consider a coherent light mixed
with a squeezed vacuum light as input. a (a') and b (b1)
are the annihilation (creation) operators corresponding
to the two modes a and b. After the first OPA, mode
b is retained as a reference, while mode a experiences
a phase shift ¢. After the two modes recombine in the
second OPA, the outputs of the two modes are dependent
on the phase difference ¢.

Next, we will focus on the evolution of the input
state through an SU(1,1) interferometer in phase space.
The Wigner function of the input state, a product state
log) ® [0, € = ret?s), with coherent light amplitude ag =
|aple?= and squeezed vacuum with parameters r and 6,
is given by

Win(ai, ao; Bi, 1) = Wagy (@i, ) Wio,ey (Bis ), (1)

where Wiy (o, ap; 8i, 1) plays the role of quasi-probability
density for the complex variables «; and [3; corresponding
to the input beams in the mode a and b, respectively. The
corresponding Wigner functions of coherent and squeezed
vacuum state can be described as @]

2 _ a;—«
Wla())(Oéi,OéO) = —¢€ 2o 0|27 (2)

OB

W, . _ = —2|,8¢\2Cosh2r+(6i2+,8f2)sinh2r7 3
0.6)(Bi,m) = —e (3)
where 37 is the conjugate of ; and 6, has been set to
zero by appropriately fixing the irrelevant absolute phase

o
After propagation through the SU(1,1) interferometer
the output Wigner function is written as

Wout (ag, Bf) = Winlevi(avy, By), Bieg, Be)l,  (4)



where ay and (¢ are the variables related to the output
beams in the mode a and b, respectively, and the relation
between variables is described by

(3)-r(%)

where S} are the conjugate of ;. Generally, the prop-
agation through the first OPA, phase shift and second
OPA is described by

T = Topa2T¢Topra1, (6)

where
Tora1 = ( Zli Zi ) ) (7)
e 0
=% 7). ®)

Topraz = <uf " ) : (9)

Uy U2
Here u; = coshgj, v; = €% sinh g;, and vj is conjugate
of v, where 6; and g; are the phase shift and parametric
strength in the OPA process j (j = 1, 2), respectively, see,
for example Ref. m] More specifically, we assume that
the first OPA and the second have a 7 phase difference
(particularly 6; = 0 and 03 = ) and same parametric
strength (g1 = g2 = g). In such a case, the second OPA
will undo what the first one does (namely a2 = ao and
82 = I;O) when phase shift ¢ = 0, which we call a balanced
situation.
Combined with Egs. [@)-@), the input-output relation
of variables has the following form

a; — Gay + RB%, (10)
Bi = —Ray + Hpj, (11)
where G = A — iBcosh(2g),H = A + iBcosh(2g) and
R = —iBsinh(2g) with A = cos(¢/2)e”"%/? and B =

sin(¢/2)e**/2. Therefore, the output Wigner function
of a nonlinear interferometer is described by

4 L
Wout (Oéf; ﬂj) :—2672|Gaf+R5f7a0|

™
> 672|7Rocf+Hﬁ; 2COSh(2T)
% eQRc[(fRaerHB})Q]sinh(2r)' (12)

B. Phase sensitivity

Parity measurement has been proved to be an efficient
method of detection in interferometer for a wide range
of input states @m] For many input states, parity
does as well, or nearly as well, as state-specific detec-
tion schemes m, @] Furthermore, as has been reported
recently, parity detection with a two-mode, squeezed-
vacuum interferometer actually reaches below the phase
sensitivity of 1/7 scaling, achieving the QCRB [L1].

In this paper, we consider parity detection as our mea-
suring method. The parity operator detection on output
mode b is T, = (—1)b£b2. From the Wigner function, the
parity signal is given by [34]

() =5 [ Wonslay, 0)Pa. (13)

In our case, (II,) is a series of rather complex and un-
illuminating expressions which are shown in Appendix[Al

The sensitivity of phase estimation based on the out-
come of the parity detection is estimated as

g = St (14)
¢

which is a ratio of detection noise to the rate at which
signal changes as a function of phase, (All,) = ((IIZ) —
(IL)*)1/2 = (1= (I)*)"/2.

