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Abstract: Graphene and boron nitride are two-dimensional materials whose 
atoms are arranged in a honeycomb lattice.  Their unique properties arise 
because their electrons behave like relativistic particles (without and with mass, 
respectively) – namely, they obey the Dirac equation.  Here, we use a photonic 
analogue of boron nitride to observe Dirac physics in a silicon integrated optical  
platform.  This will allow for photonic applications of Dirac dispersions 
(gapped and ungapped) to be realized in an on-chip, integrated nanophotonic 
platform.     
 
There has been a great deal of recent interest in the photonic analogue of graphene – specifically, 
photonic structures wherein light (as opposed to electrons) obeys the Dirac equation. The first 
realization of photonic graphene1 was in a photorefractive crystal with an optically induced 
honeycomb lattice refractive index profile, and was used to observe conical diffraction2.  Since 
then, there has been a wide variety of photonic and polaritonic systems that exhibit Dirac 
physics.  They include honeycomb lattices of direct-laser-written waveguides in fused silica3–6; 
microwave photonic crystals7, macroscopic photonic crystals8; coupled microwave resonators9,10; 
nonlinear photorefractive crystals11; quantum well micropillar honeycomb lattices that exhibit 
exciton-polaritons with Dirac dispersion12.  Moreover, Dirac physics has been probed in other 
wave-based systems13 such as in ultracold fermions14, electrons in quantum well structures15, as 
well as in molecular complexes16.   
 
To date, photonic graphene has enabled the observation of a number of new physical effects such 
as exceptional-point rings8 for use in efficient high-power large-area lasers, strain-induced 
pseudomagnetism3; photonic topological insulators5; and the prediction17 and observation4 of 
topological transitions; among others.  There are a number of other proposed technological 
implications of realization Dirac physics for photons, including effective epsilon-near-zero 
materials for transformation optics applications7,18,19, the realization of large-area high-power 
single-mode diode lasers20–22, the realization of robust photon transport in planar photonic 
topological insulators23–26, and valley Hall photonic topological insulators27 (more below on 
these applications). However, to date there has been no realization of photonic Dirac behavior in 
an integrated optics platform, for use in optical devices.  Perhaps the reason for this is that a 
Dirac cone (i.e., the massless particle case) has no associated band gap.  As a result, when light is 
passed through the structure with a Dirac cone in transmission experiments, there is no clearly 
observable spectral signature.  This is in contrast to reflection experiments on large-area photonic 
crystals8; or fluorescence measurements in exciton-polariton systems12, for example, which 
permit direction observation of the Dirac spectrum via leaky modes above the light line.   



 
Here, we demonstrate a photonic analog of boron nitride in a silicon photonic crystal slab. The 
experimental signature of the Dirac dispersion is a band gap that opens as the inversion 
symmetry is broken for the graphene-like honeycomb photonic crystal.  Moreover, the associated 
Dirac cone is not ‘accidental’7,8 – it robustly arises from the hexagonal symmetry of the structure 
without any need for fine-tuning. Samples of increasing inversion symmetry breaking were 
fabricated to realize the transition between photonic graphene and photonic boron nitride. We 
probed the band gaps using broadband optical transmission measurements.  
 
Using inversion symmetry breaking, we can open a photonic band gap exhibiting a Dirac cone, 
thus turning a realization of photonic graphene into ‘photonic boron nitride’.  The opening of a 
band gap as a result of broken inversion symmetry is a hallmark property of the honeycomb 
lattice28.  The Dirac equation and its associated dispersion can be written as follows: 
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where i is the square root of -1, t is time, ψ1 and ψ2 are the wavefunction components; v is the 
maximum velocity (also called Fermi velocity) of the particle; m is the mass of the particle in 
question, E is the particle’s energy, and k is its momentum.  Note that for m=0, the dispersion 
relation E(k) describes a cone, and for m≠0, it describes two hyperbolae with a gap in between of 
size 2m.  
 
The photonic system used here is composed of a photonic crystal in a silicon-on-insulator (SOI) 
platform. A honeycomb lattice of holes (each 114nm in radius, nearest-neighbor spacing 273nm, 
lattice constant a=473nm) is fabricated on a silicon chip (220nm thick, refractive index 3.48 at 
wavelength 1550nm), clad on both sides by silica (refractive index 1.44 at 1550nm).  A 
scanning-electron-microscope (SEM) image of the design is shown in Fig. 1(a).  The associated 
photonic band structure simulation for the transverse-electric-like (TE) polarization is shown in 
Fig. 1(b): note the presence of the touching point between the first and second bands, at the 
Brillouin zone vertex (K-point).  Viewed as a full two-dimensional dispersion, this point is a 
Dirac cone, whereby photons obey the Dirac equation (see inset conical dispersion).  Note that 
the dispersion shown is based on a photonic crystal slab calculation (using a full three-
dimensional simulation to incorporate the finite height of the slab embedded in the silica 
cladding), as opposed to a purely two-dimensional system.  Numerical calculations of the band 
structure are performed using the MIT-Photonic-Bands (MPB) software package29. 
  
