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We report the observation of a clear single-mode instability threshold in continuous-wave Fabry-
Perot quantum cascade lasers (QCLs). The instability is characterized by the appearance of side-
bands separated by tens of free spectral ranges (FSR) from the first lasing mode, at a pump current
not much higher than the lasing threshold. As the current is increased, higher-order sidebands ap-
pear that preserve the initial spacing, and the spectra are suggestive of harmonically phase-locked
waveforms. We present a theory of the instability that applies to all homogeneously-broadened
standing-wave lasers. The low instability threshold and the large sideband spacing can be explained
by the combination of an unclamped, incoherent Lorentzian gain due to the population grating,
and a coherent parametric gain caused by temporal population pulsations that changes the spectral
gain line shape. The parametric term suppresses the gain of sidebands whose separation is much
smaller than the reciprocal gain recovery time, while enhancing the gain of more distant sidebands.
The large gain recovery frequency of the QCL compared to the FSR is essential to observe this
parametric effect, which is responsible for the multiple-FSR sideband separation. We predict that
by tuning the strength of the incoherent gain contribution, for example by engineering the modal
overlap factors and the carrier diffusion, both amplitude-modulated (AM) or frequency-modulated
emission can be achieved from QCLs. We provide initial evidence of an AM waveform emitted by
a QCL with highly asymmetric facet reflectivities, thereby opening a promising route to ultrashort
pulse generation in the mid-infrared. Together, the experiments and theory clarify a deep connection
between parametric oscillation in optically pumped microresonators and the single-mode instability
of lasers, tying together literature from the last 60 years.

I. INTRODUCTION

In the last decade, significant efforts have spurred
the understanding of high-Q optically-pumped microres-
onators. A monochromatic external pump beam is cou-
pled to a mode of the microresonator, and at sufficient
pump power the third-order χ(3) Kerr nonlinearity, re-
sponsible for the intensity-dependent refractive index,
couples the pumped mode to fluctuations at other fre-
quencies, which leads to interesting physics. Starting
from an initial demonstration of third-order optical para-
metric oscillation (OPO) [1, 2], in which the pump beam
provides sufficient parametric gain to allow a few pairs of
sidebands to oscillate, this technique has been extended
to generate wide-spanning frequency combs [3, 4], and
most recently temporal solitons [5, 6]. The many degrees
of freedom one can manipulate in these systems, such as
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the group velocity dispersion (GVD), the free spectral
range of the resonator, the detuning of the pump fre-
quency relative to the cold cavity mode that it pumps,
and the pump power, among others, have provided a rich
nonlinear optical playground to observe diverse physical
phenomena.

A laser, much like an OPO, is an optical resonator in
which circulating monochromatic light reaches high in-
tensity, the difference being that the light is internally
generated rather than externally injected. Furthermore,
the very gain medium that allows for lasing, simulta-
neously provides a third-order nonlinearity, the popula-
tion pulsation (PP) nonlinearity [7]. The PP nonlinear-
ity is an intrinsic property of any two-level system that
interacts with near-resonant amplitude-modulated (AM)
light: the radiative transition rate between the states,
and therefore the population of each state, is temporally
modulated by the AM light, resulting in so-called pop-
ulation pulsations that act back on the light field in a
nonlinear way. The laser therefore contains the two in-
gredients, high-intensity light and a non-linearity, nec-
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essary for parametric oscillation. Indeed, in the late
1960s the importance of PPs in determining the above-
threshold spectral evolution of a homogeneously broad-
ened, traveling-wave laser was realized. At the laser
threshold, one mode–which we call the primary mode–
begins to lase and as the current is increased the popu-
lation inversion remains clamped to its threshold value.
It was first thought that this clamping should prevent
any other mode from reaching the oscillation threshold.
This reasoning, however, neglects the fact that when a
photon of a different frequency is spontaneously emitted
in the presence of the primary lasing field, a beat note–
i.e., an intensity modulation at the difference frequency
of the two fields–is created. The beat note creates a PP
that provides a parametric contribution to the gain of
the spontaneously emitted photon. At a sufficiently high
pumping level known as the instability threshold, this
parametric gain can–despite the fact that the popula-
tion inversion is clamped to its threshold value–allow two
sidebands to overcome the loss. The separation of these
sidebands from the primary mode is related to the Rabi
frequency induced by the primary mode. This effect is
responsible for both the Haken-Risken-Schmid-Weidlich
(HRSW) instability [8, 9] and the Risken-Nummedal-
Graham-Haken (RNGH) instability [10, 11]. Many years
later, insightful work properly identified the fundamental
role of PPs in the single-mode laser instabilities [12–18]
and also chaos [19]. (We note that PPs are important not
only for inverted media. Historically, their effects were
first appreciated in microwave spectroscopy pump-probe
experiments by Autler and Townes [20] in 1955, and soon
came to be known as the ac Stark effect. Through the
late 1960s and 1970s, significant work on sideband ampli-
fication [21], resonance fluorescence [22, 23], and the Mol-
low scattering triplet [24–28] culminated in the “dressed”
description of atoms in strong fields [29]. In the 1980s,
the PP nonlinearity was cast in the language of nonlinear
optics and applications such as four-wave-mixing (FWM)
[30], phase conjugation [31], and optical bistability [14]
were explored.)

Both the HRSW and RNGH single-mode instabilities
apply to homogeneously-broadened traveling-wave lasers,
and predict the appearance of sidebands on the primary
lasing mode, as shown in Fig. 1(a). We remark that in
general, the temporal behavior of an electric field that
contains three equally spaced frequencies can be more
amplitude-modulated or frequency-modulated (FM), de-
pending on the spectral phase, as shown in Fig. 1(b). One
can think of the intensity modulation (in other words, the
beat note) of the AM and FM fields as resulting from
the sum of two phasors rotating at frequency δω, each of
which is created by the beat between a sideband and the
primary mode. As shown in Fig. 1(c), the two phasors
either constructively interfere to create a large intensity
modulation (AM) or destructively interfere to eliminate
the intensity modulation (FM). In both the HRSW and
RNGH instabilities, the three-wave field is by necessity
AM; a constant-intensity FM field would not create the
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FIG. 1. (a) The emission spectrum at the instability threshold
comprises a primary mode and two weak sidebands. (b) The
temporal behavior of the field E(t) depends on the relative
phases of the three modes φ−, φ0, and φ+, and shown are the
AM and FM configurations. (c) The AM and FM fields can be
understood in terms of the constructive and destructive addi-
tion of two beat note phasors, where each phasor represents a
contribution to the intensity modulation at the difference fre-
quency δω resulting from the superposition of each sideband
with the primary mode. (d) In a standing-wave cavity, the
intensity of each mode varies with position, and the spatial
modes corresponding to different frequencies do not perfectly
overlap.

PP and the resulting parametric gain that is required
by the sidebands to reach the lasing threshold. In the
HRSW case, which applies to low quality-factor cavities
for which the photon lifetime is shorter than the atomic
decay time, the sideband separation is smaller than the
mode spacing, or free spectral range (FSR), of the cavity.
All three lasing frequencies fall within a single cold cavity
resonance, which is made possible by a region of anoma-
lous dispersion created by the PP [12]. In the RNGH in-
stability, which applies to higher quality-factor cavities,
the sidebands must coincide with cold cavity modes in
order to satisfy the roundtrip phase condition, resulting
in a separation that is an integer multiple of the FSR. An
important corollary of this requirement is that to observe
the effect of the PPs, the FSR must be smaller than the
gain recovery frequency (i.e., inverse of the gain recov-
ery time T1). Why? The gain recovery time determines
the shortest time scale at which the population inversion
can respond to an intensity modulation; therefore, the
amplitude of the PP is only significant for sidebands de-
tuned by an amount close to or smaller than 1/T1. If
the FSR is greater than 1/T1, then all cavity modes are
too far from the primary mode to generate a PP with
an amplitude large enough to make the sidebands unsta-
ble. Ideally, the FSR should be significantly smaller than
1/T1 so that the FP modes densely populate the para-
metric gain lobe, increasing the probability of satisfying
the instability condition. Provided this condition is met,
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the RNGH instability predicts that a traveling-wave laser
with rapid dephasing must be pumped nine times above
threshold before the instability appears. Experimental
observations of a rhodamine dye ring laser [16] showed
signatures of an RNGH-like instability, with two key dif-
ferences: the instability threshold was only fractionally
higher–not nine times higher–than the lasing threshold,
and the sideband creation was accompanied by the dis-
appearance of the primary mode. Efforts to explain the
discrepancies between theory and experiment are well-
summarized in [17, 32], but to our knowledge the dis-
crepancy was never fully resolved.

In this work, we will investigate the single-mode in-
stability in a standing-wave laser, shown schematically
in Fig. 1(d). The distinguishing feature of the standing-
wave laser is that the primary mode induces a population
grating (PG) (as long as carrier diffusion is limited), an
effect known as spatial hole burning (SHB). The gain of
other cavity modes is no longer clamped above thresh-
old, but continues to increase with the pumping. There-
fore, the instability threshold can be reached without the
need for PP parametric gain. We call this an incoherent
instability, and it occurs in media whose gain recovery
time is too slow for PPs to occur (FSR > 1/T1), such
as diode lasers. In gain media with a fast recovery time
(FSR < 1/T1), both the incoherent gain and the para-
metric PP contribution to the gain must be considered.
We will show that the PP parametrically suppresses the
gain of nearby sidebands, because low-frequency side-
bands cause the population inversion to oscillate per-
fectly out of phase with the intensity modulation. On the
other hand, the PP enhances the gain of larger-detuning
sidebands, as occurs in the RNGH instability. Depend-
ing on the relative contributions of the incoherent and
coherent gain, we show that the laser will either emit
an FM or an AM waveform at the instability thresh-
old, to either minimize or maximize the amplitude of the
PPs. If the incoherent gain is large, nearby sidebands
are favored and will yield FM emission to minimize the
amount of parametric suppression. If the incoherent gain
is small, larger-detuning sidebands are favored and will
yield AM emission to maximize the amount of parametric
enhancement. The possibility of both FM and AM emis-
sion from a standing-wave laser is a novelty not shared
by the traveling-wave laser, which, as mentioned before,
can only produce an AM waveform.

The quantum cascade laser (QCL) is precisely the kind
of laser for which both the PG and PPs are important.
An electron injected into the upper state has only a
short picosecond lifetime during which to diffuse before
it scatters to the ground state–not enough time to tra-
verse the half-wavelength mid-infrared (λ ∼ 3 -12µm)
standing-wave from node to antinode. Therefore, the
PG is not washed out. Also, the FSR (typically 8 to
16 GHz) is much less than the gain recovery frequency
(1/T1 ≈ 1 THz), so the population inversion has no dif-
ficulty following the beat notes in field intensity cre-
ated when multiple modes lase simultaneously, yielding

PPs. We report the discovery that continuous-wave (cw)
Fabry-Perot (FP) QCLs reach a well-defined instability
threshold, characterized by the appearance of sidebands
whose separation from the primary mode can be several
multiples of the cavity FSR. This mode skipping is a clear
signature of the parametric PP interaction between the
primary mode and the sidebands, which strongly sup-
presses sidebands at separations much smaller than the
large gain recovery frequency of the QCL. The behav-
ior is observed in QCLs that emit at wavelength 3.8µm,
4.6µm, and 9.8µm, indicating that it is a universal fea-
ture of mid-infrared QCLs, independent of the specific
bandstructure of the active region. The strength of the
PG can be tuned by coating the facets to adjust their
reflectivities. By comparing the measurements with the
theory, we argue that QCLs with uncoated facets emit
an FM waveform. A QCL with one high-reflectivity facet
and a sufficiently low reflectivity of the other facet should
in principle emit an AM waveform, and we provide pre-
liminary evidence that this is indeed the case, demon-
strating a QCL whose sidebands are separated from the
primary mode by 46 FSR. While the PG and PP have
been known to be important in QCLs, in previous work
their effects were treated separately [33]. Instead, we em-
phasize that one should think of the PG–a spatial mod-
ulation of the inversion–and the PP–a temporal modu-
lation of the inversion–as working in tandem to create a
phase-locked multimode state at low pump power.