The phase sensitivity with parity detection for an
SU(1,1) interferometer with coherent and squeezed vac-

uum states is found to be minimal at ¢ = 0 and is given
by

1

{N,[sinh(2r) cos(20,) + cosh(2r)] + Ny + 1}1/2
y 1

[Nopa(Nopa + 2)]1/2’

Ap =

(15)

where N, = |ag|? is the intensity of input coherent light,
N, = sinh?r is the intensity of the input squeezed vac-
uum light, and Nopa = 2 sinh? g is the spontaneous pho-
ton number emitted from the first OPA which is related
to parametric strength. When 6, = 0, the optimal phase
sensitivity is found to be

1
[(Na€?" + N5+ 1)Nopa(Nopa + 2)]'/2’

Agp = (16)

where the factor €2 results from the input squeezed vac-
uum beam. If vacuum input is injected (Ns = 0 and
N, = 0), the phase sensitivity with parity detection is
reduced to A¢y = 1/\/NOPA(NOPA + 2), which is the
same as result of Yurke’s scheme with intensity detec-
tion [g].

III. DISCUSSION
A. Heisenberg Limit

In this section, we compare the optimal phase sensitiv-
ity of parity detection with the HL. According to Ref. ﬂﬂ]
the corresponding HL is related to the total number of
photon Nyot (= (alay+b1b,)) inside the SU(1,1) interfer-
ometer, not the input photon number as the traditional



MZI. This is due to amplification of phase-sensing photon
number by the first OPA. Then the HL is given by

(17)

where the subscript HL represents Heisenberg limit. Ac-
cording to Ref. HE] the total inside photon number is

NTot - (NOPA+1)(NOL+NS)+NOPA7 (18)

where the first term on the right-hand side, (Nopa +
1)(Ng+ Ns), results from the amplification process of the
input photon number and the second one is only related
to OPA strength g which corresponds to amplification of
vacuum input state or the so-called spontaneous process.
Thus the total inside photon number Nty corresponds to
not only the OPA strength but also input photon number.

When vacuum input is injected, the Heisenberg limit
is found to be A¢ur, = 1/N1ot = 1/Nopa while the
corresponding phase sensitivity with parity detection is
A¢yv = 1/y/Nopa(Nopa +2). Fig. Bl(a) compares the
phase sensitivity A¢y with the HL and the SNL, as a
function of OPA strength g, under the condition of vac-
uum input. It reveals that parity detection can achieve
the HL. With the increase of g, the phase sensitivity A¢
becomes more and more close to the HL. We notice that
the SNL is below the HL. when ¢g < 0.6 which is due to
the total inside photon number Nty < 1.

Next, we consider coherent and squeezed vacuum in-
put states. Comparing Eq. ([[6) with Eq. (), the nec-
essary optimal condition for approaching HL in the limit
of e™" — 0 and e™9 — 0 is found to be iﬁ]

__ tanh(2g)e”

oo ~ 5

This expression reveals the requirement for the input co-
herent state |agl, the input squeezed vacuum state r and
the OPA process g. When tanh(2g) ~ 1, Eq. (I9) is sim-
plified to N, ~ €% /4 ~ sinh?» = N,. The total photon
number of Eq. ([I8)) simplifies to Nrot >~ 2Nopa N,. Then
under the condition of tanh(2¢g) ~ 1, the phase sensitivity

A¢ with parity detection of Eq. (I0) always approaches
the HL of Eq. (IT7)), which is given by