In order to induce a band gap, we break inversion symmetry by giving the two distinct 
honeycomb sublattices different hole radii.  For example, in Fig. 1(c), we show a SEM image of 
the fabricated structure with hole radii r1=100nm and r2=128nm for the two sublattices.  The 
associated TE photonic band structure is shown in Fig. 1(d): here, a band gap has opened at the 
Dirac point.  The band gap size is directly proportional to the strength of inversion symmetry 
breaking; specifically, the difference in radii between the holes in the two sublattices.   
 
We perform transmission experiments through the structure in order to directly observe the 
opening of the band gap as a function of increasing symmetry breaking.  Light is coupled into the 



silicon chip using highly efficient grating couplers30, passed through a photonic crystal of length 
47µm along the transmission direction and 24µm wide in the transverse direction.  The design of 
the device is shown in Fig. 1(e).  A swept telecommunications-band laser system (Agilent 
8164A) is used to inject TE-polarized light into the input grating coupler using standard single 
mode silica fiber. Light is then out-coupled from a second grating and the transmission is then 
measured as a function of wavelength across a bandwidth range 100nm centered on 1550nm.  
 
The photonic band gap is directly observable because there are no extended Bloch states therein; 
therefore transmission through the structure goes to zero.  An example of a transmission 
experiment is shown in Fig. 2, including calculated band structure and corresponding 
transmission spectrum.  In Fig. 2(a), the band structure exhibits a TE band gap (blue curves) due 
to inversion breaking (this corresponds to the case of Fig. 1(c)).  The red-dashed curves show the 
case where the hole radii are the same, therefore there is no band gap.  The blue area is the light 
cone region, which contains states that reside both within the slab and outside it in the cladding; 
these are radiative states that make only a small contribution to the transmission.  Indeed, most 
such states reside almost entirely outside the slab (except for potential slab resonances31).  The 
transmission experiment for the inversion symmetry broken photonic boron nitride is shown in 
Fig. 2(b).  Clearly, there is a dramatic drop in transmission (~40dB) within the band gap induced 
by inversion symmetry breaking. 
 
Another feature appearing in the band structure is an increase in transmission followed by a drop 
that is less steep than that of the band gap (see black dashed line in Fig. 2(b)).  This feature can 
be interpreted as an increase in density-of-states at the band ‘shoulder’ (a local maximum of the 
second band - see label in Fig. 2(a)), leading to higher transmission.  At frequencies above the 
shoulder, there are significantly fewer states, therefore there is a drop in transmission.  The 
position of the band shoulder relative to the band gap edges can be further used to characterize 
the photonic bands experimentally.   
 
We note that the second band has a lower frequency at the M-point than at the K-point (where 
the Dirac regime resides), as can be seen clearly in Fig. 2(a).  This is true regardless of whether 
Δr=0 or otherwise (i.e., whether the Dirac dispersion is massless or massive).  This is not the 
case in solid-state graphene or boron nitride: in those cases, the second band lifts above and 
resides well away from the Dirac region by the time it gets to the M-point.  The reason for this 
difference is that a photonic crystal slab is not composed of localized orbitals largely confined to 
individual atoms (with corresponding hopping amplitudes to tunnel from one atom in the lattice 
to the next), like two-dimensional materials.  Rather, it is described by a Helmholtz equation that 
has no bound states due to the positivity of the Maxwell operator32.   
 
We fabricated a number of photonic crystal slab structures with different amounts of inversion 
breaking, ranging from Δr=0 through Δr=30nm.  In Fig. 3, we plot two quantities: the size of the 
band gap (in blue), and the frequency separation between the bottom of the band gap and the 
second band shoulder (in red), both as a function of Δr.  Experimental results are depicted by 
dots and numerical calculations by solid lines: clearly there is good agreement between these.  
The slight systematic underestimate of the band gap by the numerical simulation likely arises in 
part due to the uncertainty in the position of the drop-off of transmission.  Note that only relative 
quantities are plotted here (rather than absolute frequencies) due to a roughly 10-20nm 



wavelength shift of the observed spectra from numerically predicted values (this is typical in 
silicon photonics33), and here is most likely due to possible thickness and hole size differences 
(the sensitivity of the Dirac point frequency to fabrication variations is 2.4 x10-4(c/a)/nm in 
thickness, and 1.4x10-3(c/a)/nm in hole radius).  This accounts for the difference in the vertical 
axes in Fig. 2(a) and Fig. 2(b).  Figure 3 clearly shows that the band gap opens at non-zero 
inversion breaking.  The origin of this is the decrease of the second band at the M-point, as 
discussed above.  Although a gap opens locally at the Dirac point for any nonzero Δr, the second 
band does not lift out of the way until finite Δr.  This likely also accounts for the overestimate of 
the band gap for small Δr: a sharp decrease in density-of-states associated with the lifting of the 
Dirac cone gives rise to a drop in transmission despite the lack of a complete band gap.   
 