As the current is increased past the instability thresh-
old, higher-order sidebands that preserve the initial spac-
ing appear. This suggests that the FP-QCL can emit
a harmonically phase-locked waveform without the need
for any external modulation or additional nonlinear ele-
ments. Why have such spectra not been observed be-
fore, except in a few cases [34, 35]? We have found
the harmonic states to be extremely sensitive to opti-
cal feedback. Simply placing a collimating lens between
the QCL and the spectrometer–even a poorly aligned,
tilted lens with a focal length of a few cm–makes it dif-
ficult to observe the harmonic state, and instead yields
the more familiar QCL spectrum in which all adjacent
FP modes lase. It is also important to slowly increase
the current, which allows for a smooth transition from
the single-mode to the harmonic regime. We argue that
the harmonic state is an intrinsic regime of all QCLs. The
fact that it has only been observed 15 years after the in-
vention of the cw QCL is a testament to the destabilizing
influence of optical feedback [36].

In the last few years, comb generation in a QCL on
adjacent FP modes has been demonstrated [37–39], and
the importance of parametric mode coupling is known
[40, 41]. (These devices all had multi-stage inhomo-
geneously broadened active regions, which distinguishes
them from the devices in our work.) Because these combs
have so far always comprised adjacent cavity modes, con-
sideration has only been given to the case where the fun-
damental frequency of the PPs equals the FSR. This low
PP frequency strongly favors the emission of an FM wave-
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form. The remarkable degree of freedom to skip modes,
never before considered, means that the temporal pe-
riodicity of the PPs is no longer pinned to the cavity
roundtrip time (typically 60 to 120 ps), but is shortened
by a factor equal to the number of modes skipped, which
reaches 46 in one of our QCLs. This reduction of the
period down to the order of the gain recovery time is
the crucial feature that allows for the possibility of AM
emission.

Finally, we emphasize the deep connection between
the single-mode laser instability and mode proliferation
in optically pumped microresonators. Both are cases of
parametric oscillation that are initiated by a nonlinear-
ity, either PP or Kerr, transferring energy from a pump
beam to two sidebands. For a passive microresonator
the pump beam must be injected, while in the laser the
pump beam is internally generated. This analogy, which
we only begin to uncover here, can help guide future
work toward understanding the rich emission spectra of
QCLs. More broadly, both QCLs and microresonators
exhibit the widespread phenomenon of modulation insta-
bility [42]. We hope that the advancement of the QCL
can parallel the rapid progress seen in microresonators
in the last decade, leading to a compact source of mid-
infrared frequency combs for spectroscopy of trace gases
and short pulse generation [43].

In Sec. II we present the experimental results, which
helps to motivate the theory presented in Sec. III. In Sec.
IV we compare the theory with the measurements, and
finally conclude in Sec. V.

II. EXPERIMENT

All four devices used in this study are cw, buried het-
erostructure, FP-QCLs. Our device naming convention
identifies the provider of the device (LL: MIT Lincoln
Laboratory, TL: Thorlabs, DS: Daylight Solutions) fol-
lowed by the emission wavelength in microns. The active
region of device LL-9.8 is a double phonon resonance de-
sign using lattice-matched Ga0.47In0.53As/Al0.48In0.52As,
grown by metalorganic chemical vapor deposition, with
the well-known layer structure of [44] (with a nominal
doping of n = 2.5 × 1018 cm−3), for which extensive
bandstructure calculations have been done [45]. The de-
vice length is 3 mm and width is 8µm. Devices TL-4.6,
TL-4.6:HR/AR, and DS-3.8 were grown using strained
GaxIn1−xAs/AlyIn1−yAs and are described in [46], al-
though the layer sequence is not given. The length is
6 mm and width is 5µm for these three devices. Both
facets are left uncoated for LL-9.8, TL-4.6, and DS-3.8.
The only coated device is TL-4.6:HR/AR, which has a
high-reflectivity (HR) coating on the back facet (R ≈ 1)
and an antireflection (AR) coating on the front facet
(R ≈ 0.01), but is otherwise nominally identical to TL-
4.6. Far-field measurements indicate that all devices ex-
hibit single lateral-mode emission over the full range of
applied current. It is worth mentioning that the short-
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FIG. 2. Total power output of each QCL (from both facets)
vs. current, color-coded to indicate the range over which the
laser operates in a single-mode (the region following thresh-
old), harmonic state (the middle region), or dense state (the
highest-power region). Inset: the intracavity power normal-
ized to the saturation intensity (calculated from the measured
output power and the best estimates for κ, T1, T2, and the
facet reflectivities) is plotted vs. J/Jth.

Device neff d [nm·e] Tup [ps] γD T2 [fs] δωFSR [GHz] δωsb [GHz] Jsb/Jth

LL-9.8 3.43 3 0.54 0.93 81 92 642 1.14
TL-4.6 3.23 1.63 1.7 0.49 74 48 1259 1.17
TL-4.6:HR/AR 3.25 1.63 1.7 0.49 74 48 2216 1.22
DS-3.8 3.25 1.5 1.74 0.40 43 49 977 1.12

TABLE I. Summary of relevant parameters of the devices
used in this study. neff , T2, δωsb, and Jsb were measured
quantities. Tup and d were calculated from the bandstructure
for TL-4.6 and DS-3.8, and taken from [45] for LL-9.8, and
γD was calculated assuming D = 77 cm2/s [48].

wave QCLs, DS-3.8 and TL-4.6, have positive GVD and
the long-wave device LL-9.8 has negative GVD. We ex-
pect this because their wavelengths lie on opposite sides
of the zero-GVD point of InP, but we have also confirmed
this in Appendix B using the subthreshold measurement
method of [47]. Some relevant parameters for each de-
vice are given in Table I: the effective refractive index
neff is determined from the FP-mode spacing of the mea-
sured spectra; the dipole moment d and the upper state
lifetime Tup are calculated from the bandstructure; the
dephasing time T2 is determined from a Lorentzian fit to
either an electroluminescence or far-subthreshold mea-
surement of each device. The output power of each laser
was measured with a calibrated thermopile (Ophir 3A-
QUAD) placed close to the facet; the total output power
is plotted in Fig. 2, which is obtained from the front facet
only for TL-4.6:HR/AR and by doubling the single-facet
power of the uncoated lasers.
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Our goal was to precisely examine the spectral evolu-
tion of the QCL with increasing current, from the single-
mode to the multimode regime. Specifically, we wanted
to answer the question: at what pumping level does a
second mode start to lase, and what is the relationship
between the second frequency and the first? To answer
this question, we would begin each measurement with
the laser driven at a current beneath the laser threshold.
The current was then slowly increased in steps of 1 mA
(at a rate of roughly 2 mA per second), and the spec-
trum was monitored using a Fourier transform infrared
(FTIR) spectrometer (Bruker Vertex 80v), with either an
InSb detector (for DS-3.8 and TL-4.6) or HgCdTe detec-
tor (for LL-9.8), both cryogenically cooled. The current
was supplied by a low-noise driver (Wavelength Electron-
ics QCL1500 or QCL2000), and the temperature of the
copper block beneath the QCL was stabilized to 15◦C.
The slow rate of increase of the current was necessary
to precisely identify the instability threshold, and also
to prevent rapid temperature variations. To completely
eliminate the possibility of optical feedback due to reflec-
tions from optical elements outside the laser cavity, the
QCL was placed about 40 cm from the entrance window
to the FTIR and its output was not collimated with a
lens, but simply allowed to diverge. The high power of
the devices and the sensitivity of the detectors was suf-
ficient to measure spectra despite the small fraction of
collected optical power.

Spectra measured in this manner are shown in Fig. 3
for the three uncoated devices. Each spectrum is nor-
malized to its own maximum and plotted on a logarith-
mic scale covering 40 dB of intensity variation. All three
lasers undergo a very similar spectral evolution. Above
threshold, the laser remains single-mode for a substan-
tial range of current until a clear instability threshold is
reached, at which a 1 mA increase in current results in
the appearance of new lasing modes. The new frequen-
cies appear as symmetric sidebands on the primary lasing
frequency, with a separation that is many integer multi-
ples of the FSR. The sideband spacing δωsb and pumping
Jsb at the sideband instability threshold are given in Ta-
ble I for each device. Taking LL-9.8 as a first example,
at Jsb/Jth = 1.14 a pair of equal-amplitude sidebands
separated by 7 FSR from the primary mode suddenly
rise out of the noise floor to an intensity 20 dB weaker
than the primary mode. As the current increases further,
higher-order sidebands appear that preserve the initial
spacing, eventually yielding a spectrum at J/Jth = 1.39
of 11 modes, each separated by 7 FSR from its nearest
neighbors. We refer to a spectrum of modes separated by
multiple FSR as a harmonic state. Above J/Jth = 1.39,
interleaving modes incommensurate with the harmonic
spacing begin to appear. At J/Jth = 1.47, there is an-
other sudden transition at which all adjacent FP modes
are populated; we refer to this as a “dense” state, and it
persists for all higher currents. For device TL-4.6, side-
bands with a separation of 26 FSR from the primary
mode appear at Jsb/Jth = 1.17, and the transition to the
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FIG. 3. Spectra of the three uncoated QCLs (a) LL-9.8, (b)
TL-4.6 and (c) DS-3.8 as the current is incremented, starting
from below threshold.
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dense state occurs at J/Jth = 1.30. (In a second device
nominally identical to TL-4.6, sidebands separated by 13
FSR appeared at Jsb/Jth = 1.19 and the dense state ap-
peared at J/Jth = 1.31.) For device DS-3.8, the sideband
separation is 20 FSR at Jsb/Jth = 1.12. As the current is
increased, the sideband spacing displays a sudden jump
from 20 FSR to 25 FSR. At J/Jth = 1.32 the laser jumps
to a dense state for somewhere between a few seconds and
a minute before returning to a “noisy” harmonic state:
one with prominent harmonic peaks but many incom-
mensurate modes populated as well. At J/Jth = 1.38
the dense state appears again, and this time persists for
all higher currents.

When the spectral evolution measurement is repeated
many times for one device, starting from below threshold
and incrementing the current, we find that the instability
threshold Jsb and sideband spacing δωsb are always the
same. As the current is increased past Jsb, there can be
slight variations from one experiment to another. For
example, the jump from 20 to 25 FSR in DS-3.8 does not
always occur at the exact same current, but predictably
within a range of about 20 mA. The same is true of the
transition to the dense state.

After the laser enters the dense state, we decrease the
current slowly and observe a remarkable hysteresis in the
spectral evolution, shown in Fig. 4. In LL-9.8, the dense
state persists all the way until J/Jth = 1.01, when the
single-mode finally reappears. In TL-4.6, the dense state
gives way to a single-mode at 2148 cm−1 at J/Jth = 1.10,
and then at J/Jth = 1.01 jumps to a single-mode at
2155 cm−1, which is the same mode observed at thresh-
old when the current is ramped up in Fig. 3(b). In DS-
3.8, a noisy harmonic state appears at J/Jth = 1.38, then
laser returns to the dense state at J/Jth = 1.14, and the
single-mode state reappears at J/Jth = 1.05. We empha-
size the general observation for all three devices that the
clean harmonic state cannot be recovered once the cur-
rent has been increased far into the dense state regime.
(If the ramp down is begun from a current not too much
larger than the one at which the laser enters the dense
state, harmonic states can reappear.) Additionally, there
is no spectral hysteresis in the immediate vicinity of the
instability threshold; for example, if DS-3.8 is toggled be-
tween 407 and 408 mA, then the spectrum simply toggles
between the two spectra shown in Fig. 3(c), and the same
is true for LL-9.8 and TL-4.6.