1 1

Ao ~ ~ .
¢ VANZNZ oy Nrot

Similar to the MZI, it requires the photon numbers in two
input ports of the SU(1,1) interferometer to be balanced
to approach the HL [38]. We plot the phase sensitivity
A¢ as a function of OPA strength ¢ in Fig. 2(b) which
presents the comparison between A¢ and A¢yr,. Under
the condition » = 2 and |ag| = tanh(2g)e”/2, the phase
sensitivity approaches the HL. when g > 2 (tanh(2g) ~
1). When g < 1, increasing the input squeezed parameter
r and increasing input coherent mean photon number
enable the phase sensitivity to beat the SNL, but it does
not approach the HL. Fig. 2lc) is a plot of the phase
sensitivity A¢ as a function of input squeezed parameter
r. Given g = 2 and |ag| = tanh(2g)e”/2, the phase
sensitivity is always below the SNL and close to the HL.
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FIG. 2: (Color online) Sensitivity of phase estimation with
parity detection as a function of (a) g with vacuum input
r =0 and |ag| = 0, (b) g with » = 2 and |ao| = tanh(2g)e” /2,
(¢) r with g = 2 and |ao| = tanh(2g)e” /2. The dotted-orange
line is for the SNL, the dash-dotted-blue is for the HL, the
dashed-green is for the QCRB, and the solid-red is for the
phase sensitivity with parity detection.

B. Quantum Cramér-Rao Bound

So far, we have shown that parity detection can ap-
proach the phase sensitivity of scaling of 1/Nro in the
SU(1,1) interferometer with coherent and squeezed vac-
uum input states. In this section we will investigate the
QCRB of an SU(1,1) interferometer and compare the
optimal phase sensitivity by parity detection with the
QCRB which gives an upper limit to the precision of



quantum parameter estimation. We also compare parity
detection with homodyne detection and intensity detec-
tion.

Recently, Gao et al. @] developed a general formalism
for the QCRB of Gaussian states, in which the QCRB can
be fully expressed in terms of the mean displacement and

covariance matrix of the Gaussian state. Here, we utilize
this method to obtain the QCRB of our interferometric
scheme. The QCRB for an SU(1,1) interferometer with
coherent and squeezed vacuum input is found to be, see
Appendix [Bl for details,

Adqers = {2Na(Nopa + 2)[Nopa(Ns + /No(Ns + 1) 4+ 1)] + Nopa[Nopa(2Ns +1) + 2(N. + 1)} 72, (21)

where the term on the right-hand side shows that
A¢qcrs is related to not only the input coherent inten-
sity and the input squeezed-vacuum intensity, but also
the optical parametric strength.

Table [l shows the QCRB with four different Gaussian
input states. For vacuum input (r = 0, N, = 0), the
QCRB is reduced to Adqcrs = 1/v/Nopa(Nopa +2),
and it can be saturated by parity detection and intensity
detection. However, in this case the phase sensitivity of
homodyne detection with vacuum input is not available
due to its measurement signal being a constant 0 inde-
pendent with phase shift ¢ @] With the other three
non-vacuum input states, the QCRB can be approached
but not be reached with these three detection methods
as shown in Table [l

Table [T presents the comparison between phase sensi-
tivity with parity detection and the QCRB in an SU(2)
interferometer with various inputs. For two-equal co-
herent input state, parity detection has poor statis-
tics M] However parity detection achieves the QCRB
with only one-coherent state input or coherent mixed
with squeezed vacuum state input. Whereas, we no-
tice that parity detection on an SU(1,1) interferometer
does not reach the QCRB with the same inputs. Accord-
ing to Tables [l and [, the SU(1,1) interferometer has
a better phase sensitivity than the MZI by a roughly
factor of \/NOPA(NOPA +2) with one coherent input
|ap) ® |0) and coherent mixed with squeezed-vacuum in-
put |ag) ® |0,&) due to amplification process.

Next, we compare the optimal phase sensitivities
among the parity detection, homodyne detection and
intensity detection in the SU(1,1) interferometer. For
the coherent@squeezed vacuum state input or only one-
coherent state input, the phase sensitivities of these three
methods have similar results because the phase sensitiv-
ity of the coherent@squeezed vacuum state input can
reduce to only one-coherent state input when r = 0.
The expressions of phase sensitivity with intensity detec-
tion are complex as shown in Appendix[C] Figs.[3(a) and
Bl(b) show the phase sensitivities with intensity detection
as a function of ¢ with coherent and squeezed vacuum
state input and only one-coherent state input, respec-
tively. For these two cases, the optimal phase points are
both very close to zero. Figs.Bl(d) andBl(e) plot the corre-

sponding optimal phase sensitivities as a function of g, in
which the optimal phase sensitivities become better with
the increase of g. The optimal phase sensitivity by parity
detection is slightly better than that of homodyne detec-
tion, and the phase sensitivity by intensity detection is
the worst among them.

