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We develop a novel approach to enable the full-wave simulation of stimulated Brillouin scatter-
ing and related phenomena in a frequency-domain, finite-element environment. The method uses
transformation optics techniques to implement a time-harmonic coordinate transform that recon-
ciles the different frames of reference used by electromagnetic and mechanical finite-element solvers.
We show how this strategy can be successfully applied to bulk and guided systems, comparing the
results with the predictions of established theory.

PACS numbers: 42.65.Es, 42.79.Jq

I. INTRODUCTION

In recent years, nonlinear optical phenomena through
which light and elastic waves are strongly coupled have
garnered a strong interest. Amidst the various phenom-
ena arising from the coupling of optics and elastodynam-
ics, a very well-known and studied example is Brillouin
scattering. Spontaneous Brillouin scattering is a non-
linear optical phenomenon by which light is inelastically
scattered by the change in refractive index caused by adi-
abatic density fluctuations in a medium. These are due
to thermal or quantum zero-point effects [1, 2]. On the
other hand, in stimulated Brillouin scattering (SBS), the
density variations are caused by the presence of light,
through electrostriction, radiation pressure, and/or op-
tical absorption. It is a third-order optical nonlinearity,
whereby elastic and optical waves are coupled in a fluid
or solid, mutually exchanging energy [1, 3]. While it has
been known and experimented upon for several decades,
recent years have seen a renewed interest in SBS and re-
lated effects, which already enable many devices, ranging
from powerful sources and amplifiers to platforms for the
study of slow light [4] and nonreciprocity [5], and show
great promise for future applications.
There has been a growing body of literature on the pre-

viously unknown gain enhancements that can be achieved
by specifically tailored nanostructures [6–9]. In particu-
lar, it has been proven by theory and experiment [10] that
when waveguide geometries reach the nanoscale, previ-
ously unexpected, giant Brillouin gain enhancements oc-
cur. These effects are so dramatic as to be 2 to 4 orders
of magnitude larger than traditional theories predict (5
in the case of forward SBS) [6]. Naturally, new theo-
retical tools have been developed to study and describe
these phenomena both in waveguides and various reso-
nant structures [6–8], which are understood to be due to
a combination of surface electrostriction and radiation
pressure. In hindsight, it is unsurprising that these ef-
fects only become predominant at the nanoscale, where
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the surface-to-volume ratio of particles and waveguides
is so high. In these contexts, perturbation theory in the
form usually employed in electromagnetism can fail [11].
These current approaches are all limited to rather simple
or highly symmetric geometries, such as the aforemen-
tioned waveguides and resonators.

An alternative to these methods, which require prior
knowledge of the modes of the system, are full-wave sim-
ulations. One of the most prominent and widely used nu-
meric techniques is the finite-element method. However,
as we show, correctly simulating optomechanical effects
in the frequency domain is far from straightforward, and
the choice of frame of reference for the electromagnetic
and mechanical solvers is of critical importance. Näıvely
overlooking this aspect leads to significantly inaccurate
simulation results. In this work, we describe the problem
in detail and propose a solution based on transformation
optics. The key intuition is that the movement of ma-
terial points and boundaries can be represented by an
effective oscillation of electromagnetic properties. This
simulation method is applicable to arbitrarily complex
systems and geometries, which can be comprised of sev-
eral materials, including metals. Thus, it provides an
extremely flexible computational platform for the design
of optomechanical devices and artificial media, such as
plasmonic [12] and metamaterial [13] structures.

II. VECTORIAL THEORY OF SBS IN SOLIDS

In this section, we describe time-harmonic backwards
Stokes SBS in a solid medium. Two time-harmonic elec-
tromagnetic fields (pump and signal, labeled with the
numbers 1 and 2 throughout the paper) counterpropa-
gate in a solid medium, interacting with an elastic wave
of angular frequency Ω and wavevector q. For this pro-
cess, conservation of energy and momentum take the
form ω1 = ω2 + Ω and k1 = k2 + q, where ω and k
indicate optical angular frequencies and wavevectors, re-
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spectively 1. For ease of reading, but without loss of gen-
erality, we shall assume the solid medium to be isotropic,
uniform, and electromagnetically non-dispersive. This
last assumption is a reasonable approximation in the case
of SBS, where |ω1−ω2| ≪ ω1, ω2. In the following deriva-
tions, we consider the behavior of a bi-chromatic, time-
harmonic electromagnetic field

Ẽ = Ẽ1 + Ẽ2 (1a)

H̃ = H̃1 + H̃2, (1b)

where the tilde superscript denotes physical quantities
which oscillate rapidly and harmonically in time, and for
n = 1, 2

Ẽn = IRe
(

Ene
iωnt

)

=
1

2

(

Ene
iωnt +E∗

ne
−iωnt

)
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(

Hne
iωnt

)
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. (2b)

Similarly, the elastic wave is represented by the vectorial
displacement and scalar density variation fields

ũ =IRe
(

u eiΩt
)

=
1

2

(

u eiΩt + u∗e−iΩt
)

(3a)

∆ρ̃ =IRe
(

∆ρ eiΩt
)

=
1

2

(

∆ρ eiΩt +∆ρ∗e−iΩt
)

. (3b)

A. Elastodynamics

Since solids in general support both longitudinal and
shear waves, the mechanical aspect of the phenomenon
must be described with fully vectorial elastodynamics.
For finite-element mechanical simulations, the natural
choice for frame of reference are the material (or La-
grangian) coordinatesX, which index the material points
and assign a time-dependent displacement to each, with-
out actually updating their position. By contrast, Eule-
rian coordinates x̃ follow the position of material points
through time. The two frames are related by the dis-
placement ũ through the relation x̃ = X + ũ, as shown
in Fig. 1. The Eulerian equilibrium equation, whose form
is perhaps more intuitive, is