One might expect sudden changes in the emission spec-
trum to be accompanied by changes in the output power
and voltage. Since we can more sensitively measure the
voltage than the output power, we plot in Fig. 5 a portion
of the IV curve of DS-3.8. When starting below threshold
and increasing the current, the voltage of the laser de-
creases (negative differential resistance) when the noisy
harmonic state transitions to the dense state at 523 mA.
(Note that in the spectra shown in Fig. 3(c), this transi-
tion occurred at 502 mA.) The IV curve also exhibits a
hysteresis correlated with the spectral hysteresis: as the
current is decreased after reaching the dense state, the
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(a) LL-9.8: decreasing current 
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(b) TL-4.6: decreasing current 
 

(c) DS-3.8: decreasing current 

FIG. 4. Spectra of the three uncoated QCLs (a) LL-9.8, (b)
TL-4.6 and (c) DS-3.8 as the current is decremented, starting
from the current reached at the end of the upward current
ramp shown in Fig. 3.
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FIG. 5. The IV curve of DS-3.8 exhibits a hysteresis as the
current is increased (red, upper curve) and decreased (blue,
lower curve). The hysteresis is correlated with the transition
from the noisy harmonic state to the dense state on the ramp
up, and from the dense state to the noisy harmonic state on
the ramp down.

laser remains in the dense state. For the same current,
the voltage is 4.8 mV lower in the dense state than in the
noisy harmonic state. (Accordingly, the output power is
slightly higher in the dense state.) At 494 mA, the dense
state transitions to the noisy harmonic state, and the two
voltage curves overlap again.

Lastly, we present in Fig. 6(a) the spectral evolution of
TL4.6-HR/AR as the current is incremented. The behav-
ior of this device is different from the uncoated devices
in two significant ways: 1) the sidebands appear with a
separation of 46 FSR, much larger than any spacing seen
previously, and 2) the harmonic regime persists over a
much larger range of output power–from J/Jth = 1.22
to 1.60, than it does in the uncoated devices, as seen by
the color-coding in Fig. 2. (A second device, nominally
identical to TL-4.6:HR/AR, developed sidebands with a
spacing of 48 FSR at Jsb/Jth = 1.18 and also remained
in the harmonic state over a large current range.) As the
current is decreased, shown in Fig. 6(b), the clean har-
monic state with one pair of sidebands reappears at 885
mA, which is quite close to the instability threshold of
880 mA found when the current is ramped upwards.

To better understand the coherence properties of a
multimode state, it is typical to look at the width of the
inter-mode radio-frequency beat note generated on a pho-
todetector. We present some measurements of the beat
note in the dense state in Appendix C. We find a range of
interesting phenomena at various currents [39], including
narrow beat notes, multiple closely-spaced beat notes,
and broad beat notes. However, the focus of this paper
is not on the coherence properties of the dense state [49],
but rather to understand the transition from the single-
mode to the harmonic state. Unfortunately, we cannot

perform beat note measurements of the harmonic state
because the smallest observed beat frequency is greater
than 100 GHz, larger than the electrical bandwidth of
any mid-infrared photodetector. The observed spectra
of the harmonic state strongly suggest, however, that the
modes are phase-locked with one another through a non-
linear interaction, because it would be difficult to explain
the mode-skipping if each lasing frequency acted as an in-
dependent oscillator. In the following theory section, we
assume that the primary mode is coherent with the two
sidebands and find that the consequences are consistent
with our observations. The theory predicts that the un-
coated devices emit FM waveforms, and suggests that the
HR/AR device emits an AM waveform. In future work,
second-order autocorrelation measurements are needed
to experimentally verify this prediction.

III. THEORY

The instability threshold is characterized by the ap-
pearance of symmetric sidebands on the primary lasing
mode. Our goal is to theoretically explain the frequency
separation of the sidebands and the pump power at which
they first appear. We begin with the general framework:
the Maxwell-Bloch equations for a two-level system and
the spatial mode expansion of a laser cavity. Then, we
address the single-mode solution of the laser to determine
how the primary mode and the population grating (PG)
evolve with increasing pumping. Next, we understand
how the two-level system responds to a weak field at a
frequency different from that of the primary mode–the
population pulsation (PP). Finally, we will combine these
two ingredients, the PG and the PP, to explain the in-
stability threshold. We find that the PG provides an un-
clamped Lorentzian contribution to the gain of the side-
bands, which is responsible for the low instability thresh-
old. The PP reshapes the gain, suppressing nearby side-
bands and enhancing more distant ones, and is respon-
sible for the observed multiple-FSR sideband separation.
Interestingly, we find that depending on the relative con-
tributions of the PG and the PP to the gain, the laser
can emit either an FM or AM waveform at the instability
threshold.

A. General Framework

We model the lasing transition as a two-level system,
or a quantum dipole, subject to the electric field

E(t) = E(t)eiω0t + c.c. (1)

The response is characterized by the population inversion
w (positive when inverted) and the off-diagonal element
of the density matrix σ, which in turn obey the Bloch
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(a) TL-4.6:HR/AR: increasing current 

FIG. 6. Spectra of TL-4.6:HR/AR as the current is (a) incremented, starting from below threshold, and (b) decremented,
starting from the current reached at the end of the upward current ramp in (a).

equations (in the rotating wave approximation) [50],

σ̇ =

(
i∆− 1

T2

)
σ +

iκ

2
wE (2)

ẇ = iκ(E∗σ − Eσ∗)− w − weq
T1

. (3)

where ∆ = ωba − ω0 is the detuning between the field
and the resonant frequency ωba of the two-level system,
T1 is the gain recovery time, T2 is the dephasing time,
κ ≡ 2d/~ is the coupling constant where d is the dipole
matrix element (assumed to be real) and ~ is Planck’s
constant, and weq is the “equilibrium” population inver-
sion that the system would reach in the absence of pho-
tons, determined by the pumping. (Note that we have
defined T1 to be the gain recovery time, which in QCLs
is distinct from the upper state lifetime Tup due to the
nature of electron transport in the active region. See
Appendix D for a discussion of this point.) We write the
macroscopic polarization P (dipole moment per volume)
as

P (t) = Peiω0t + c.c., (4)

where P = Ndσ, and N is the volume density of dipoles.
A characteristic of the two-level medium that will ap-

pear often is the “Beer rate”

ᾱ =
Nd2T2ωbac

√
µ/ε

~
, (5)

with dimensions of frequency, which is related to the
more familiar Beer coefficient α (with dimensions of in-
verse length) that appears in Beer’s law of absorption by
ᾱ = αc. The Beer rate gives the amount of loss when
the material is in its ground state (w = −1), and also
the maximum amount of gain when the material is fully

inverted (w = 1). We adopt the convention of [51] and
assume our dipoles to be embedded in a host medium
of permittivity ε and permeability µ. The speed of light
c = 1/

√
εµ also denotes the value in the background host

medium.
In the laser cavity, the field envelopes vary in space

and time. One approach is to numerically solve the full
spatiotemporal Maxwell-Bloch equations [52, 53]. To ob-
tain analytical results, we follow a common approxima-
tion and decouple the spatial and temporal dependencies
[54], writing the field as

E(z, t) =
∑

m=−,0,+
Υm(z)Em(t)eiωmt + c.c., (6)

where ω0 is the primary mode frequency and the sideband
frequencies are ω± = ω0 ± δω. These three frequencies
are cold-cavity resonant frequencies, and are equidistant
from one another because we have assumed zero GVD.
We will henceforth assume that the primary mode ω0

lases at the resonant frequency of the two-level system,
so ∆ = 0. This is a reasonable approximation if the
FSR is much smaller than the gain bandwidth. These
two assumptions, GVD = 0 and ∆ = 0, simplify later
mathematical formulas considerably and allow for easier
understanding of the essential physics. The full theory
without these assumptions is included in Appendix F.
The spatial modes Υm(z) are determined by the cavity
geometry, and do not vary in time. We assume a linear
FP cavity with two end mirrors of unity reflectivity as
shown in Fig. 1(d), so that the spatial modes are given
by

Υm(z) =
√

2 cos(kmz) (7)

where km is an integer multiple of π/L and L is the length
of the cavity. (The simpler case of the ring cavity is in-
cluded in Appendix G.) The mirror loss ln(1/

√
R1R2)/L
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is included in the total optical losses of the cavity ¯̀. The
assumption of perfect reflectivity simplifies the problem
in two important ways: the spatial functions Υm(z) are
orthogonal, and they do not change shape as the pump-
ing increases. This assumption turns out to be quite
good even for semiconductor lasers with facet reflectivi-
ties around 0.25. The approximation breaks down for our
HR/AR coated QCL, so the theory will only be directly
applied to the uncoated lasers, but the implications of
the theory for the HR/AR device will be qualitatively
discussed.

B. Population Grating

The threshold inversion is given by the ratio of the
optical loss rate to the Beer rate, wth = ¯̀/ᾱ. We define
the pumping parameter p ≡ weq/wth. When p = 1, the
primary mode begins to lase at the frequency ω0 = ωba.
As the pumping p is increased, the field and inversion can
be solved for by the method of [33] as shown in Appendix
E, the main results of which are stated here. We account
for the population grating, but not the coherence grating
which has been incorporated in recent work [55]. The

primary mode Ẽ0 grows according to

|Ẽ0|2 =
p− 1

1 + γD/2
, (8)

where we have defined the dimensionless primary mode
amplitude Ẽ0 by normalizing by the saturation ampli-
tude, Ẽ0 ≡ κ

√
T1T2E0. The diffusion parameter γD is

given by γD = (1 + 4k2
0DTup)−1, where D is the lateral

diffusivity of the excited-state electrons and Tup is the
upper-state lifetime. The parameter γD ranges from 0
(for infinite mobility) to 1 (for zero mobility). The pop-
ulation inversion in the presence of the primary mode,
w0(z), varies with p as

w0(z) = wth

[
1 +

γD
2

p− 1

1 + γD/2
− γD

p− 1

1 + γD/2
cos(2k0z)

]
.

(9)
Equations 8 and 9 are valid to first order in the primary
mode intensity |Ẽ0|2, or equivalently, p − 1 � 1. Note
that for zero diffusion (γD = 1), the slope efficiency of the
laser is two thirds that of the infinite diffusion (γD = 0)
case. This is because for infinite diffusion, the inversion is
uniformly pinned to wth above threshold. For finite dif-
fusion, as the pumping increases the population grating
grows in amplitude. At the same time, the average value
of the inversion increases, indicating that the inversion is
not being converted into photons as efficiently as it could
be if the electrons could diffuse from the field nodes to
the antinodes. In this derivation, we have assumed that
the pump parameter p is constant along the length of
the laser; in an efficient electrically-pumped laser more
current will flow to the field antinodes, which will reduce
the amplitude of the population grating.

In principle, one can extract γD from measurements of
the slope of |Ẽ0|2 vs. p, which should be between zero and

one. The inset of Fig. 2 shows |Ẽ0|2 vs. J/Jth. All curves
have a slope greater than one, which suggests that J/Jth

is an underestimate of p. (See Appendix A for how |Ẽ0|2
is determined from the measurements, and how a non-
zero transparency current causes J/Jth to underestimate
p.) Therefore, more characterization is needed to extract
γD from the measurements.

C. Population Pulsation

To understand the population pulsation, we can ignore
the spatial dependence of the intracavity field and con-
sider only a single two-level system subject to an applied
field

E(t) =
∑

m=−,0,+
Em(t)eiωmt + c.c. (10)

Since we are interested in calculating the stability of the
sidebands, the amplitudes E± should be thought of as in-
finitesimal perturbations; as such, our entire treatment
retains only terms to first order in the sideband ampli-
tudes E±. Full details of the calculation are in Appendix
F. We write the total polarization as

P (t) =
∑

m=−,0,+
Pm(t)eiωmt + c.c. (11)

The polarization at the sidebands can be calculated using
Eqs. 2 and 3 [56], which gives

P+ =
iε

ωba
ᾱw0

[
E+

[1 + iδωT2]
+ ΛẼ0Ẽ∗0E+ + ΛẼ0Ẽ0E∗−

]
(12)

P− =
iε

ωba
ᾱw0

[
E−

[1− iδωT2]
+ Λ∗Ẽ0Ẽ∗0E− + Λ∗Ẽ0Ẽ0E∗+

]
,

(13)

where

Λ =
−(1 + iδωT2/2)[

(1 + iδωT1)(1 + iδωT2)2 + (1 + iδωT2)|Ẽ0|2
]
(14)

and w0 is the saturated population inversion w0 =
weq/(1 + |Ẽ0|2).