For two-equal coherent input state |icg/v/2)® | /v/2),
the expression of the phase sensitivity with parity detec-
tion is very complex as shown in Appendix [Dl Fig. Bl(c)
presents the phase sensitivity with parity detection as a
function of ¢. It shows that the optimal phase point is
also close to zero. Fig.Blf) plots the optimal phase sensi-
tivity verse g. In such a situation, the phase sensitivities
by homodyne detection and by parity detection are the
best and the worst, respectively.

IV. CONCLUSION

In summary, we have investigated the parity detection
on an SU(1,1) interferometer with pure Gaussian states
as inputs. We have presented that parity detection ap-
proaches the phase sensitivity of 1/Nry scaling when co-
herent beam and squeezed-vacuum beam have a roughly
equal intensity with a parametric strength in the limit of
e~ 9 — 0. Compared with homodyne detection and inten-
sity detection, parity detection has a slightly better opti-
mal phase sensitivity with only one-coherent state input
or coherent and squeezed vacuum input states. However,
with two-equal coherent state input, parity detection can
not give better results than homodyne detection and in-
tensity detection. We have also shown a brief study of
the QCRB of an SU(1,1) interferometer. With vacuum
input, the QCRB is saturated by parity detection. How-
ever, parity detection does not saturate the QCRB as
well as homodyne detection and intensity detection with
the three non-vacuum inputs in Table [l This motivates
us to look for new optimal detection schemes to approach
the QCRB in future work.
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FIG. 3: (Color online) The sensitivity of phase estimation of an SU(1,1) interferometer as a function of (a) ¢ with intensity
detection with coherent and squeezed-vacuum input state with » = 1; (b) ¢ with intensity detection with only one coherent
input state; (c) ¢ with parity detection with two-equal coherent input state. The optimal phase sensitivity of an SU(1,1)
interferometer verse (d) g with coherent and squeezed-vacuum input state with » = 1; (e) g with only one coherent input state;
(f) g with two-equal coherent input state (the blue line is for optimal phase sensitivity and the dashed-red line is for phase
sensitivity at ¢ = ¢opt). Parameter: |ag| = 1.
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Appendix A: Parity Detection Signal

From Egs. [[2) and (3), the measurement signal (IT) is found to be
A 1

() = \/—T_le*Tz/Ts, (A1)

where

T, = e 2"(*" +1)%[8sinh*(2¢) (cos(2¢) — cos ¢) + 4 cosh(4g) + 3 cosh(8¢g) — 7] + 64,

Ty = 4|ap|? sinh? (29){8 cosh(4g) cos(26,, ) sin* (¢/2) — 8 cosh(2g) sin(26,, ) sin ¢(cos ¢ — 1)
+ 8¢ [cos B, sin ¢ — 2 cosh(2g) sin B, sin?(¢/2)]% + 32¢*" sinh?(2g) sin® (¢/2)
+ 8 cosh(4g) sin®(¢/2) — 8 cos B, cos ¢ + [3cos(204) — 1] cos(2¢) + cos(264) + 5},

T3 = (€2 + 1)*[8 cosh(8g) sin?(¢/2) + 8 cosh(4g) sin® ¢ + 4 cos ¢ + 3 cos(2¢) — 7] + 64e”".
Letting ¢ = 0, we find that signal is reduced to
()|g=0 = 1, (A2)

which matches our prediction. When ¢ = 0, the second OPA would undo what the first one does causing the
output fields to be the same as the inputs. Thus the output in mode b is the one-mode squeezed vacuum. For
the one-mode squeezed vacuum, parity signal is 1 due to only even number distribution in the Fock basis with

|0,& = re?s) = \/1/coshr ZZO:O(\/(2n)!/n)(1/2)"[exp(i95) tanh 7]™|2n) ﬂﬂ]