ρ
∂2u

∂t2
= ∇x · ¯̄σ + fv, (4)

where ρ is the instantaneous mass density, ¯̄σ is the
Cauchy stress tensor (referred to the current, deformed,
geometry) [14], ∇x is the gradient in Eulerian coordi-
nates, and fv is the sum of body forces (forces per unit
deformed volume). Note that the finite linewidth of SBS
resonance is due to a mechanical loss term, which can

1 To extend this treatment to an anti-Stokes process it is sufficient

to state energy and momentum conservation as ω1+Ω = ω2 and

k1 + q = k2 and to follow the same logical steps.
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~

FIG. 1. Schematic of the relation between Lagrangian coor-
dinates X, Eulerian coordinates x̃, and displacement ũ.

be thought of as included in the definition of stress (by
addition of a term proportional to strain rate) [15]. In
a Lagrangian frame, the equilibrium equations assume
instead the form [14]:

ρ0
∂2u

∂t2
= ∇X · ¯̄P + Fv, (5)

where ρ0 is the initial mass density, ∇X is the del op-
erator in Lagrangian coordinates, Fv is the sum of body
forces, given with respect to the undeformed volume, and
¯̄P is the first Piola-Kirchhoff stress tensor (referred to the

undeformed geometry). Moreover, ¯̄P = ¯̄F ¯̄S, where the ¯̄F

and ¯̄S tensors are respectively the deformation gradient
and the second Piola-Kirchhoff stress [14]. It is interest-

ing here to spend a few words on ¯̄F and its properties. It
is defined as the tensor relating Eulerian and Lagrangian
coordinates

dx = ¯̄F dX, (6)

and it is a function of the displacement ũ

¯̄F = ¯̄I +∇Xũ, (7)

where ¯̄I is the identity matrix. The determinant of ¯̄F
is related to the ratio of instantaneous density ρ to the
reference (undeformed) density ρ0:

1

det ¯̄F
=

ρ̃

ρ0
=

ρ0 +∆ρ̃

ρ0
= 1 +

∆ρ̃

ρ0
. (8)

Traditionally, most nonlinear optics textbooks such as
Boyd’s [1] model the mechanical aspect of SBS as sim-
ple electrostrictive volume forces. However, we want to
stress that the computational method we present in this
paper can be applied to arbitrarily refined descriptions
of optical forces. Following for the moment the tradi-
tional description, electrostriction in an isotropic, uni-
form medium, corresponds to a potential φ̃ [1]:

φ̃ = −
1

2
ǫ0γe〈Ẽ1 · Ẽ2〉 = −

1

2
ǫ0γe IRe

(

E1 · E
∗
2 e

iΩt
)

, (9)
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where the 〈·〉 sign denotes a time average over an optical
period, ǫ0 is the permittivity of vacuum, and γe is the
electrostrictive constant, defined as [1, 2]

γe =

(

ρ
∂ǫ

∂ρ

)

ρ=ρ0

, (10)

where ǫ is the relative permittivity of the material. The
electrostrictive constant relates simply to the photoelas-
tic tensor ¯̄p in the isotropic case through the fourth power
of the refractive index [15, 16]. The Lagrangian elec-
trostrictive volume force is then

F̃v = −∇Xφ̃ =
1

2
ǫ0γe IRe

[

∇X (E1 ·E
∗
2) e

iΩt
]

. (11)

A physical quantity of great importance that must be
calculated from the solution to Eq. (5) is pressure, which
is related to the Cauchy stress tensor through its trace:
p = − 1

3 Tr ¯̄σ [14]. Also useful is the variation in mass
density ∆ρ̃, which is related to p̃ through the speed of
longitudinal elastic waves cp: ∆ρ̃ = p̃/c2p. The elec-
trostrictive volume force of Eq. (11) can be entered into
a finite-element solver as a contribution to the elastody-
namic partial differential equation, which in frequency
domain takes the form

−ρ0 Ω
2u = ∇X

(

¯̄F ¯̄S
)

+
1

2
ǫ0γe ∇X (E1 · E

∗
2) . (12)

For further insight into continuummechanics, the readers
are encouraged to consult Appendix A, which elaborates
on some of the concepts touched upon in the present
section, and references therein.

B. Optics

Frequency-domain finite-element electromagnetic
solvers are usually cast in Eulerian coordinates, since
for most applications there is no need to keep track of
mechanical movements at electromagnetic frequencies.
For an isotropic, uniform, non-dispersive medium the
Eulerian optical wave equation is [17]

∇2Ẽ−
n2

c2
∂2Ẽ

∂t2
= µ0

∂2P̃

∂t2
, (13)

where n is the refractive index of the medium, c is
the speed of light in vacuum, µ0 is the permeability of
vacuum, and P̃ is a polarization term that acts as a
source for the nonlinear process. It can be related to
a time-harmonic variation in relative permittivity due to
a Brillouin-related scattering mechanism as

P̃ = ǫ0 ∆χ̃ Ẽ = ǫ0 ∆ǫ̃ Ẽ, (14)

where χ is the electric susceptibility of the medium and ǫ0
is the permittivity of vacuum. In the traditional descrip-
tion of bulk electrostriction, the permittivity variation
takes the form ∆ǫ̃ = γe ∆ρ̃/ρ0 [1]. Representing ∆ǫ̃ in

the frequency domain and using Eq. (1) and Eq. (3), we
can isolate the terms oscillating at ω1 and ω2, so that