The polarization at each sideband is neatly divided
into three contributions. Taking P+ as an example, the
first term in Eq. 12 is the Lorentzian contribution that
the sideband generates due to the linear susceptibility
of the dipole. The second and third terms are nonlin-
ear contributions due to the PP at frequency δω: a self-
mixing term of the sideband with the primary mode, and
a cross-mixing term of the other sideband with the pri-
mary mode. The frequency-dependent portion of the
nonlinear susceptibility is Λ, which is a dimensionless
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function of the sideband detuning, the time constants
of the two-level system, and the primary mode intensity
|Ẽ0|2. From the field and the induced polarization, we

can calculate the total power density generated, 〈−EṖ 〉.
The quantity that most interests us is the gain ḡ (with di-
mension of frequency) seen by each sideband, defined as
the power generated at the sideband’s frequency, divided
by the energy density of the exciting sideband field.

To develop a feel for the parametrically generated po-
larization and the resulting gain, we consider two instruc-
tive cases. In both cases we take the sidebands to have
equal magnitudes, |E+| = |E−|, but choose the phases of
the sidebands to give rise to an AM waveform in one case
and a constant-intensity FM waveform in the other case,
as shown in Fig. 1(b). The gain of each sideband is found
to be

ḡ = ᾱw0

[
1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2 ·

{
2 ; AM
0 ; FM

]
.

(15)
The first term is the Lorentzian contribution to the gain,
and the second term is the parametric gain due to the PP.
The factors of two and zero come from the constructive or
destructive addition, respectively, of the self-mixing and
cross-mixing terms to the nonlinear polarization. Equiv-
alently, one can say that the constant-intensity FM field
does not create a PP, and accordingly experiences no
parametric gain. The parametric gain of the AM field
is proportional to Real(Λ) and to the primary mode in-

tensity |Ẽ0|2. (We note that one can quickly derive the
original RNGH instability for a traveling-wave laser from
Eq. 15, which is shown in Appendix G.) By expanding

Λ in Eq. 14 in powers of |Ẽ0|2, it becomes clear that the
PP interaction can be expressed in the perturbative ex-
pansion of traditional nonlinear optics as a third, fifth,
seventh, etc. order nonlinearity. We will later calcu-
late the instability threshold in the limit of small pri-
mary mode intensity, and are therefore interested in the
lowest-order nonlinearity. We obtain χ(3), the dimen-
sionless frequency-dependent portion of the third-order
PP nonlinear susceptibility, by evaluating Λ at |Ẽ0|2 = 0,

χ(3) =
−(1 + iδωT2/2)

(1 + iδωT1)(1 + iδωT2)2
. (16)

To better elucidate the nature of the PPs, the magni-
tude, phase, and real part of χ(3) are plotted in Fig. 7 as
a function of the sideband detuning, for three different
values of T1/T2. At low frequencies δω, the population
inversion has no difficulty following the modulation of
the field, which has two consequences: the amplitude of
the PPs is large, and the PP is π out of phase with the
intensity modulation of the exciting field. This can be
understood simply in terms of rate equations: when the
field is stronger, the stimulated emission rate is larger,
and the population inversion is therefore smaller. This
scenario–higher inversion when the intensity is lower and
lower inversion when the intensity is higher–is less effi-
cient at extracting power from the two-level system rel-

Parametric 
suppression 

Parametric enhancement 

Parametric enhancement 

Parametric 
suppression 

FIG. 7. The magnitude, phase, and real part of χ(3) are
plotted vs. δωT2 for three different ratios T1/T2 = 40, 10, 5.
The parametric gain seen by the sidebands is determined by
Real[χ(3)]. Low-frequency PPs lead to a parametric suppres-
sion of the gain. For the gain to be parametrically enhanced,
δω must be large enough that the inversion can no longer fol-
low the intensity in anti-phase; in other words, the phase of
χ(3) must be between −π/2 and π/2.
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ative to the case of monochromatic or FM excitation;
mathematically, this is described by a parametric gain
(determined by the real part of χ(3)) that is negative.
We refer to this effect as parametric suppression: a low-
frequency PP reduces the gain of each sideband. As δω
increases, the inversion can no longer as easily follow the
intensity modulation, so the amplitude of the PPs de-
creases and the phase of χ(3) decreases from π. For large
enough δω, the phase of χ(3) decreases below π/2, at
which point Real[χ(3)] becomes positive. We refer to this
effect as parametric enhancement: a high-frequency PP
increases the gain seen by each sideband. The crossing
frequency δωcr which separates the low-frequency sup-
pression regime and high-frequency enhancement regime
is given by

δωcrT2 ≈

√
2/3

T1/T2
, (17)

where we have made the approximation T1/T2 � 1, valid
for QCLs. The regions of parametric suppression and
enhancement are highlighted in the plots of the phase
and real part of χ(3) in Fig. 7. Finally, at very large
δω the parametric gain approaches zero (from above),
because the beat note becomes too short for the inversion
to follow and the amplitude of the PP approaches zero.

It is worth pointing out that in the weak-field limit
|Ẽ0|2 � 1 that we are interested in, δωcr has no relation
to the Rabi frequency ΩR induced by the primary mode,

ΩRT2 =
|Ẽ0|√
T1/T2

. (18)

The Rabi frequency of course varies with the primary
mode amplitude, while δωcr is independent of Ẽ0 in the
weak-field limit. By comparing the factors

√
2/3 and |Ẽ0|

in the numerators of Eqs. 17 and 18, it’s clear that in the
limit |Ẽ0|2 � 1, δωcr will always be greater than the Rabi
frequency. Thus, the reason for the parametric enhance-
ment when δω > δωcr should simply be ascribed to the
fact that at high PP frequency, the phase lag between
the population inversion and the field intensity becomes
appropriate for gain rather than absorption.

D. Instability Threshold

Now we can ask the question: what happens to the
single-mode laser solution when it is perturbed by a weak
sideband field? The source of the perturbation could be
spontaneous emission, or even spontaneous parametric
downconversion of two primary mode photons into two
sideband photons [57]. Our goal is to calculate the gain
of the sideband modes averaged over the length of the
cavity. The instability threshold is reached when the
sideband gain equals the loss. Although our instability
analysis will not tell us about the steady-state reached
by the sidebands, one reasonable possibility is that the

sidebands begin to lase, as seen in the experimental spec-
tra.

To determine the sideband gain, we start with the po-
larization in Eqs. 12-13 and account for the position-
dependence by replacing Em(t) with Em(t)Υm(z), and
w0 with w0(z) from Eq. 9. In keeping with our ap-

proximation to order |Ẽ0|2, we replace Λ with χ(3). The
position-dependent polarization is then inserted as the
source term in Maxwell’s wave equation. From here, the
calculation follows the same steps as the instability anal-
ysis done for Kerr microresonators [54], and is detailed in
Appendix G. After making the slowly varying envelope
approximation and projecting the equation onto each of
the orthonormal spatial modes, one finds a first order dif-
ferential equation for each sideband amplitude. Unlike
the earlier example where we hand-picked the phases of
the sidebands to study the effect of an AM and FM field,
here the AM and FM sideband configurations emerge or-
ganically as the two “natural modes” of the system of
two sideband equations. The natural modes [14] are the
configurations of the three-wave field for which the rel-
ative phases of the fields are preserved as time evolves;
in other words, an AM field remains AM, and an FM
field remains FM. (In the general case of nonzero ∆ and
GVD, the natural modes can be a superposition of AM
and FM.) The gain of the AM and FM natural modes is
given by

ḡ
¯̀ =

1 + γD
2

p−1
1+γD/2

1 + (δωT2)2

+ Real[χ(3)]
p− 1

1 + γD/2
·
{

Γself + Γcross = 3
2 ; AM

Γself − Γcross = 1
2 ; FM

(19)

where the Γs are longitudinal spatial overlap factors

Γself =
1

L

∫ L

0

dz |Υ0(z)|2|Υ±(z)|2 = 1 (20)

Γcross =
1

L

∫ L

0

dz Υ0(z)2Υ∗−(z)Υ∗+(z) = 1/2. (21)

By comparing the standing-wave sideband gain in Eq.
19 to the sideband gain of a single two-level system in
Eq. 15, we see that the cavity introduces two modifica-
tions. First, the Lorentzian gain contribution increases
with p; this unclamped gain is a direct result of the PG
that develops in the presence of non-zero γD. Secondly,
the partial overlap of the sideband spatial modes Υ+ and
Υ− results in partial (rather than complete) interference
of the self-mixing and cross-mixing contributions to the
gain. To understand this, note from Fig. 1(a) that al-
though the emitted waveform has equal-amplitude side-
bands, within the cavity the plus and minus sidebands
have unequal amplitudes at most positions z, as shown
by the red and blue modes in Fig. 1(d). Therefore, the
self and cross-mixing contributions to the sideband po-
larization at each position z cannot completely interfere,
and the factors of 3/2 (AM) and 1/2 (FM) emerge after
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averaging over the full cavity length, as opposed to the
factors of 2 and 0 in Eq. 15. Thus, even when the laser
emits an FM waveform, there is still a parametric con-
tribution to the gain due to the incomplete destructive
interference of the PP within the cavity.

The instability occurs when p reaches a value such that
the sideband gain ḡ in Eq. 19 equals the loss ¯̀for one par-
ticular sideband detuning δω. (As discussed previously,
we assume the FSR is small so that a FP mode always
exists very close to the unstable value of δω.) As p in-
creases, the incoherent Lorentzian gain increases, but the
parametric gain either increases or becomes more nega-
tive depending on the sign of Real[χ(3)] (which depends
on δω). The three parameters T1, T2, and γD affect the
relative importance of the incoherent and coherent gain
terms, and depending on the values of these parameters,
one of three different classes of instability can occur: the
incoherent instability, FM instability, and AM instabilty.
In Fig. 8, each type of instability is illustrated by plotting
the sideband gain at the instability threshold, which we
now explain.

1. Incoherent Instability

The parametric gain can often be ignored. If T1 is large
enough, the interesting features of Real[χ(3)] all occur for
sideband detunings less than 1 FSR, and so the paramet-
ric gain will be nearly zero for all values of δω greater than
1 FSR. This is the case for diode lasers, where PPs are
significant up to a few GHz (T1 ≈ 1 ns), while the FSR
is around 100 GHz. Thus, only the incoherent gain term
in Eq. 19 matters (although it is not a Lorentzian for
bandgap lasers). As p increases beyond 1, the sideband
gain increases but remains Lorentzian, so the sidebands
that reach the instability threshold first will always be
the FP modes immediately adjacent to the primary las-
ing mode [58]. In diode lasers, γD is small (∼ 10−4), so
p needs to be large before the second mode can appear.

The value of γD = 0.5 in Fig. 8(a) is typical of short-
wave QCLs. We see that if coherent effects were negligi-
ble in QCLs, we would expect the sidebands to appear at
p = 1.001, barely above threshold. The much higher in-
stability threshold measured in the experiments, together
with the observation that the sidebands do not appear at
the nearest-neighbor FP modes of the primary mode, in-
dicates that coherent effects play an essential role in the
QCL instability.