The decrease in the second band at the M-point obscures the Dirac region; however, this does not 
negate a number of potential applications of photonic Dirac physics.  These include the presence 
of flat-band slow-light edge modes for Purcell-enhancement applications34 (these only require a 
band gap at a given lattice momentum parallel to the edge), as well as achieving a topological 
band gap26, among others. Moreover, the presence of an obscuring band in the context of this 
experiment is moot because the Dirac cone by itself would in any case not be observable in 
transmission experiments due to a lack of a band gap. That said, when the dielectric contrast 
between the phases is increased (beyond the presently used 3.47:1.44), the second band lifts at 
the M-point and the Dirac dispersion is unobscured by other bands.  An obvious route to achieve 
this would be to clad both sides of the silicon slab by air, rather than silica, by performing an 
under-etch of the structure.  In the present structure, however, since inversion breaking lifts the 
second band at both the M and K points, the band gap is directly observable.       
 
Before concluding, we discuss the specifics on potential applications of having a Dirac 
dispersion in a photonic band structure.  One is the possibility of achieving large-area single-
mode photonic crystal semiconductor lasers.  The motivation behind this active research field35 is 
that if laser gain is distributed over large areas, higher powers can be achieved.  Due to the 
unique density-of-states profile associated with Dirac cones (it goes linearly to zero at the Dirac 
point) macro-scale potentially lasing Bloch modes are spaced as far away from one another as 
possible in frequency.  Therefore, single-mode lasing would be possible in over areas where 
multimode behavior (thus with an irregular spatial mode profile) would be the norm20.  Dirac 
cones lying under the light line (as realized here) would therefore give rise to high-power in-
plane lasing, exploiting the large area of the photonic crystal.  Yet another application related to 
large-area light-matter coupling is that of realizing Landau levels3. Originally associated with the 
quantum Hall effect36, these are highly degenerate energy levels that can arise from 
inhomogeneous (i.e., aperiodic) strain of a lattice with Dirac cones37,38.  High degeneracy means 
high density-of-states, and therefore increased light-matter coupling – for example in coupling 
photonic crystals to quantum dots for quantum information applications39, or enhanced nonlinear 
optics40.  This brings up a fascinating question: can aperiodic photonic crystals achieve higher 
density-of-states than periodic ones?  Yet another application is dispersion engineering for 
various transformation optics applications, including cloaking7, and epsilon-near-zero 
materials18,41.  A Dirac cone is associated with zero-index behavior in a non-resonant (and 
therefore in principle loss-free) device.  Finally, the presence of Dirac cones is a precursor to the 
realization of a photonic topological insulator – in fact, it represents a transition point between 
topological and trivial band gaps.  A number of theoretical proposals have utilized this to realize 



topological behavior23,26,42, with experimental realizations in various contexts including 
condensed matter physics43,44, cold atomic gases45, optical waveguide arrays5, and microwave 
photonics46,47.  The realization of a photonic-crystal-based topological insulator48 would enable 
highly robust nanophotonic edge channels – at the smallest scale possible for a low-loss optical 
device.   
 
In summary, we have demonstrated Dirac physics in an integrated silicon photonic platform.  
The Dirac dispersion behavior was observed by breaking the inversion symmetry of the structure 
by allowing the different sublattices of a honeycomb photonic crystal slab to have different hole 
radii.  This opened a band gap (a photonic equivalent to the electronic band gap of the 
semiconductor boron nitride), which was directly observable in transmission experiments. The 
photonic crystal slab geometry that was utilized allows for complete guidance of light without 
leakage, making it suitable for use in integrated optical devices.  The observation of photonic 
Dirac physics in silicon photonics can enable a range of unconventional optical devices.  
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Figure 1. (a) SEM image of honeycomb lattice photonic crystal slab structure (holes are 114nm 
in radius, nearest-neighbor spacing 273nm, lattice constant a=473nm, slab height 220nm), with 
corresponding photonic band structure shown in (b).  (c) Same as (a), but with an inversion 
broken: the holes of the two triangular sublattices have different radii, (Δr=27nm), with 
corresponding photonic band structure shown in (d).  (e) is an SEM image of the entire device, 
including grating couplers.        



 
 
Figure 2. (a) Dispersion diagram (band structure) for the inversion-symmetry-broken photonic 
crystal slab shown in Fig. 1(c) (difference in hole radius Δr=27nm, blue solid line), and that 
without inversion breaking, and thus still a Dirac cone (red dashed line).  (b) Experimental 
results for the transmission through the inversion-broken structure.  The band gap is clearly 
observed as a sharp decrease in transmission.  The black dashed line indicates the second band 
‘shoulder’, where an increase and then sharp decrease in density-of-states leads to a peak in 
transmission. 
 
  



 
 

 
Figure 3. Plot of the band gap size (blue) and frequency difference between the bottom of the 
band gap and the second band shoulder (red).  Experimental results are shown as circles and 
numerical calculations are solid curves.  Inset are SEM images of the photonic crystal structures 
at Δr=0 (at left) and Δr=27nm (at right). 
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