P̃ =
ǫ0
2
IRe

(

∆ǫE2e
iω1t +∆ǫ∗E1e

iω2t
)

. (15)

Re-writing Eq. (13) in the frequency domain, and sepa-
rating it into the components oscillating at ω1 and ω2,
yields:

∇2E1 + k21 E1 = −µ0ω
2
1P1 = −

1

2

(ω1

c

)2

∆ǫE2 (16a)

∇2E2 + k22 E2 = −µ0ω
2
2P2 = −

1

2

(ω2

c

)2

∆ǫ∗E1, (16b)

where we have introduced the scalar wavenumbers k1 and
k2, which obey the dispersion relation k = ωn/c.
We have now described the electrostrictive SBS phe-

nomenon through a set of mutually coupled partial dif-
ferential equations, cast in the form that finite-element
software most commonly solve for. However, there is a
limitation to simply implementing the nonlinear coupling
terms as contributions to standard differential equations:
a computation solving the electromagnetic wave equa-
tion in Eulerian coordinates is not by default able to ac-
count for the movement of the geometry, arising from the
existence of displacements (which are in turn computed
in a Lagrangian frame). This invariably leads to wrong
results, especially at the nanoscale, where the effect of
(moving) interfaces can play a dominant role [6, 7, 9].
The obstacle could be avoided by performing a time-
domain study instead, but it is in practice undesirable,
because of the wildly different time scales of the opti-
cal and mechanical periods. Thus, simulating solid-state
SBS accurately would seem to be unreasonably onerous
from a computational standpoint in the time domain and
outright impossible in the frequency domain.

III. TRANSFORMATION OPTICS AS A ROUTE

TO FREQUENCY-DOMAIN SBS SIMULATIONS

A. Transformation optics for a moving frame

To circumvent the difficulty described in the previous
section, a possible strategy is to employ transformation
optics (TO) [18–20] in a way that enables a standard elec-
tromagnetic solver to correctly account for the moving
frame. The idea is to represent the movement of mate-
rial points and boundaries by an effective time-oscillation
of electromagnetic properties. In TO, the material prop-
erties of an original (isotropic, to simplify the discussion)
medium, unprimed in Eq. (17), are transformed through
the following relation:

¯̄ǫ ′ =
¯̄A ¯̄AT

det ¯̄A
ǫ = ¯̄g ǫ (17a)

¯̄µ ′ =
¯̄A ¯̄AT

det ¯̄A
µ = ¯̄g µ, (17b)
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where ¯̄A is the Jacobian matrix of the coordinate trans-
formation and ¯̄g is the metric tensor in three dimensions.
The transformed permittivity ¯̄ǫ and permeability ¯̄µ are
in general complex, symmetric rank-two tensors. In our
case, the transformation is between a moving frame (Eu-
lerian) and a fixed frame (Lagrangian). The Jacobian of

this transformation is the deformation gradient ¯̄F men-
tioned in Sec. II A. Using Eq. (3), Eq. (7), and Eq. (8),
it is possible to obtain

¯̄F = ¯̄I + IRe
[

(∇u) eiΩt
]

, (18)

and thus a compact expression for the metric tensor ¯̄g

¯̄g =

3
∑

n=−3

¯̄gne
inΩt, (19)

with the property ¯̄gn = ¯̄g∗−n, reflecting the fact that,
as expected, the metric maps real coordinates to real
coordinates. More details on the derivation and explicit
expressions for the metric components can be found in
Appendix B. It is also worth mentioning that the idea
of a time-dependent Jacobian in TO has been explored
in the past, for example in the context of relativity [21],
and applications thereof have been proposed, e.g. for
frequency conversion [22].

B. Wave-like equations for non-dispersive materials

For anisotropic, inhomogeneous material properties
such as the ones typically yielded by transformation op-
tics, it is not possible to obtain an equation in a form
as simple as a Helmholtz wave equation. For time-
independent properties one can derive an equation that
resembles Helmholtz’s, some form of which is in fact
the master equation in many full-wave frequency-domain
finite-element solvers

∇×
(

¯̄µ−1
r ∇×E

)

− k20

(

¯̄ǫr −
i¯̄σe

ωǫ0

)

E = 0, (20)

where ¯̄σe, ¯̄ǫr, and ¯̄µr are respectively the electrical con-
ductivity, relative permittivity, and relative permeability
tensor. Our goal is to obtain a similar result in the case of
time-dependent transformed material properties, in the
form shown in Eq. (17) and Eq. (19). The fundamental
ideas of our method, however, are not necessarily tied
to this form. In fact, they are in principle applicable to
any frequency-domain finite-element formulation of elec-
tromagnetism. A conceptual schematic of the method
is presented in Fig. 2. Let us first consider the well-
known differential, macroscopic form of the charge-free

Maxwell’s equations:

−∇× Ẽ =
∂B̃

∂t
(21a)

∇× H̃ =
∂D̃

∂t
+ J̃e (21b)

∇ · D̃ = 0 (21c)

∇ · B̃ = 0, (21d)

where Ẽ is the electric field, D̃ is the electric flux field,
H̃ is the magnetic field, B̃ is the magnetic flux field, and
J̃e is the electric current density. Supposing the unde-
formed medium is isotropic we can rewrite Eq. (21a) and
Eq. (21b) by applying the appropriate TO rules [18, 23]:

−∇× Ẽ =
∂

∂t

(

¯̄gµH̃
)

(22a)

∇× H̃ =
∂

∂t

[

¯̄g (ǫ+ ǫ0∆ǫ) Ẽ
]

+ ¯̄gσeẼ, (22b)

where µ, ǫ, σe ∈ IR. In fact, for traditional materials at
optical frequencies, in first approximation µ = µ0. Tra-
ditional models of SBS model ∆ǫ = γe∆ρ̃/ρ0 (cf. Sec.
II B), but we will not specify a form for ∆ǫ, which can
act as a “black box” for any relevant scattering mecha-
nism involved. Using Eq. (1), a few simple algebraic steps
allow us to calculate ¯̄gµH, admitting the Stokes conser-
vation of energy and that we can disregard all terms not
oscillating at ω1 or ω2

2:

¯̄gµH̃ = (23)

µIRe
[

eiω1t (¯̄g0H1 + ¯̄g1H2) + eiω2t (¯̄g∗1H1 + ¯̄g0H2)
]

.