2. FM Instability

When the Lorentzian gain increases quickly with p due
to a strong PG, sidebands that fall within the parametric
suppression regime, δω < δωcr, can reach the instability
threshold. This is counterintuitive: why should a side-
band lase when the parametric interaction provides neg-
ative gain? The answer is that the Lorentzian gain favors

(a) Incoherent Instability 

(b) FM Instability (strong grating) 

(c) AM Instability (weak grating) 
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FIG. 8. Overview of the three different types of instabilities.
(a) The incoherent instability relies only on the unclamped
gain due to the PG, and occurs when parametric effects can be
neglected. (b) The FM instability occurs when the gain due to
a strong PG, despite the parametric suppression of the gain
of small-detuned sidebands, allows the less-suppressed FM
sidebands to reach threshold. (c) The AM instability occurs
when the gain due to a weak PG, together with the parametric
enhancement of the gain of large-detuned sidebands, allows
the more strongly enhanced AM sidebands to reach threshold.
In (b) and (c), the value T1/T2 = 20 was used. The FP
modes (green, bottom of each panel) are not associated with
the ordinate, and simply provide a sense of the mode spacing.
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sidebands with as small a separation as possible, and if
the Lorentzian gain is large enough it can pull sidebands
above threshold in spite of the negative contribution from
the parametric gain. In this scenario, FM sidebands have
a lower instability threshold than AM sidebands because
the parametric contribution to the gain is less negative,
since 1/2 < 3/2 in Eq. 19. Such a case is illustrated in
Fig. 8(b) for γD = 0.5 and T1/T2 = 20. At p=1.06, FM
sidebands reach the instability threshold, while AM side-
bands are too strongly suppressed to reach the instability.
A key feature of the instability is that the unstable side-
band will be several FSR away from the primary mode
(provided that the FSR is small), while still satisfying
δω < δωcr.

3. AM Instability

When the Lorentzian gain increases little with p due to
a weak PG, only sidebands that fall within the paramet-
ric enhancement regime, δω > δωcr, will be able to reach
the instability. In this case, AM will have a lower insta-
bility threshold than FM because AM receives a larger
parametric enhancement (since 3/2 > 1/2 in Eq. 19).
Such a case is illustrated in Fig. 8(c) for γD = 0.04 and
T1/T2 = 20. At p = 1.9, AM sidebands reach the in-
stability threshold while the FM sidebands are not suffi-
ciently enhanced to reach the instability. Strictly speak-
ing, p=1.9 falls outside the region of validity of our per-
turbative treatment (p − 1 � 1), so the specific values
in this plot are not exactly accurate, but the qualita-
tive features are correct. The unstable sidebands satisfy
δω > δωcr, and so their separation will be even greater
than for the FM instability. The original RNGH insta-
bility is precisely this AM instability, in a traveling-wave
laser. For traveling waves, the Lorentzian gain is clamped
at threshold regardless of the diffusion parameter, so the
instability can only be reached by the parametric en-
hancement of AM sidebands.

To access both the FM and AM instability regimes ex-
perimentally, we need to tune the strength of the PG.
The electron diffusivity can be reduced by lowering the
temperature, and indeed temperature has a strong effect
on the emission spectra of QCLs [33], although the ef-
fect is not yet well-understood. In this work, we choose
to manipulate the PG by adjusting the facet reflectiv-
ities. Increasing the disparity of the reflectivities of
the two mirrors reduces the contrast of the standing-
wave, because the wave traveling from the higher to the
lower-reflectivity facet becomes larger than the counter-
propagating wave [59]. For a sufficiently large disparity,
the incoherent gain contribution is small enough that the
laser can only undergo the AM instability. In a practical
sense, engineering the facet coatings allows one to trans-
form a standing-wave cavity into more of a traveling-wave
cavity. It is for this reason that we chose to study an
HR/AR coated laser, where the AR coating has as low a
reflectivity as current technology allows, to maximize the

cavity asymmetry. The full mathematical treatment of
mirrors with non-unity reflectivity is complicated by the
fact that the spatial modes Υm(z) are no longer orthog-
onal, and also that that the Υm(z) and the longitudinal
overlap factors Γ vary with the pumping. This theory
will be presented in future work.

IV. DISCUSSION

In order for a mode to oscillate, it must satisfy two
conditions: 1) the roundtrip gain must equal the loss,
and 2) the roundtrip phase must equal a multiple of 2π.
Our theory in Sec. III has treated only the gain condi-
tion. The same approach was taken in the description
of the original RNGH instability [10–14]; the underlying
assumption is that the cavity modes are densely spaced,
so that a pair of sidebands that satisfies the instability
condition for the gain will always be “close enough” to
two cavity modes that satisfy the phase condition. How-
ever, the experimental and theoretical developments of
the last decade concerning optical parametric oscillation
in externally pumped microresonators have shown that
the phase condition has a large effect on the oscillation
threshold and sideband spacing [54]. In microresonator
experiments, the detuning between the external pump
frequency and the center frequency of the cold cavity
mode is a degree of of freedom that must be precisely con-
trolled to achieve the lowest possible instability thresh-
old. In a laser this detuning can not be experimentally
controlled, but it most likely varies with the pumping in a
deterministic manner and should be properly accounted
for in a more complete theory. Furthermore, a parameter
that has no analogy in microresonators is ∆, the detuning
between the lasing mode ω0 and the two-level resonance
ωba, which also varies with the pumping and is difficult
to control in experiments. To precisely predict the insta-
bility threshold would require knowledge of both of these
detunings, as well as the GVD.

At this stage, the simplest and most important appli-
cation of the theory is to help determine whether the
observed sidebands are parametrically enhanced or sup-
pressed. Because the theory assumes end mirrors with
unity reflectivity, we can only expect Eq. 19 to apply
reasonably well to the uncoated QCLs. For each device,
γD is calculated using the theoretical value of Tup (calcu-
lated from the bandstructure) and the diffusion constant
D = 77 cm2/s [48], giving γD = 0.4 (DS-3.8), 0.49 (TL-
4.6), and 0.93 (LL-9.8). For these large values of γD the
PG is strong, and we find from numerically solving Eq.
19 that the FM instability has a lower threshold than the
AM instability, regardless of the value of T1. In Appendix
H, we show that the theory predicts sideband spacings
δωsb that are consistent with the experimental observa-
tions, but underestimates the instability threshold psb.
We attribute this discrepancy to the aforementioned de-
tunings and GVD, as well as current inhomogeneity, that
our theory neglects.
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A more direct method to discriminate between the
parametric suppression and enhancement regimes is to
compare the observed sideband spacing δωsb to the cross-
ing frequency δωcr. If δωsb < δωcr, the sidebands are
parametrically suppressed and therefore the FM insta-
bility has the lower threshold. Thus, we reason that the
sidebands must be FM because the AM state would be
an unstable equilibrium. Similarly, if δωsb > δωcr, the
sidebands are parametrically enhanced so for them to be
stable they must be AM. Notably, this reasoning depends
only on the behavior of χ(3) as a function of δω; it can
therefore be applied to to the HR/AR as well as the un-
coated lasers because we do not need to understand the
specifics of the PG. To calculate δωcr from Eq. 17, we
use our measured values of T2 but still need an estimate
for the gain recovery time T1. Pump-probe experiments
[60, 61] and theory [62] have shown that T1 is around
2 ps. From Eq. 17, we see that δωcr decreases with in-
creasing T1, so if we take T1 = 3 ps as a generous upper
bound on the gain recovery time, we establish a lower
bound of δωcr at 2270 GHz (DS-3.8), 1730 GHz (TL-4.6),
and 1660 GHz (LL-9.8). The measured values of δωsb for
each uncoated laser–977 GHz (DS-3.8), 1259 GHz (TL-
4.6), and 642 GHz (LL-9.8)–are all substantially smaller
than the lower bound on δωcr. This is consistent with
the prediction that the uncoated lasers have a lower FM
instability threshold than AM threshold, and with these
two results we are reasonably confident that the uncoated
lasers emit parametrically suppressed FM sidebands. In
stark contrast, TL-4.6:HR/AR exhibits a large sideband
separation of δωsb = 2216 GHz. If we use the accepted
value of T1 equal to 2 ps, we find δωcr = 2120 GHz. The
observed sideband spacing is slightly larger than δωcr,
suggesting the enhancement regime. While a smaller gain
recovery time or non-perturbative calculation would raise
δωcr slightly, this is our first hint that TL-4.6:HR/AR
emits parametrically enhanced AM sidebands.

The difference in the range of intracavity power over
which the harmonic state persists in the uncoated vs.
coated lasers, as shown in Fig. 2, is additional evidence
that the uncoated devices operate in the suppression
regime and the HR/AR device operates in the enhance-
ment regime. Here we propose a qualitative explanation
of this feature. Consider a laser operating in the sup-
pression regime. While the FM state is more stable than
the AM state in this regime because it minimizes the
amount of gain suppression, the FM state still pays a
gain penalty by skipping over modes which would have
a greater Lorentzian gain contribution. The dense state
could therefore extract more gain from the inverted popu-
lation, provided that the many modes are phased in such
a way that minimizes the amplitude modulation through-
out the cavity, thereby avoiding the gain suppression as-
sociated with such a low-frequency one-FSR beat note.
Indeed, the measurement of negative differential resis-
tance shown in Fig. 5 shows that the dense state extracts
more gain than the harmonic state. Furthermore, previ-
ous experiments have shown that the dense state emis-

sion is largely FM, not AM [37]. This could explain why
the uncoated lasers only exhibit the harmonic state over
a small range of current: the laser soon finds a way to
transition from the parametrically suppressed FM state
to the favored dense state. The fact that TL-4.6:HR/AR
exhibits the harmonic state over a large current range
suggests that the harmonic state is more stable than the
dense state, which could only be true for a harmonic
state in the parametric enhancement regime. At a suffi-
ciently high current, when the spectral span of the har-
monic state approaches the gain bandwidth, the dense
state finally becomes favored for its ability to lase on ad-
jacent modes and extract more incoherent gain, despite
no longer benefitting from the parametric enhancement.

We have argued that the dense state is more favored
than the FM harmonic state. If this is the case, why do
the uncoated QCLs choose to emit a harmonic state at
all, and not simply jump from the single-mode state to
the dense state as the current is increased? In fact, the
spectral hysteresis shown in Fig. 4 proves that the dense
state is the favored lasing state down to barely above
threshold. However, this state can only be reached by
decreasing the current after the laser has already entered
the dense state at high current. When the laser starts in
a single-mode state and the current is increased, there is
clearly a barrier that prevents the transition to the dense
state. In general, introducing noise allows a system to
overcome energy barriers and explore a larger volume of
its state space. It is likely that delayed optical feedback
serves as such a noise source, and explains why it is diffi-
cult to observe the harmonic state when optical feedback
is not eliminated.

V. CONCLUSION

We have experimentally identified the single-mode in-
stability of QCLs, which is characterized by the appear-
ance of sidebands at FP modes not adjacent to the pri-
mary lasing mode. We have seen the behavior in QCLs
at three different wavelengths, each based on a different
active region design, and with both positive and negative
GVD. Therefore, the phenomenon is a general feature of
the electron-light dynamics of QCLs. The instability is
reached due to the combined contributions of an inco-
herent gain due to the spatial population grating, and a
coherent parametric gain due to the temporal population
pulsations. Our theory predicts both an FM instability in
situations where the incoherent gain contribution is large,
and an AM instability when the incoherent gain contribu-
tion is small. This theory extends the RNGH instability
of traveling-wave lasers to standing-wave laser cavities.
To explore the possibility of AM emission, we coated the
QCL facets with an HR and an AR coating to reduce
the incoherent gain contribution; indeed, this modifica-
tion substantially increases the sideband spacing, and it
is likely that the waveform is AM. Following the first ap-
pearance of sidebands at the instability threshold, our
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measurements show that increasing the pumping gener-
ates more sidebands which preserve the initial spacing.
This suggests that a cw QCL can self-start into a phase-
locked harmonic frequency comb. We have also placed
our observations and theory within historical context,
explaining the relation to optically pumped microres-
onators and the single-mode instability in traveling-wave
lasers.

The future direction of this work is clear. At first,
we can take guidance from the well-established under-
standing of microresonators and exploit their similarity
with QCLs to further our understanding. The calcula-
tion of the instability threshold will be extended to ac-
count for GVD, so that the cold-cavity modes are not
necessarily equidistant. We must also better understand
the nature of the single-mode solution; specifically, how
does its detuning from the resonant frequency ωba, and
also its detuning from the cold-cavity mode that it occu-
pies, affect the nature of the instability threshold? We
must account quantitatively for the non-unity facet re-
flections and the precise shape of the mode profile within
the cavity. Experimentally, second-order autocorrelation
experiments are needed to establish the temporal nature
of these short-period waveforms.