Appendix B: quantum Cramér-Rao bound

First we will focus on evolution of mean values and covariance matrix of quadrature operators in an SU(1,1)
interferometer. Second we will transform from the quadrature operator basis to the annihilation (creation) operator
basis. Then according to Ref. @], the QCRB will be obtained by mean values and covariance matrix of annihilation
(creation) operators.

N and b, (Z;I) (1 = 0,1,2) are the annihilation (creation) operators as shown in Fig. [[I We introduce the

a; (a
quadrature operators

oy =@+, Pa, = —i(a;—al), @ =bi+b and py, = —i(b; — b)) (B1)
We also define quadrature column vector
Xi - (X’i,la Xi,Q; Xi.ﬁ; Xi,4)T = (iaivﬁaivibivﬁbi).r' (B2)

Next, we focus on the column vector of expectation values of the quadratures X; and the symmetrized covariance

matrix T; [39, [43-45] where

Xi = ((Xi1), (Xi2), (Xi3), (Xia)T, (B3)

1 o -
rfl = ETI’[(XZ')]@XiJ + XX 1)), (B4)

with )N(i,k = Xi,k — (Xi,k), )N(i,l Z_Xi,l — <X”) and p the density matrix.
The input-output relation of X; and I'; can be described as HE]

XQ = SXO; (B5)

Ty = ST,ST, (B6)

where X5 (Xo) and T'y (I'g) are column vector of expectation values of the quadratures and symmetrized covariance
matrix for the output (input) states, respectively, and S is the transformation matrix. In general, transformation
through the first OPA, phase shift and the second OPA could be given by

cosh g 0 sinh g 0
0 cosh g 0 —sinhg

Sopar = sinh g 0 cosh g 0 ’ (B7)
0 —sinhg O cosh g

cos¢p —sing 0 0

| sing cos¢p 00
S¢ - 0 0 10 ’ (BS)

0 0 01

cosh g 0 —sinhg O
0 h 0 inh

Sopas = cosh g sinh g (BY)

—sinhg 0 cosh g 0 ’
0 sinh g 0 cosh g

where we have considered the balanced situation that 8, = 0, 2 = 7 and g; = g2 = g. Therefore, the matrix can be
obtained as S = Sopa25SsS0Pai-

In our case of a coherent and squeezed vacuum input state (|ag) ®]0, & = re?s)), the initial mean value of quadrature
vector X and covariance matrix I'y are

Xo=(2lag] 00 0)7, (B10)



ro = , (B11)

respectively, where we have let 6, = 0 and 6, = 0. According to Eqs. (B3] and (BE]), the final states can be found to
be

cosh? g cos ¢ — sinh? g
Xy = 2|ag] cosh? gsin ¢ (B12)
sinh gcoshg(1 —cos¢) |’
sinh g cosh g sin ¢

Y11 Y12 Y13 Y14

I, = [ 721 722 723 724 (B13)
Y31 V32 V33 V34
Y41 Y42 Y43 V44

where

Y11 = e~ 2" {e*" cos® ¢ cosh® g + [e*" cosh® rsin? ¢ + (&' cos? ¢ — 2€2" (1+¢°) cos ¢+ '™ 4 sin? ¢) sinh? g] cosh? g