It is thus possible to rewrite Eq. (22a), separating the
terms at different frequencies and switching to a more
compact frequency-domain notation:

−∇×E1 = iω1

(

¯̄AH1 +
¯̄BH2

)

(24a)

−∇×E2 = iω2

(

¯̄B∗H1 +
¯̄AH2

)

, (24b)

where ¯̄A = ¯̄g0µ and ¯̄B = ¯̄g1µ. Since µ ∈ IR as discussed
earlier, Aij ∈ IR too. We can then left-multiply Eq. (24)

by ¯̄A−1 to get

− ¯̄A−1∇×E1 = iω1

(

H1 +
¯̄A−1 ¯̄BH2

)

(25a)

− ¯̄A−1∇×E2 = iω2

(

¯̄A−1 ¯̄B∗H1 +H2

)

. (25b)

2 The only approximations involved in this approach are not in-

cluding relativistic effects and not considering explicitly the pres-

ence of an anti-Stokes signal, and the subsequent higher-order

Brillouin resonances. It would be possible to consider such con-

tributions, at the cost of more coupled equations. If only a small

fraction of the pump energy is transfered to the signal, every

such resonance can be considered separately.
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FIG. 2. (Color online) Conceptual schematic of TO method, as applied to the system described in Sec. IVB. Two optical
TEz guided modes (one of which is depicted in the 1st row) counterpropagate in a dielectric slab waveguide, giving rise to a
mechanical potential φ and the corresponding force field Fv (2nd row, color map and arrows, respectively). The force excites
one or more elastic modes (3rd row, warped grid), thus creating a mass density variation field ∆ρ (3rd row, color map). This in
turn induces a relative permittivity variation field ∆ǫρ (4th row, left column), but there is no effect ∆µρ on permeability in the
case of ordinary nonmagnetic optical materials (4th row, right column). With our method, we calculate effective anisotropic
properties (5th and 6th rows, left column permittivity, right column permeability) that enable the simulation of SBS coupling
while keeping material points fixed (Lagrangian frame). All figures are depicted in reference to a given time t0.



6

We can now take the curl of each side of Eq. (25) to get,
invoking the linearity of the curl operator,

−∇× ¯̄A−1∇×E1 = iω1

[

∇×H1 +∇×
(

¯̄A−1 ¯̄BH2

)]

(26a)

−∇× ¯̄A−1∇×E2 = iω2

[

∇×H2 +∇×
(

¯̄A−1 ¯̄B∗H1

)]

.

(26b)

Analogously to the derivation of Eq. (24), we can obtain
expressions for the curl of the magnetic field complex
amplitudes, taking into account the linear and nonlinear

polarization terms, and the conduction current:

∇×H1 = iω1

[(

¯̄C + ¯̄K
)

E1 +
(

¯̄D + ¯̄L
)

E2

]

(27a)

∇×H2 = iω2

[(

¯̄D∗ + ¯̄L∗
)

E1 +
(

¯̄C + ¯̄K
)

E2

]

, (27b)

where ¯̄C = ¯̄g0 ǫ,
¯̄D = ¯̄g1ǫ,

¯̄K = ǫ0 (¯̄g1∆ǫ∗ + ¯̄g∗1∆ǫ) /2, and
¯̄L = ǫ0 (¯̄g0∆ǫ+ ¯̄g2∆ǫ∗) /2. We have folded conductiv-
ity into permittivity as is customary, making the latter
complex ǫ = ǫ′− iǫ′′ with ǫ′′ > 0 for optically lossy mate-
rials. Moreover, Kij ∈ IR. Substitution of Eq. (27) into
Eq. (26) yields

∇× ¯̄A−1∇×E1 − ω2
1
¯̄CE1 = ω2

1

[

¯̄KE1 +
(

¯̄D + ¯̄L
)

E2

]

− iω1∇×
(

¯̄A−1 ¯̄BH2

)

(28a)

∇× ¯̄A−1∇×E2 − ω2
2
¯̄CE2 = ω2

2

[(

¯̄D∗ + ¯̄L∗
)

E1 +
¯̄KE2

]

− iω2∇×
(

¯̄A−1 ¯̄B∗H1

)

. (28b)

Upon comparison with Eq. (20), we notice that the
general form of the equations is preserved. Naturally,
Eq. (28) are mutually coupled through the right-hand
sides as a consequence of the nonlinear process they de-

scribe. On the left-hand sides, ¯̄A takes the place of ¯̄µr,

and ω2
n
¯̄C that of k20 [¯̄ǫr − i¯̄σe/ (ωǫ0)].