Appendix A: Comments on Power vs. Current
curves

In the single-mode regime, the intracavity intensity of
the single-mode determines the strength of the paramet-
ric interaction with the sideband fluctuations. Therefore,
we would like to calculate the intracavity intensity from
the measured output power. In the distributed loss ap-
proximation, the output power is given by

Pout =
αm〈E2〉Lwh√

µ/ε
(A1)

where αm = ln[1/(R1R2)]/(2L), the length, width, and
height of the cavity are L, w, and h, and the time-
averaged intensity of the single-mode is 〈E2〉 = 2|E0|2.
We are assuming a uniform field intensity in the trans-
verse dimensions, and therefore not worrying about the
transverse overlap factor. We can rearrange this equation
for the intracavity intensity

|Ẽ0|2 ≡ κ2T1T2|E0|2 =
2d2T1T2

√
µ0/ε0

~2neffαmLwh
Pout. (A2)

With this equation, we can convert the measured total
output power of each laser into the intracavity intensity,
using our measured values of the refractive index neff and
the dephasing time T2, our best estimates for d and T1,
and in the case of the HR/AR laser we have used R1 = 1,
R2 = 0.01. The result is plotted as a function of J/Jth

in the inset of Fig. 2.
The theoretical formula for the intracavity intensity is

|Ẽ0|2 =
p− 1

1 + γD/2
, (A3)
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FIG. 9. The GVD is extracted from the subthreshold spec-
trum for (a) LL-9.8 at 973 mA, (b) TL-4.6 at 424 mA, and
(c) DS-3.8 at 354 mA. The subthreshold spectra are plotted
for reference on an arbitrary linear scale.
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where p ≡ weq/wth is the pump parameter. We empha-

size that p is not the same as J/Jth. The slope of |Ẽ0|2 vs.
p is always between 2/3 and 1, depending on the diffu-
sion parameter γD. The reference line in the inset of Fig.
2 is drawn with a slope of one to indicate that each of
the |Ẽ0|2 vs. J/Jth curves has a slope greater than one.
Therefore, we conclude that J/Jth must underestimate
p. One factor that contributes to this underestimation is
the transparency current Jtrans: a fixed amount of cur-
rent that must be delivered to the active region simply
to raise the inversion from a negative number to zero.
To understand this simply, suppose that the equilibrium
inversion scales like weq ∝ J − Jtrans, and that Jtrans re-
mains a constant number at threshold and above. Then
the pump parameter p ≡ weq/wth is expressed in terms
of J as

p =
J − Jtrans

Jth − Jtrans
. (A4)

For example, suppose that for a laser with Jth = 500 mA
the harmonic state kicks in at 550 mA, or J/Jth = 1.1.
If the transparency current was Jtrans = 250 mA, (in
other words, half of the threshold current, which is rea-
sonable for room-temperature QCLs), then the pump
parameter at the harmonic state onset would be p =
(550 − 250)/(500 − 250) = 1.2. Thus, J/Jth underesti-
mates p.

A more rigorous study is required to determine Jtrans

for each laser, which can be done by measuring many
lasers of the same active region but different lengths.
Once Jtrans is known, the slope of |Ẽ0|2 vs. p should
fall between 2/3 and 1 and in principle a value for γD
can be extracted, allowing one to quantify the amount of
diffusion present.

Appendix B: Group velocity dispersion

It has recently been shown that the group velocity dis-
persion (GVD) of the QCL is an important parameter
in determining the spectral properties of the dense state
[39], and it is reasonable to assume that GVD plays a role
in determining some properties of the harmonic state as
well. We present the measured GVD of the three un-
coated devices in Fig. 9. The GVD is extracted from a
measurement of the subthreshold amplified spontaneous
emission by the method of [47]. A more sensitive InSb
detector (compared to HgCdTe) can be used for the lower
wavelength devices TL-4.6 and DS-3.8, allowing the mea-
surement to be performed further below threshold. This
yields a broader spontaneous emission spectrum, and a
larger bandwidth over which the GVD can be extracted.
Devices TL-4.6 and DS-3.8 both have positive GVD,
around 950 fs2/mm at the center of their gain spectra,
while LL-9.8 has a negative GVD around -2000 s2/mm.
The change in sign of the GVD is expected because the
zero-GVD point of InP is around 5.5 µm.
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FIG. 10. The beat note of LL-9.8 at 1434 mA, the current at
which the dense state appeared. The resolution bandwidth of
the spectrum analyzer is 430 Hz.

Although the theoretical analysis presented in this
work has for the most part neglected GVD, the purpose
of this measurement is to demonstrate that the harmonic
state exists over a wide range of GVD, including both
positive and negative values. We hope that including
this data here will help guide future work on the role
played by GVD in the properties of the harmonic state.

Appendix C: Beat note in dense state

In the dense state the mode spacing is one FSR (≈ 15
GHz for a 3-mm long QCL), which is low enough for the
beat note to be measured by standard techniques, unlike
the case of the harmonic state. We measure the beat note
by the electrical technique: the current source is passed
from the DC to the AC+DC port of a high-frequency bias
tee (Tektronix PSPL5544) en route to the QCL, so that
current modulation induced by any intracavity intensity
modulation can be measured by a spectrum analyzer con-
nected to the AC port of the bias tee. In Fig. 10, the beat
note of LL-9.8 is shown at 1434 mA, the current at which
the dense state appeared on this particular upward ramp
up of the current. The width of the beat note is on the
order of a few kHz. Devices TL-4.6 and DS-3.8 exhibited
similar beat notes at the onset of the dense state (not
plotted). As the current was increased further, differ-
ent regimes could be observed such as the appearance of
multiple closely-spaced beat notes, or a broadening of the
beat note. Because the focus of the current work is on
the harmonic state, these diverse behaviors of the dense
state will be explored in future work.
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Appendix D: Gain recovery time vs. upper state
lifetime

In a QCL, the upper state lifetime Tup tells us how
long an electron sits in the upper state before making a
nonradiative transition to the lower state. From here, it
takes some additional time to travel through the injector
region and tunnel into the upper level of the next stage.
This additional amount of time is the bottleneck that
determines the gain recovery time. The Maxwell-Bloch
equations, by making the two-level approximation, can-
not account for the full complexity of the QCL, and only
provide us with one carrier relaxation time, which we
have called T1. This begs the question: does T1 repre-
sent the upper state lifetime or the gain recovery time?
The answer is that it depends on what you want to cal-
culate. In the steady-state single-mode regime, we find
that the output power and population inversion are func-
tions of T1 due to diffusion; here, we argue that T1 should
represent the upper state lifetime Tup, because Tup tells
us how much time an electron in the upper state has
to diffuse before transitioning to the lower state. It is
for this reason that Tup appears in the definition of γD,
γD = (1 + 4k2DTup)−1, rather than T1. In dynamical
situations, on the other hand, the intensity of the field
varies with time and we are interested in the how the pop-
ulation inversion responds. We argue that this response
is determined by the gain recovery time, not the upper
state lifetime, because the response definitely depends
on how long it takes an electron to get from one active
stage to the next. To summarize it concisely, the upper
state lifetime is used for the calculation of the population
grating (PG), but the gain recovery time is used for the
calculation of the population pulsations (PPs). Since the
bulk of our manuscript deals with PPs, we chose simply
to call T1 the gain recovery time, rather than name a new
time scale such as Tgr, for instance. We hope that this
does not confuse the reader.

Appendix E: Theory: single-mode solution

This appendix gives a more detailed derivation of the
single-mode solution presented in Sec. III B, including the
intracavity power as a function of pumping, and the pop-
ulation inversion as a function of position and pumping.

For a two level system with upper state |a〉 and lower
state |b〉, the material equations in the non-rotating frame
and the field equation are

dρab
dt

= −iωbaρab −
id

~
E(t)w − ρab

T2
(E1)

dw

dt
=
−2id

~
E(t)(ρab − ρ∗ab) +

weq − w
T1

+D
∂2w

∂z2
(E2)

∂2E

∂z2
− 1

c2
∂2E

∂t2
= Ndµ

∂2

∂t2
(ρab + ρ∗ab). (E3)

We emphasize that these equations are in the non-
rotating frame, whereas the equations we have used in

the main text [50] were already in the rotating frame
and the RWA had already been applied. However, since
we are here dealing with two counter-propagating waves,
we chose to more closely follow the approach in [33]. We
make the following ansatzes:

E(z, t) =
1√
2

[
ER(z, t)e−i(ωt−kz) + EL(z, t)e−i(ωt+kz) + c.c.

]
(E4)

ρab(z, t) = η∗R(z, t)e−i(ωt−kz) + η∗L(z, t)e−i(ωt+kz) (E5)

w(z, t) = wDC(z, t) + w2(z, t)ei2kz + w∗2(z, t)e−i2kz.
(E6)

(We use the subscript “DC” rather than “0” for the spa-
tial average of the population inversion, wDC, because the
subscript 0 is used throughout the text to refer to the
primary mode. No such ambiguity occurs for the sub-
script “2.”) Plugging the ansatzes into the differential
equations, and making the RWA as well as the slowly-
varying envelope approximation (SVEA) yields the fol-
lowing equations:

dη∗R
dt

=
−iκ
2
√

2
(ERwDC + ELw2)−

(
1

T2
+ i∆

)
η∗R (E7)

dη∗L
dt

=
−iκ
2
√

2
(ELwDC + ERw∗2)−

(
1

T2
+ i∆

)
η∗L (E8)

dwDC

dt
=

iκ√
2

(ERηR + ELηL − c.c.) +
weq − wDC

T1
(E9)

dw2

dt
=

iκ√
2

(ERηL − E∗Lη∗R)− w2

T1
− 4k2Dw2 (E10)

1

c

∂ER
∂t

= −∂ER
∂z

+
i
√

2α

κT2
η∗R −

`0
2
ER (E11)

1

c

∂EL
∂t

= +
∂EL
∂z

+
i
√

2α

κT2
η∗L −

`0
2
EL (E12)

where κ = 2d/~, α = NωT2d
2
√
µ/ε/~ is the Beer coeffi-

cient of the material, and ∆ = ωba−ω is the detuning of
the field from the atomic resonance frequency. The loss
term `0 has been added to the field equation heuristically,
and in this context it represents only the waveguide loss.

We solve for the single-mode solution by setting the
time-derivatives to zero and the slowly-varying envelope
functions to be constants. In doing so, we are now making
the distributed loss approximation because we are not
allowing the fields to grow in space. Thus, `0 must now
be taken to be the total loss, waveguide plus mirror loss,
which we call `. (In the main text, the loss is expressed by
the rate ¯̀, which is simply given by ¯̀≡ `c, and the Beer
coefficient α is similarly converted into a rate ᾱ ≡ αc.)
We take ∆ = 0 for simplicity, because the single-mode
will lase very close to the peak of the gain spectrum. We
denote the steady-state field amplitudes by ER = EL = E0
and find the LI curve

|Ẽ0|2 =
p− 1

1 + γD/2
(E13)
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where Ẽ0 ≡ κ
√
T1T2E0, p = weq/wth, wth = ¯̀/ᾱ, and

γD = (1 + 4k2DT1)−1 is the diffusion parameter. Based
on the discussion in Appendix D, however, we know T1

represents the upper state lifetime Tup, so we redefine
γD = (1 + 4k2DTup)−1. The steady-state population
w0(z) is given by

w0(z) = wth

[
1 +

γD
2

p− 1

1 + γD/2
− γD

p− 1

1 + γD/2
cos(2k0z)

]
.

(E14)
As the diffusivity or Tup increases and γD approaches
zero, the population grating is “washed out” and w0(z)
is uniformly equal to wth.