+ e?"sinh* ¢}, (B14)
Y12 = e~ 2" cosh g cosh r sin ¢[e?" cos ¢ cosh? g — €2” cos ¢ cosh? r + (-1+ e‘”) (cos ¢ — 1) sinh? g]
= Ya1, (B15)

y13 = e~ 2" cosh g sinh g{e?" (62T — cos @) (cosg — 1) cosh? g — €2" cosh? rsin? ¢ + 2 (1+ e2r) [(-1+ 62T) cos ¢ — 1]

x sin? g sinh? g}

= 731, (B16)
Y14 = €~ 2" cosh g sin ¢ sinh g{e*" cos ¢ cosh? g + (1 —e* cos¢ +e*) cosh?r + (1 + e2r) [(—1 + e2T) cos ¢ — €27 sinh? g}
= Y41, (B17)
Yoz = e~ 2 {e?" cos? ¢ cosh® r + [€2" cosh? g sin? ¢ + (cos? ¢ — 2 (1+ eQT) cos ¢ + e*"sin? ¢ + 1) sinh? g] cosh® r + €?" sinh? g},
(B18)
Yoz = €~ 2" coshr sin ¢ sinh g{e?"(— cos ¢ + €2" 4 1) cosh® g + %" cos pcosh? r — (1 + €*")[(—1 + €>") cos ¢ + 1] sinh® g}
= Y32, (B19)

Vo4 = €~ 2" coshrsinh g{(cos ¢ — 1)(e*" cos ¢ — 1) cosh® r + € cosh? gsin® ¢ + 2(1 + €*")[(—1 + €*") cos ¢ + €'

x sin’ g sinh? g}

= Va2, (B20)
v33 = e 2" {e*" cosh? g — e [— cos® ¢ + 2(1 + €*") cos ¢ — 1] sinh? g cosh? g + (¢*" cos? ¢ + sin? ¢) sinh* ¢
+ €2" cosh? r sin” ¢sinh? g}, (B21)
Y34 = —e~ 2" sin ¢psinh? g[—e?"(— cos  + €*" 4 1) cosh? g + (—e* cos ¢ + €*" + 1) cosh® r + (=1 + €*") cos ¢ sinh? g
= Y43, (B22)

and
Yaa = e~ {cosh* 1 + [e*" cos® ¢ — 2(1 + €%") cos ¢ + €| sinh? g cosh® r + (cos? ¢ + e* sin? ¢) sinh* ¢
+ " cosh? g sin? ¢sinh? g} (B23)

So far, we have obtained the output quadrature vector and its covariance matrix. Next, we will calculate the
corresponding creation and annihilation operator vector which is defined as

d = (d1,ds, d3,ds)T = (a2,a}, bo, b)T, (B24)



and its covariance matrix > where each matrix element is defined as
S = (1/2)Tr[p(dudy + dydy)], (B25)

with d, = d, — d,, in terms of d, = Tr[pd,] where p is density matrix. The corresponding commutation relation is
described as [d,,, d,] = Q"7 where

01 00
9= oo 1 (B2
0 0-10
Here we define expectation value of d as
d = (dr.dz,dy,da)T = ({az), (ab), (ba), (BH))T. (B27)
According to Eqgs. (BI)-(B3) X, is found to be
Xo = (a2 + aj), (~i(as — af)), (b + bh), (—i(ba — BH))T. (B28)
Combined with Eqs. (B21) and (B28) the relation between d and Xy is expressed as
d= HX,, (B29)
where
1 ¢ 00
t=3l0 0 (B0)
0 0 1 —¢
Similarly, one can obtain the relation between ¥ and I'y as below
¥ =HI3HT, (B31)
According to Ref. @], the quantum Fisher information is given by
F :%T&{ad,z[z(a(ﬁz)*lw + iﬂ(a@)*lm]*l} +(0,d)T (%) (944), (B32)

where 9,5 = 9%/9¢ and 9sd = d/d¢. Then the corresponding quantum Cramér-Rao bound @, ] is given by

Agqcrp = % (B33)

Combined with Eqs. (BI12), (BI3), (B29), (B31), (B32), and (B33)), the QCRB is found to be

Apqer = {2Na(Nopa + 2)[Nopa(Ns + /Ns(N; + 1) + 1)] + Nopa[Nopa (2Ns + 1) + 2](N, + 1)} V2. (B34)

Appendix C: coherent state and squeezed vacuum state input with intensity detection

The phase sensitivity with intensity detection with coherent and squeezed vacuum input state in an SU(1,1) inter-
ferometer is given by