IV. EXAMPLES OF APPLICATIONS

In this section, we present two applications of our
method to predict SBS gain in well-understood solid-
state systems. It should be noted that these examples,
for which analytical solutions are known, are chosen to
validate our approach, which is however general and not
limited to such cases. In the first example, we consider
a one-dimensional (1-D) amplifier setup. In the second
case, we highlight how more refined descriptions of opti-
cal forces can be incorporated into the method, allowing
it to accurately predict gain enhancement in nanostruc-
tures, as described in [6, 7, 9]. All simulations are run in
comsol Multiphysics 5.2, with the full-wave electromag-
netic solver master equation replaced by Eq. (28), except
where noted.

A. 1-D solid-state SBS amplifier

As a preliminary demonstration of the effectiveness
of the method, we simulate a simple solid-state 1-D
backward SBS amplifier. It consists of two counter-
propagating electromagnetic waves in a solid Brillouin
medium that is finite in the propagation direction ẑ, and
infinite in the other two. A pressure wave arises due
to optical forces, in this case the standard bulk elec-
trostriction mentioned in Sec. II A. The first wave, the

z

z = 0 z = L
g

Pump (k
1
)

Signal (k
2
)

Elastic wave (q)

FIG. 3. (Color online) 1-D backward SBS amplifier:
schematic of 2-D simulation (inspired by [1]). The lateral
boundaries are connected through periodic boundary condi-
tions, making the domain effectively infinite in the transverse
direction. Open boundary conditions generate optical fields
at one end (z = 0 for the pump, z = Lg for the signal)
and transmit them without reflection at the other. Elastic
waves are generated by optical forces, and absorbed at either
z−boundary by perfectly matched layers. Lg is the charac-
teristic gain length. Elastic waves are computed in the plane
strain approximation.

pump, is chosen to be much more intense than the sig-
nal seed (I1 ≫ I2), so we can expect the undepleted
pump approximation to be valid. In this case, signal
amplification is described appropriately by a simple ex-
ponential model, i.e. the solution to the ordinary differ-
ential equation ∂

∂z
I2 (z) = −g I1 I2 (z) [1]. The simula-

tion is described in further detail in Fig. 3. Simulations
were run over a range of mechanical frequencies Ω, keep-
ing the pump frequency ω1 constant (free-space wave-
length 600 nm) and adapting the signal frequency as
ω2 = ω1 − Ω. The medium is chosen be a glass with
properties: refractive index n = 1.5, electrostrictive con-
stant γe = 1.77, Young’s modulus EY = 90 GPa, Pois-
son’s ratio ν = 0.2, and a mechanical isotropic loss fac-
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tor of 0.017. Results from the simulation at the resonant
frequency Ω = ΩB ≃ 1.69 × 1011s−1 are displayed in
Fig. 4. The top panel shows that the pump intensity
remains constant throughout the propagation distance,
thereby confirming the validity of the undepleted pump
approximation. In the middle panel, results for relative
signal intensity are reported for simulations run with and
without the TO method, and are compared with theory
[1]. The graph highlights how simply implementing the
nonlinear coupling into the software is inadequate, and
how our method is necessary to obtain a solution con-
sistent with theory. The difference between theory and
simulation with the TO method near z = 0 is easily in-
terpreted as a transient feature [24]: the electrostrictive
force only acts within the simulation region, i.e. over a
finite length. Therefore, the pressure wave must build
up gradually, as shown in the bottom panel of Fig. 4, be-
fore taking the trend predicted by theory (that instead
concerns itself with plane waves, which exist and are cou-
pled over the whole propagation space). Since pressure
mediates the energy transfer from pump to signal, this
explains the small deviation in I2. For each simulation,
a relative signal intensity graph such as the one in Fig. 4
is generated. The data is then fitted with an exponential
function I2 (z) = I2 (L) exp [I1g (L− z)] [1], from which
the gain factor g is extracted. These values are plotted
in Fig. 5 against the theoretical prediction. The agree-
ment between the two approaches is excellent, whereas
the simply coupled simulations fail to predict the scale of
the Lorentzian resonance peak.

B. Dielectric elastic slab waveguide at different

scales

We next apply our method to a structured system: a
suspended slab waveguide of finite thickness and infinite
extent in the plane, as depicted in Fig. 6. The example
is conveniently simple, because it possesses translational
invariance in the plane perpendicularly to the direction
of propagation, thus making the problem effectively 2-
D. We study the backward SBS interaction between the
fundamental TE mode and the quasi-longitudinal elas-
tic modes, all of which share a plane of symmetry at
half thickness (with respect to the electric field and lon-
gitudinal displacement). The dispersion diagrams were
computed semi-analytically from the waveguide disper-
sion relations [17, 25] and are depicted in Fig. 7. For
a broad range of waveguide thickness values, we sim-
ulate SBS at the optical free-space wavelength of 1.55
µm, in an undepleted-pump regime, with the previously
presented selection rule applied to propagation constants
k1z = k2z + qz and operating at the elastic frequency of
the lowest-order elastic mode. The waveguide material is
silicon, whose properties are modeled as follows: relative
permittivity ǫr = 12.25, relative permeability µr = 1,
photoelastic coefficient (Pockels tensor element [15, 16])
p21 = 0.017, Young’s modulus EY = 170 GPa, Pois-
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FIG. 4. (Color online) 1-D backward SBS amplifier at res-
onance: (top) relative pump intensity (middle) relative sig-
nal intensity and (bottom) pressure amplitude, as predicted
by theory (blue, dashed line), the TO method (orange, up-
per continuous line), and a simply coupled simulation (green,
lower continuous line) .

son’s ratio ν = 0.28, mass density ρ0 = 2329 kg m−3.
The material is assumed to be optically lossless, while
all elastic modes are arbitrarily assigned an isotropic
loss factor of 1/200, which translates into a viscosity
tensor whose nonzero elements are 1/200 of the corre-
sponding stiffness tensor elements. From the simula-
tions we extract a combined gain value with a proce-
dure similar to the one outlined in the previous section.
An important caveat is that, in this case, we adopt a
definition of gain more suited to guided systems, i.e.
∂
∂z
P1 (z) = ∂