We have made the approximation that the pumping
p is uniform in space. For an electrically injected QCL,
this is equivalent to assuming that the injected current
density J is uniform throughout the cavity. In fact, how-
ever, the resistance of the active region is lower in the
field antinodes because stimulated emission increases the
rate of electron transport. Therefore, assuming a con-
stant voltage across the active region, more current will
flow through the lower-resistance antinodes, an effect
which reduces the amplitude of the population grating
even in the absence of any lateral carrier diffusion. It
helps to picture the active region as two resistors in se-
ries, one constant “background” resistance in series with
one whose resistance drops with increasing light inten-
sity. Devices with a lower background resistance will
be prone to greater current inhomogeneity. The mag-
nitude of this effect can be estimated from the kink in
the current-voltage curve above threshold, which shows
how much the photon field reduces the device resistance,
but we have ignored this effect in our current work. One
consequence of ignoring this inhomogeneity of the current
is that we overestimate the amplitude of the population
grating. This likely contributes to our theory’s underes-
timation of the instability threshold psb, as discussed in
Appendix H.

Appendix F: Theory: population pulsations

This appendix gives a more detailed derivation of the
population pulsations presented in Sec. III C, and demon-
strates how to include nonzero detuning ∆ and GVD into
the formalism.

We begin by imagining a small volume of dipoles sub-
ject to a spatially uniform E-field to develop an under-
standing of the non-linear effects caused by the Bloch
dynamics. The electric field is given by

E(t) = E(t)eiωt + c.c. (F1)

The Bloch equations in the rotating wave approximation
are

σ̇ =

(
i∆− 1

T2

)
σ +

iκ

2
wE (F2)

ẇ = iκ(E∗σ − Eσ∗)− w − weq
T1

(F3)

where σ is the off-diagonal element of the density ma-
trix in the rotating frame, w is the population inversion
(positive when inverted), ∆ = ωba − ω is the detuning
between the applied field and the resonant frequency of
the two-level system, T1 is the (longitudinal) population
relaxation time, T2 is the (transverse) dephasing time,
κ ≡ 2d/~ is the coupling constant where d is the dipole
matrix element (assumed to be real) and ~ is Planck’s
constant, and weq is the equilibrium population inversion
in the absence of any electric field which is determined
by the pumping. (Note that these equations are identical
to Eqs. 3.19(a)-(c) in [50], except that we have allowed E
to be complex and left the off-diagonal component of the
density matrix in complex notation rather than writing
σ = (u+iv)/2.) With these conventions, the macroscopic
polarization P (dipole moment per volume) in a region
with a volume density of N dipoles is given by

P (t) = Ndσeiωt + c.c. (F4)

First, we consider the effect of a monochromatic field at
frequency ω, obtained from Eqs. F2-F3 by setting E(t) =
E0 and all time derivatives to zero. The result is a steady-
state polarization σ0 and population inversion w0 given
by

σ0 =
iκT2

2(1− i∆T2)
w0E0 (F5)

w0 =
weq

1 + κ2T1T2|E0|2
1+(∆T2)2

(F6)

Note that the population inversion w0 is saturated as
the field strength E0 increases: this is responsible for sat-
urable loss (when weq < 0) and saturable gain (when
weq > 0).

N.B. In our equations so far, we have said the fre-
quency of the field is ω. Later on, we refer to the pri-
mary mode frequency as ω0. For our purposes here, ω
and ω0 are interchangeable. In future work, this will not
be the case. In analogy with the theory developed for mi-
croresonators [63], we plan in future work to adopt the
convention that ω0 represents the center-frequency of the
cold-cavity mode that is lasing. However, the lasing fre-
quency ω can be detuned from this cold-cavity resonance
due to small frequency-pulling effects when one accounts
for the hot cavity. This detuning is an important pa-
rameter in microresonators, where the pump frequency
ω can be controllably tuned away from ω0, allowing one
to compensate for GVD and optimize comb generation.
We have not accounted for such a detuning in our work,
and therefore ω and ω0 are interchangeable.

1. Two-frequency operation

Next, we consider the E-field

E = E0 + E+eiδωt (F7)
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which consists of the strong field E0 at frequency ω su-
perposed with the much weaker field E+ detuned from ω
by δω. A polarization will of course be induced at ω+δω.
However, a polarization at ω− δω also results due to the
beat note at δω which modulates the intensity: the re-
sulting modulation of the population inversion with time
(i.e., a population pulsation) leads to nonlinear frequency
mixing. We express the full polarization as

P (t) =
∑

m=−,0,+
Pmeiωmt + c.c. (F8)

where ω+ ≡ ω + δω and ω− ≡ ω − δω. We can solve for
the polarization as done in [56], keeping only terms to
first order in the weak field E+, which gives

P0 =
iε

ωba
ᾱw0

E0
1− i∆T2

(F9)

P+ =
iε

ωba
ᾱw0

[
E+

1− i(∆− δω)T2
+ Λ+

+Ẽ0Ẽ∗0E+
]

(F10)

P− =
iε

ωba
ᾱw0Λ+

−Ẽ0Ẽ0E∗+ (F11)

where

Λ+
+ =

−(1 + iδωT2/2)[1 + i(∆ + δω)T2]/[1− i(∆− δω)T2]

(1 + i∆T2)
[
(1 + iδωT1)[1 + i(∆ + δω)T2][1− i(∆− δω)T2] + (1 + iδωT2)|Ẽ0|2

] (F12)

Λ+
− =

−(1− iδωT2/2)

(1− i∆T2)
[
(1− iδωT1)[1 + i(∆− δω)T2][1− i(∆ + δω)T2] + (1− iδωT2)|Ẽ0|2

] (F13)

are the self-mixing and cross-mixing coupling coefficients,
respectively. We consider the dipoles to be embedded in
a host medium of permittivity ε and permeability µ. (We
adopt the convention of [51]: ε, µ and the speed of light
c = 1/

√
εµ always take their values in the background

host medium.) Many of the material properties of the
two-level system are lumped into the “Beer loss rate”

ᾱ =
Nd2T2ωbac

√
µ/ε

~
, (F14)

which is related to the more familiar Beer absorption co-
efficient α (with units of inverse length) that appears in
Beers law of absorption by ᾱ = αc. (Note, however,
that in our expressions for the polarization due to the
two-level system, all factors of ε and µ drop out; that
is, these expressions do not contain the polarization con-
tributions due to the background medium.) The cen-
tral mode amplitude E0 has been normalized such that
Ẽ0 ≡ κ

√
T1T2E0. Note that P0 is unaffected to first or-

der in E+. The polarization P+ comes from two con-
tributions. First, there is the linear contribution from
the Lorentz oscillator which E+ would induce even in the
absence of the strong field E0. Second, there is a con-
tribution due to the PP which is described by the term
Λ+

+. The term P− is due solely to the PP and is gov-

erned by Λ+
−. Note that the full polarization is directly

proportional to the steady-state population inversion w0;
this will be important when we generalize our results to
standing-wave cavities, where w0 varies with position.

Now that we have the polarization, we can calculate
the gain seen by the sideband field. We define the gain
ḡ (with dimension of frequency) of the sideband as the
power density generated at ω + δω by the interaction

of the field with the dipoles–considering only field and
polarization terms oscillating at ω + δω–divided by the
energy density of the exciting sideband field, or

ḡ+ ≡ −
〈EṖ 〉+
2ε|E+|2

(F15)

=
iω+(E+P∗+ − E∗+P+)

2ε|E+|2
(F16)

a. ∆ = 0

Here we consider the case of zero detuning, ∆ = 0,
which simplifies the mathematical expressions consider-
ably. Under this simplified scenario, we denote the self-
mixing coefficient Λ+

+ by Λ, where

Λ =
−(1 + iδωT2/2)[

(1 + iδωT1)(1 + iδωT2)2 + (1 + iδωT2)|Ẽ0|2
] ,

(F17)
and it is simple to show that the cross-coupling coefficient
Λ+
− is simply Λ∗. The gain of the sideband field is found

to be

ḡ+ = ᾱw0

[
1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2

]
. (F18)

(We have used (ω + δω)/ωba ≈ 1.) Thus, the gain can
be nicely divided up into a contribution from the Lorentz
oscillator and a contribution from the PP. All of this is
proportional to ᾱw0: ᾱ gives you the gain of a weak field
tuned to line-center in a perfectly inverted medium (or
alternatively, the loss seen by a weak field tuned to line-
center in a material in its ground state), and w0 gives
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you the expectation value of finding an electron in the
excited state (equal to 1 when excited, -1 when in the
ground state, and 0 at transparency). Note that Real(Λ)
can be positive or negative, which we will discuss shortly.

2. Three-frequency operation

Of course, the polarization created at ω−δω will create
a field at that frequency, which is precisely why in the ex-

periments we always observe the two sidebands appearing
simultaneously. One sideband cannot exist in isolation
when the mixing terms naturally couple them together.
Therefore, we need to consider the field

E = E0 + E+eiδωt + E−e−iδωt. (F19)

The polarization at each sideband frequency now con-
tains a Lorentzian term, a self-mixing term, and a cross-
mixing term:

P+ =
iε

ωba
ᾱw0

[
E+

[1− i(∆− δω)T2]
+ Λ+

+Ẽ0Ẽ∗0E+ + Λ−+Ẽ0Ẽ0E∗−
]

(F20)

P− =
iε

ωba
ᾱw0

[
E−

[1− i(∆ + δω)T2]
+ Λ−−Ẽ0Ẽ∗0E− + Λ+

−Ẽ0Ẽ0E∗+
]

(F21)

where Λ−− and Λ−+ are obtained by making the substi-

tution δω → −δω in the expressions for Λ+
+ and Λ+

−,
respectively, given in Eqs. F12-F13 .

a. ∆ = 0

Let us again focus on the case ∆ = 0, for which the
polarization at each sideband simplifies to

P+ =
iε

ωba
ᾱw0

[
E+

[1 + iδωT2]
+ ΛẼ0Ẽ∗0E+ + ΛẼ0Ẽ0E∗−

]
(F22)

P− =
iε

ωba
ᾱw0

[
E−

[1− iδωT2]
+ Λ∗Ẽ0Ẽ∗0E− + Λ∗Ẽ0Ẽ0E∗+

]
,

(F23)

where Λ is simply Λ+
+ evaluated for ∆ = 0. We see the

nice property that when ∆ = 0, Λ+
+ = Λ−+ (≡ Λ), and

Λ−− = Λ+
− (≡ Λ∗); in other words, the self- and cross-

mixing coupling coefficients are equal.
The gain ḡ+ of the positive sideband is

ḡ+ = ᾱw0

{
1

1 + (δωT2)2
+ Real

[
Λ|Ẽ0|2

(
1 +

Ẽ2
0E∗−
|Ẽ0|2E+

)]}
,

(F24)
and a similar expression holds for the minus sideband.
This equation tells us that the PP contribution to the
gain depends on the phase and amplitude relationships
of E0, E−, and E+, which is not too surprising because
the amplitude of the PP itself is sensitive to these pa-
rameters. Without loss of generality, we can take E0 to
be real. If E+ = E∗−, then the two sidebands’ contribu-
tions to the beat note at δω add constructively, resulting
in a field whose amplitude modulation (AM) is twice the
strength of a field with only one sideband. If E+ = −E∗−,

then the two sidebands’ contributions to the beat note
at δω destructively cancel and there is no longer any am-
plitude modulation at frequency δω. We refer to such a
field as frequency-modulated (FM). We see from Eq. F24
that the AM sidebands therefore experience a PP con-
tribution to the gain that is twice as large as the single
sideband case, while the FM sidebands experiences only
the background Lorentzian gain, consistent with the fact
that there is no PP in this case. We summarize this with
the formula for the gain ḡ of each sideband for the case
of equal-amplitude sidebands (|E+| = |E−|),

ḡ = ᾱw0

[
1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2

{
2 ; AM
0 ; FM

]
.

(F25)
Note that for a superposition of AM and FM, the gain
due to the PP will fall between 0 and 2 times the factor
Real(Λ)|Ẽ0|2.

Appendix G: Theory: instability threshold

This appendix gives a more detailed derivation of the
instability threshold presented in Sec. III D, and demon-
strates that the gain seen by the sidebands is due to a con-
tribution from the population grating and another from
the population pulsations.