1/2
A(Jﬁl,coh&sqz = <%> ) (Cl)

where

Q1 :& lag | (32 sinh? (2g) cosh?(2g) cosh(2r) cos(¢) — 128 sinh?(2g) cosh? (2g) sinh(2r) cos(¢)
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— 8sinh*(2g) cosh(2r) cos(2¢) + 16 sinh?(2g)(cosh(4g) + 3) sinh(2r) cos(2¢)
— 4 cosh(4g) cosh(2r) — 3 cosh(8¢g) cosh(2r) — 16 cosh(4g) sinh(2r) 4+ 12 cosh(8g) sinh(2r)
+ 8sinh*(2g) cos(2¢) — 208 sinh?(2g) cos(¢) — 16 sinh?(2g) cosh(4g) cos(¢) + 100 cosh(4g)
+ 3 cosh(8¢g) + 4sinh(2r) — 57 cosh(2r) 4 25) + 6i4(_64 sinh?(2g) cosh?(2g) cosh(2r) cos(¢)
— 32sinh?(2g) cosh?(2g) cosh(4r) cos(¢) + 16 sinh? (2g) cosh(2r) cos(2¢) + 8 sinh*(2¢) cosh(4r) cos(2¢)
+ 8 cosh(4g) cosh(2r) + 6 cosh(8g) cosh(2r) + 4 cosh(4g) cosh(4r) + 3 cosh(8g) cosh(4r)
— 8sinh*(2g) cos(2¢) — 48 sinh?(2g) cos(¢) + 16 sinh?(2g) cosh(4g) cos(4) + 28 cosh(4g) — 3 cosh(8g)
— 14 cosh(2r) + 9 cosh(4r) — 41),
Q2 =4sinh*(g) cosh*(g) sin®(¢) (2|ag|? + cosh(2r) + 1) 2. (C2)

Fig. Bl(a) plots the behavior of A¢rycongsqz as a function of ¢ with || = 1, ¢ = 1, and » = 1. It shows that the
optimal phase point is close to zero. According to Eq. (CIl), the corresponding optimal phase point is found to be

PLsquopt = arccot (\/21/2‘/1‘/2_1/2/8 - 1/2> ; (C3)

where

Vi =| — 2 cosh(8g) cosh(2r)|ag|? — 30 cosh(2r)|ag|* + 8 cosh(8g) sinh(2r)|ag|* — 8 sinh(2r)|ag|?
+ 14]a|® + 16 (3|aw|* + 1) cosh(4g) + 2 (|ao|* — 1) cosh(8g) + 4 cosh(8g) cosh(2r)
— 4 cosh(2r) + 2 cosh(8¢) cosh(4r) + 6 cosh(4r) — 22|,

Vo = — 384|ap|* cosh(4g) cosh(2r) — 48|ag|* cosh(8g) cosh(2r) + 8|ag|* cosh(8g) cosh(4r)
+ 128]ap|* cosh(8g) sinh(2r) — 32|ag|* cosh(8g) sinh(4r) — 128|ap|* sinh(2r)
+ 32| ag|* sinh(47) — 80|ap|? cosh(2r) + 56|ag|* cosh(4r) — 232|ap|* — 24|ap|? sinh(8¢) sinh(2r)
— 128]av|? cosh(4g) cosh(2r) 4 74|ap|* cosh(8g) cosh(2r) + 96|a|? cosh(4g) cosh(4r)
+ 20| |? cosh(8g) cosh(4r) — 10]ap|? cosh(8g) cosh(67) + 8|ag|? cosh(8g) sinh(67)
+ 24|ap|? sinh(2r) — 8|ag|? sinh(67) + 86|ap|? cosh(2r) + 12|ag|? cosh(4r) — 22|ag|? cosh(67)
— 236|a| + 32 (24]aw|* + 5|awo|* — 1) cosh(4g) + (40]ao|* — 52|avo|* + 6) cosh(8g)
— 4 cosh(8g) cosh(2r) — 8 cosh(8¢g) cosh(4r) + 4 cosh(8¢) cosh(67) + 2 cosh(8g) cosh(8r)
+ 32 cosh(4g) sinh(4r) 4 4 cosh(2r) — 40 cosh(4r) — 4 cosh(6r) + 2 cosh(8r) + 38. (C4)