∂z
P2 (z) = −GP1 (z) P2 (z), where P1,2 (z)

are, respectively, the time-averaged guided pump and sig-
nal powers. Provided P1 ≫ P2 ∀z, P1 can be treated
as a constant (undepleted pump approximation). Opti-
cal forces due to electrostriction (both as a volume force
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FIG. 5. (Color online) 1-D backward SBS amplifier: expo-
nential gain g spectrum predictions: theory (continuous blue
line) against simulations run with TO method (orange “x”
series) and without (green “o” series).
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FIG. 6. (Color online) Dielectric slab SBS amplifier:
schematic of the waveguide, of finite thickness d. The di-
rection of propagation is z, and the problem is translationally
invariant in the out-of-plane direction, making it 2-D.

on the bulk and as a pressure term on the boundaries)
and radiation pressure are taken into account [6, 7]. In
Fig. 8 we compare the results of simulations, run with
and without the TO method, with those of the most ad-
vanced theory of SBS available in the literature, that of
Wolff et al [9]. The simulation results have qualitatively
similar trends, although the TO method predicts a peak
value of gain that is larger by approximately one order
of magnitude. This highlights the importance of taking
into account the movement of material points and bound-
aries when performing SBS calculations. The agreement
between TO method and the Wolff theory, however, is
much closer. The discrepancies can be attributed to
the Wolff theory being strictly monomodal with respect
to each field, whereas the TO-SBS simulations by their
nature take into account all elastic modes at the cho-
sen frequency, be they propagating or evanescent, that
contribute constructively (destructively) to the SBS pro-
cess, thereby increasing gain (losses). In this fashion,
our method is able to predict configurations in which
the combined contribution of elastic modes does not give
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FIG. 7. (Color online) Dielectric slab SBS amplifier:
schematic of the dispersion diagrams for lossless TEz elec-
tromagnetic and longitudinal elastic waves. In simulations,
a fixed optical frequency ω is picked. Selecting a waveguide
thickness d, one can read off the corresponding propagation
wavenumber kz for the desired mode (the lowest-order in our
case). By phase-matching, the corresponding elastic propa-
gation constant qz ≃ 2kz is determined, from which one finds
the frequency Ω of the desired elastic mode.
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FIG. 8. (Color online) Dielectric slab SBS amplifier: gain G

versus waveguide thickness d. Theory (continuous blue line);
simulations with TO method (orange “x” series) and without
method (green “o” series).
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rise to any gain, but instead result in net loss. Thus,
our method expands the prediction capabilities of cur-
rent theories, which by construction are only able to pre-
dict positive values of gain in optically lossless systems
[6, 7, 9, 26].

V. CONCLUSIONS

We describe a TO-based strategy to enable the finite-
element simulation of SBS phenomena in the frequency
domain. The method is versatile in that it can work
with any kind of geometry, and can incorporate arbitrar-
ily refined descriptions of optical forces. Furthermore,
it does not require prior analytic or modal knowledge
of the problem. The method is readily generalizable to
anisotropic background materials and to a fully tensorial
description of the photoelastic effect. Future develop-
ments may include extending applicability to fluid do-
mains, which are usually described by either a scalar
pressure field, or more generally by a vectorial veloc-
ity field. Our method provides a powerful platform for
the design of artificial media, in particular metamaterials
and plasmonic systems, whose electromagnetic and elas-
tic properties (including resonances) can be engineered
with ample control.
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Appendix A: Useful continuum mechanics concepts

Since continuum mechanics is not typically a subject
that the optics community is fluent in, herein is presented
a small compendium of useful notions that may help the
readers’ understanding of this work. For more compre-
hensive reading, references [14, 27, 28], from which the
following material is drawn, are recommended.

1. Kinematics: displacement and strain

Given a material body, it will occupy a subset of 3-
D space at a certain moment in time. The position
of all material points the body is comprised of at that
time is the configuration. A deformation is the change
from a reference configuration to a different (deformed)
one. Deformation here can mean both rigid motion and

warping of the body’s shape. The positions of mate-
rial points in the reference configuration are identified
by Lagrangian (material) coordinates X, which are inde-
pendent of deformation, whereas in the deformed config-
uration the points are described by the set of Eulerian
(spatial) coordinates x.
The deformation itself can be modeled as a deforma-

tion (motion) map ϕ : x = ϕ (X, t), which must meet
some conditions to represent physical deformations: a)
it is bijective b) det∇ϕ (X) > 0, i.e. it is orientation-
preserving (e.g. it cannot perform a mirror image oper-
ation or collapse the volume to zero). A map is said to
be admissible if it meets these requirements. The associ-
ated vector field is called the displacement u, which can
be defined as

u (X) = ϕ (X)−X. (A1)

The concept of strain refers to local changes in shape
of a body due to deformation. There are several ways
to define and quantify it, none of which is fundamentally
superior to the others. The choice is usually dictated by
the problem at hand and by what aspects of it one wants
to highlight more easily. In this appendix, four such def-
initions are illustrated. In all cases, strain is described
by a second-order tensor.

The deformation gradient ¯̄F , which has been repeat-
edly referenced in the body of this paper, is a rather
intuitive measure of strain:

¯̄F (X) = ∇X ϕ (X) (A2a)

Fij = xi,j =
∂xi

∂Xj

, (A2b)

where ∇X is the Lagrangian del operator and the comma
followed by an index notation conventionally denotes a
partial derivative in Lagrangian coordinates. One should

note that ¯̄F contains information on rotation, not only
stretch. This can turn out to be problematic in the study
of stress and strain in a body. It is however possible to
perform a polar decomposition, factoring out the influ-
ence of rotation. There are two variants of this process:

¯̄F = ¯̄R · ¯̄U = ¯̄V · ¯̄R, (A3)

where ¯̄R is a rotation, and ¯̄U =
√

¯̄FT ¯̄F and ¯̄V =
√

¯̄F ¯̄FT

are symmetric, positive-definite tensors called the right
and left stretches.
Another description of strain is the right Cauchy-Green

strain tensor ¯̄C, defined as

¯̄C = ¯̄FT ¯̄F (A4a)

Cij = FkiFkj , (A4b)

where, by the Einstein convention, repeated indices imply
summation. By its nature, the information on rotations
is left out, isolating the one on stretches. This makes
the Cauchy-Green strain a more useful quantity in many
cases.
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A third option is the infinitesimal strain tensor ¯̄E:

¯̄E =
1

2

(

¯̄C − ¯̄I
)

−
1

2
(∇Xu)T ∇Xu (A5a)

Eij =
1

2
(FkiFkj − δij)−

1

2
(ui,juj,i) , (A5b)

where ¯̄I is the identity tensor. ¯̄E contains small-strain
terms and quadratic terms, which make it also indepen-
dent of rotation. If the quadratic terms are neglected

(small deformations), ¯̄E encodes almost the same infor-

mation as ¯̄C. The difference lies in the fact that ¯̄E has a
linear dependence on displacement, where ¯̄C depends on
it nonlinearly. Moreover, for small deformations (or, to

better put it, small rotations), ¯̄E is practically indistin-
guishable from the well-known engineering strain tensor
¯̄ε, defined as

¯̄ε =
1

2

(

¯̄F + ¯̄FT
)

− ¯̄I (A6a)

εij =
1

2
(Fij + Fji)− δij =

1

2
(ui,j + uj,i) . (A6b)

2. Measures of stress

Contrary to strain, there is arguably one definition of
stress that is most natural: the Cauchy (or “true”) stress
tensor ¯̄σ, an inherently Eulerian quantity defined as

t (n̂,x) = ¯̄σ (x) n̂, (A7)

where t is the traction (surface force) field and n̂ is the
surface unit vector. Conceptually, Cauchy stress repre-
sents a force per unit area, where the infinitesimal area el-
ement accounted for is in the current configuration. This
is in contrast to the engineering stress, where the area is
a fixed reference.
In the Lagrangian frame, it is more appropriate to em-

ploy the first and second Piola-Kirchhoff stress tensors,
¯̄P and ¯̄S, respectively:

¯̄P =
(

det ¯̄F
)

¯̄σ ¯̄F−T (A8)

¯̄S = ¯̄F−1 ¯̄P (A9)

The advantage of using the second Piola-Kirchhoff stress
tensor—besides it being symmetric—is that, contrary to
Cauchy stress, it factors out the influence of body ro-
tations. being defined in Lagrangian coordinates (the
analogy with Cauchy-Green and infinitesimal strain is ev-
ident). On the other hand, the first Piola-Kirchhoff stress
tensor is not symmetric, and is conceptually a general-
ization of the engineering stress, as it relates the force in
the deformed configuration to infinitesimal areas in the
initial configuration.

3. Conservation of mass and momentum

In continuum mechanics, conservation laws can be ex-
pressed in a localized way, either in the Eulerian or in

the Lagrangian frame. For example, conservation of mass
takes the form of the inherently Eulerian continuity con-
dition

∂ρ

∂t
+∇x · (ρv) = 0, (A10)

where ∇x is the del operator in Eulerian coordinates,
and ρ (x, t) and v (x, t) are the spatial mass density and
velocity fields, respectively. The same law can also be ex-
pressed in its Lagrangian form by use of the deformation
gradient:

ρm (X, t) det ¯̄F (X, t) = ρ0 (X) , (A11)

where ρm is the Lagrangian analogue of the spatial mass
density field, and ρ0 is the reference Lagrangian mass
density field.
Conservation of momentum is most generally ex-

pressed by the well-known Navier-Stokes equation, which
is more naturally Eulerian. For elastic bodies, however,
it can be simplified to

ρ v̇ = ∇x · ¯̄σ + ρb, (A12)

which in Lagrangian coordinates reads

ρ0 ϕ̈ = ∇X · ¯̄P + ρ0 bm. (A13)

In the preceding equations, b and bm are spatial body
force fields—the former Eulerian, the latter Lagrangian.

4. On material derivatives

In the previous section, both the Leibniz and New-
ton (dot) notations were used for time derivatives. This
choice serves to highlight an important distinction be-
tween spatial and material quantities. The term “total
time derivative” indicates a rate of change from the point
of view of an observer following each material point in-
dividually, i.e. it is the time derivative computed keep-
ing the Lagrangian coordinates X fixed. It can also be
called material, substantial, or convective time deriva-
tive. There are no counterintuitive implications for ma-
terial fields. In fact, given one such field B (X, t) and
using the Newton notation for total time derivative

Ḃ (X, t) =
∂

∂t
B (X, t) . (A14)

Spatial coordinates, however, change with time in a way
described by the motion ϕ, which relates them to the
material frame through x = ϕ (X, t). Then, the total
time derivative of a spatial field Γ (x, t) is not simply
∂
∂t
Γ (x, t), but instead

Γ̇ (x, t) =

[

∂

∂t
Γ (ϕ (X, t) , t)

]