Inserting r = 0 into Eqs. (CIl) and (C3)), then one obtain the phase sensitivity with only one coherent input state
Adr con and the corresponding optimal phase point, respectively,

A¢1 con ={—16sinh*(2g) cos(¢) (6/ao|® + cosh(4g) + 3) + 48|ao|? cosh(4g) — 16|ap|* + 8 sinh*(2g) cos(2¢)
+ 20 cosh(4g) + 3 cosh(8g) — 23}|4v2 (|ao|* + 1) sinh® 2g sin(g)|

4 (3|apl2+1 h(4g) — 4|ao|? h(8g) — 5 1
T Blool” + 1) coshidg) — flaoP TooshiBg) =5 __ 1) o)
8lao|v/4 (3|2 + 1) cosh(4g) — 8Jag|? + cosh(8g) =5 2

Fig. Bl(b) plots the behavior of A¢rcon as a function of ¢ with |ag| = 1 and g = 1. It shows that the optimal phase
point is also close to zero. And Fig. Ble) shows the corresponding optimal phase as a function of g with |ag| = 1.

Appendix D: two-equal coherent state input with parity detection

The phase sensitivity with two-equal coherent state input with parity detection on an SU(1,1) interferometer is
given by

cosh?(2g)—sinh?(2g) cos(¢)

4 (COSh2 (29) _ sinh2 (29) COS((b)) 2 ((COSh2(2g) _ sinh2 (29) COS((b)) 2 exp (4‘(10'267257 (sinh(2g) COS(¢)+COsh(2!]))) _ 1) 1/2
|sinh(4g) sin(¢) (sinh(4g) — 4[ag|?) — 2 sinh?(2g) sin(2¢)| '

Achoh =

(D1)
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Fig. Bl(c) plots the behavior of A¢eon as a function of ¢ with || = 1 and g = 1. It shows that the optimal phase
point is close to zero. Fig. B(f) compares the optimal phase sensitivity among parity detection, homodyne detection

and intensity detection with two-equal-coherent state input.
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TABLE I: The phase sensitivity with various detections and QCRB of an SU(1,1) interferometer with different input states.

Input states Parity Homodyne Intensity QCRB
|0) ® |0) 1/K4? Not available [40] 1/K4? 1/K?
1/[K(2Nq + 1)
lao) © |0) 1/[K(No + 1)]'/2 1/[KNa]"/? [16] Agr,con
+2Na(Nopa + 2)]*/2
. 1/{2Na[(Nopa + 1)VK
175) ©18) Aeon” ~1/[2KNa]"/? [16] | 1/[KNa]"/? [13]
+K + 1] + K}/?
1/[2Na(Nora + 2)
+N@pa sinh?(2r) /2
o) @10,8) | 1/[C(Nae? +cosh? )2 | 1/[KNae? ]2 [16] |  Aprcontsqs” o
+K(2Nq coshre”
+ cosh? r)]1/2

where K = Nopa(Nopra + 2). Row 1: vacuum input state; Row 2: one-coherent input state; Row 3: two-coherent input state;
Row 4: coherent mixed with squeezed-vacuum input state.

4See Appendix
bSee Appendix
°See Appendix

TABLE II: The QCRB of an MZI with different input states.

Input states Parity QCRB
o) @ 10) 1/vV/Na 1/vV/Na
liR) ® %) Not available [41] 1/vNs
lao) ®10,¢ = 7’ | 1/v/Nae2 +sinh2r [26] | 1/v/Nae?" +sinh?r [38]

where N, = |o¢o|2 is the mean photon number. Row 1: one-coherent input state; Row 2: two-equal coherent input state; Row
3: coherent mixed with squeezed-vacuum input state.