X=ψ(x,t)

(A15)

=
[

Γ̇m (X, t)
]

X=ψ(x,t)
=

[

Γ̇m

]

s
,
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where the m- and s-subscripts indicate material and spa-
tial descriptions, and ψ is the inverse deformation map,
i.e. that which maps the deformed body back to the orig-
inal configuration: ψ (ϕ (X, t) , t) = X. It is insufficient
to simply take the partial time derivative of a spatial
field because the time-dependence of the Eulerian frame
would be overlooked. This fact is more apparent when
examining the familiar concepts of velocity V and ac-
celeration A of a material point. These are inherently
Lagrangian quantities, easily defined as

V (X, t) =
∂

∂t
ϕ (X, t) (A16)

A (X, t) =
∂2

∂t2
ϕ (X, t) . (A17)

When the spatial descriptions of these fields are required,
care must be taken in taking the total time derivative
appropriately. Thus, spatial velocity v and acceleration
a become

v (x, t) =

[

∂

∂t
ϕ (X, t)

]

X=ψ(x,t)

(A18)

a (x, t) =

[

∂2

∂t2
ϕ (X, t)

]

X=ψ(x,t)

. (A19)

If the spatial velocity v is known, it can be proven that
it is possible to compute the total time derivative of an
arbitrary spatial field, be it scalar (φ) or vectorial (w):

φ̇ =
∂

∂t
φ+∇x φ · v (A20a)

ẇ =
∂

∂t
w+ (∇x w)v. (A20b)

In fact, this applies to the spatial acceleration field as
well, which can be rewritten as

a =
∂

∂t
v+ (∇x v)v. (A21)

It has now become apparent that the spatial description
of acceleration is a nonlinear function of spatial velocity
and its derivatives (and, therefore, of displacement).

5. Elastic material behavior

When solving continuummechanics problems, it is nec-
essary to specify material constitutive relations relating
stress to strain in order to have a determined problem.
This section is concerned exclusively with elastic solids.
The simplest material behavior is the tensorial version
of Hooke’s law, which models an isotropic, linear elastic
material. It does not matter much which definitions of
stress and strain are used, as in this model’s range of va-
lidity the differences between definitions vanish. Thus,

one can equally write

¯̄ε =
1

EY

[

(1 + ν) ¯̄σ − ν ¯̄I Tr ¯̄σ
]

(A22a)

¯̄E =
1

EY

[

(1 + ν) ¯̄S − ν ¯̄I Tr ¯̄S
]

, (A22b)

where EY and ν are Young’s modulus and Poisson’s ra-
tio. The relation is readily inverted to obtain stress as a
function of strain. Component-wise, it reads

σij =
EY

1 + ν

(

εij +
ν

1− 2ν
δijεkk

)

. (A23)

More generally, anisotropy can be described by intro-
ducing the stiffness tensor C. This is a fourth-rank quan-
tity relating stress to strain as follows:

¯̄σ = ¯̄
C : ¯̄ε, (A24)

where the : operator denotes a tensorial double-dot prod-
uct. As in the previous case, it does not matter which
stress or strain definition is employed, provided the ini-
tial configuration is stress-free. More rigorously, the stiff-
ness tensor can be related to a material stress response
function, e.g. the second Piola-Kirchhoff stress response

function Ŝ, defined as ¯̄S (X, t) = Ŝ
(

¯̄F (X, t) ,X
)

:

Cijkl =
∂Ŝij

∂Fkl

(

¯̄I
)

. (A25)

Appendix B: Metric tensor components

By substituting the expressions for ¯̄F as a function of

displacement Eq. (7) and det ¯̄F as a function of density
variation Eq. (8)

¯̄F = ¯̄I + IRe
[

(∇Xu) eiΩt
]

(B1a)

det ¯̄F =
[

1 + IRe
(

∆ρ eiΩt/ρ0
)]−1

(B1b)

into the TO formula ¯̄g = ¯̄F ¯̄FT / det ¯̄F , one obtains ¯̄g =
∑3

n=−3
¯̄gne

inΩt by writing

¯̄g =
{

¯̄I + IRe
[

(∇u) eiΩt
]

}{

¯̄I + IRe
[

(∇u)
T
eiΩt

]}

×

(B2)

×
[

1 + IRe
(

∆ρ eiΩt/ρ0
)]

,

where the X-subscript has been dropped from the gra-
dient for ease of reading. In particular, the four metric
coefficients are
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¯̄g0 = ¯̄I +
1

2
IRe

{

(∇u) (∇u)
†
+

∆ρ

ρ0

[

(∇u)
∗
+ (∇u)

†
]

}

(B3a)

¯̄g1 =
(∇u) + (∇u)

T

2
+

∆ρ

2ρ0

{

¯̄I +
1

2
IRe

[

(∇u) (∇u)†
]

}

+
∆ρ∗

ρ0

(∇u) (∇u)
T

8
(B3b)

¯̄g2 =
(∇u) (∇u)

T

4
+

∆ρ

ρ0

(∇u) + (∇u)
T

4
(B3c)

¯̄g3 =
∆ρ

ρ0

(∇u) (∇u)
T

8
, (B3d)

where the † sign indicates the conjugate transpose operator.

[1] R. W. Boyd, “Nonlinear optics,” (Academic Press, 2008)
Chap. 9, p. 429, 3rd ed.

[2] I. L. Fabelinskii, “Molecular scattering of light,”
(Plenum Press, 1968) Chap. X, p. 483, 1st ed.

[3] G. P. Agrawal, “Nonlinear fiber optics,” (Academic
Press, 2007) Chap. 9, p. 355, 3rd ed.
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