When a continuous-wave (cw) laser is pumped at
its lasing threshold, only a single frequency of light–
the one nearest the gain peak that also satisfies the
roundtrip phase condition–has sufficient gain to overcome
the roundtrip loss and begins to lase. As the pumping is
increased, the single-mode solution yields to multimode
operation; this is known as the single-mode instability.
Our goal is to determine 1) how hard to pump the laser
to reach the single-mode instability and 2) which new
frequencies start lasing.
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Consider a laser pumped above threshold that is las-
ing on a single-mode, which we refer to as the primary
or central mode. If another mode is to lase, it must be
seeded by a spontaneously generated photon at a differ-
ent frequency. This photon will necessarily create a beat
note through its coexistence with the primary mode, re-
sulting in a population pulsation. The gain seen by the
new frequency must therefore account for this paramet-
ric gain in addition to the background Lorentzian gain.
Furthermore, the PP couples the sideband to the sym-
metrically detuned sideband frequency on the other side
of the primary mode, so we should in general assume
the presence of both sidebands. Because the instability
threshold depends on the cavity geometry, we will con-
sider a traveling-wave laser as well as a standing-wave
laser. In both cases, the strategy is the same. First, we
solve for the single-mode intensity E0 and the population
inversion w0(z) as a function of the pumping, entirely
neglecting the sidebands. Knowing this, we can then cal-
culate the sideband gain in the presence of the primary
mode.

We start with the wave equation

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ

∂2P

∂t2
. (G1)

Following the approach used to calculate the optical

parametric oscillation threshold in optically pumped mi-
croresonators [63], we expand the field in terms of the
cold cavity modes,

E(z, t) =
∑

m=−,0,+
Em(t)Υm(z)eiωmt + c.c. (G2)

The spatial modes obey the normalization condition

1

L

∫ L

0

dz |Υm(z)|2 = 1. (G3)

When group velocity dispersion (GVD) is non-zero, the
two modes ω+ and ω− will not be equidistant from ω0.
We have also assumed that the spatial and temporal
dependence of the modes can be separated. This is a
good approximation in the case of a laser, because we
know the intracavity field will be sharply resonant at the
modes. The spatial variation of the polarization can be
described by making the substitution Em → EmΥm(z)
and w0 → w0(z) into the polarization Eqs. F20-F21,
which results in the polarization

P (z, t) =
∑

m=−,0,+
Pm(z, t)eiωmt + c.c. (G4)

where

P+(z, t) =
iε

ωba
ᾱw0(z)

[
E+Υ+(z)

[1− i(∆− δω)T2]
+ Λ+

+(z)|Υ0(z)|2Υ+(z)|Ẽ0|2E+ + Λ−+(z)Υ0(z)2Υ∗−(z)eiω̄tẼ2
0E∗−

]
(G5)

P−(z, t) =
iε

ωba
ᾱw0(z)

[
E−Υ−(z)

[1− i(∆ + δω)T2]
+ Λ−−(z)|Υ0(z)|2Υ−(z)|Ẽ0|2E− + Λ+

−(z)Υ0(z)2Υ∗+(z)eiω̄tẼ2
0E∗+

]
. (G6)

We have introduced ω̄ ≡ 2ω0−ω+−ω−, the deviation of
the cold cavity modes from equal spacing. Note that the
Λs now depend on z due to the term in their denomina-
tors dependent on the primary mode amplitude. Because
we no longer demand that the two sidebands have the
same detuning δω, Λ+

+ and Λ+
− should, strictly speaking,

be calculated using the detuning δω+ = ω+ − ω0, while
Λ−− and Λ−+ should depend on δω− = ω0 − ω−. In prac-

tice, we can ignore this difference in the Λs; the term eiω̄t

captures the most important effect of GVD.

Plugging everything into the wave equation gives

∑
m

(
d2Υm

dz2
+
ω2
m

c2
Υm

)
Emeiωmt − 2i

c2

∑
m

ωm
dEm
dt

Υme
iωmt = µ

∑
m

−ω2
m(Pm − Pm,loss)e

iωmt (G7)

where the slowly-varying-envelope approximation al-
lowed us to ignore second time derivatives of Em on the
left-hand side, and first and second derivatives of Em on
the right-hand side. The spatial modes Υm(z) are chosen
so that the first term on the LHS equals zero. The loss
of each mode has been added to the equation in the form
of a polarization contribution; we assume each mode has

the same linear loss, which can be expressed

Pm,loss(z, t) =
iε

ωba
¯̀Υm(z)Em(t). (G8)

Equation G7 couples all of the modes Em. We can project
this equation onto each mode by multiplying by Υn(z)
and integrating over the length of the laser cavity, thus
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taking advantage of the orthonormality of the spatial
modes Υm(z), and then equating terms which oscillate
at the same frequency (since terms with different fre-
quencies will not affect the time-averaged gain seen by a

mode). The result is one equation for the central mode

Ė0 =

[
−

¯̀

2
+

ᾱ

2(1− i∆T2)

∫
dz

L
w0(z)|Υ0(z)|2

]
E0,

(G9)
and one equation for each of the sidebands,

Ė+ = −
¯̀

2
E+ +

ᾱ

2

[
E+

1− i(∆− δω)T2

∫
dz

L
w0(z)|Υ+(z)|2

+ |Ẽ0|2E+
∫
dz

L
w0(z)Λ+

+(z)|Υ0(z)|2|Υ+(z)|2

+Ẽ2
0E∗−eiω̄t

∫
dz

L
w0(z)Λ−+(z)Υ0(z)2Υ∗−(z)Υ∗+(z)

]
(G10)

Ė− = −
¯̀

2
E− +

ᾱ

2

[
E+

1− i(∆ + δω)T2

∫
dz

L
w0(z)|Υ−(z)|2

+ |Ẽ0|2E−
∫
dz

L
w0(z)Λ−−(z)|Υ0(z)|2|Υ−(z)|2

+Ẽ2
0E∗+eiω̄t

∫
dz

L
w0(z)Λ+

−(z)Υ0(z)2Υ∗+(z)Υ∗−(z)

]
. (G11)

These three equations will be used to understand the
instability threshold. In general, one must first apply the
steady-state condition Ė0 = 0 to Eq. G9 which, together
with the Bloch equation relating the field to the inversion,
will yield the amplitude of the primary mode E0 along
with the resulting population inversion w0(z), both as
a function of the pumping weq. (The result will be the
same as what we calculated for the single-mode solution
in Appendix E.) This information is then used in Eqs.
G10-G11 to determine the minimum level of pumping weq
at which a pair of sidebands with detuning δω experiences
more gain than loss. This is the instability threshold.

So far, we have kept Eqs. G9-G11 as general as pos-
sible to account for arbitrary spatial profiles, GVD, and
detuning ∆ between the lasing mode and the peak of the
gain spectrum. From here on we will simplify the prob-
lem by taking ω̄ = 0 (zero GVD) and ∆ = 0, and apply
these conditions to the simplest possible traveling-wave
and standing-wave cavities.

1. Traveling-wave cavity

For the traveling-wave laser, the spatial modes are

Υm(z) = e−ikmz (G12)

so every point in the cavity sees the same intensity. At
and above threshold, the population inversion is every-
where saturated to the threshold inversion, so w0 is in-

dependent of z. For ∆ = 0, the inversion is

w0 = wth ≡
¯̀

ᾱ
(G13)

and the intensity of the primary mode is given by

|Ẽ0|2 = p− 1 (G14)

where we have made use of the normalized primary mode
amplitude Ẽ0 ≡ κ

√
T1T2E0, and p is the pumping parame-

ter defined as p ≡ weq/wth. Because |Ẽ0|2 is independent
of z, all of the Λs are independent of z. Furthermore,
since both w0 and the Λs are independent of z, they
can be pulled out of the spatial integrals in Eqs. G10-
G11. These integrals are then equal to one, where we
have used the zero GVD condition ω̄ = 0 in order for the
cross-overlap integral (the last integral in each equation)
to equal one. The sideband equations become

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
E+

1 + iδωT2
+ Λ|Ẽ0|2E+ + ΛẼ2

0E∗−
]

(G15)

Ė− = −
¯̀

2
E− +

ᾱwth
2

[
E−

1− iδωT2
+ Λ∗|Ẽ0|2E− + Λ∗Ẽ2

0E∗+
]

(G16)

which can be written in matrix form(
Ė+
Ė∗−

)
=

(
M+ R+

R∗− M∗−

)(
E+
E∗−

)
(G17)
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T1 / T2 = 1 T1 / T2 = 10 T1 / T2 = 100 

p=1 
p=5 
p=10 
p=14.9 

p=1 
p=3 
p=6 
p=9.59 

p=1 
p=3 
p=6 
p=9.06 

increasing 
p 

FIG. 11. The sideband gain ḡAM/¯̀ of a traveling-wave laser, given in Eq. G23, is plotted at various pump strengths, for three
different values of T1/T2: 1, 10, and 100. The largest value of p in each plot is equal to the instability threshold given in Eq.
G26.

where

M+ = M∗− = −
¯̀

2
+
ᾱwth

2

(
1

1 + iδωT2
+ Λ|Ẽ0|2

)
(G18)

R+ = R∗− =
ᾱwth

2
Λ|Ẽ0|2. (G19)

(In the last step, we have finally taken the freedom to

choose Ẽ0 to be real, which we can do at this point with-
out loss of generality.)

Now, if we assume a solution of the form E± ∼ eλt, we
find the two solutions for λ

λ =
1

2
[M+ +M∗− ±

√
(M+ −M∗−)2 + 4R+R∗−]. (G20)

The net gain seen by each sideband is given by Real(2λ)
(the factor of two is for intensity gain rather than ampli-
tude gain), which includes the gain minus the loss. Sub-
tracting off the loss, the gain ḡ seen by each sideband
is

ḡ = ᾱwth

[
1

1 + (δωT2)2
+

{
2 Real(Λ)|Ẽ0|2 ; AM

0 ; FM

]
(G21)

where the two solutions correspond to AM and FM side-
band configurations. Finally, we recognize that the gain
is pinned at threshold, so ᾱwth = ¯̀, and we write down
the sideband gain normalized to the loss

ḡ
¯̀ =

1

1 + (δωT2)2
+ Real(Λ)|Ẽ0|2 ·

{
2 ; AM
0 ; FM

. (G22)

When the gain ḡ exceeds the loss ¯̀, the weak side-
band amplitudes experience exponential growth, there-
fore the single-mode solution becomes unstable. Note
that the Lorentzian term is always less than 1. This is
a direct result of uniform gain clamping in the traveling-
wave laser, which clamps the net gain of the mode at the
peak of the Lorentzian to zero, and therefore any mode
detuned from the peak will see slightly more loss than

gain. FM sidebands therefore never become unstable be-
cause they only see the Lorentzian gain. On the other
hand, AM sidebands induce a PP and with it a coherent
gain term, which can provide enough extra gain on top
of the Lorentzian background to allow the sidebands to
lase,

ḡAM
¯̀ =

1

1 + (δωT2)2
+ 2 Real(Λ)|Ẽ0|2. (G23)

To get a feel for the sideband gain, we have plotted
ḡAM/¯̀ in Fig. 11 at various pump strengths p for Z =
1, 10, and 100, where Z ≡ T1/T2. Graphically, we see
that at large enough p sidebands will become unstable.
Analytically, it is a simple matter to calculate how hard
to pump the laser p before the sidebands appear, starting
from Eq. G23. We start by replacing |Ẽ0|2 with p − 1,
and note that this substitution must also be made in Λ,
which implicitly varies with |Ẽ0|2. Then, setting ḡAM/¯̀

equal to one, we can solve a simple quadratic formula for
δω2,

(δωT2)2 =
−1 + 3Z(p− 1)±

√
[1− 3Z(p− 1)]2 − 8Z2p(p− 1)

2Z2
.

(G24)
Finally, we must apply some physical reasoning: as p is
increased past 1, the sideband gain increases. Right at
the moment when the instability threshold is reached,
δω2 must take on a single value. Thus, we set the radical
in Eq. G24 to zero and solve for p. After solving another
simple quadratic equation, we find that

p = 5 +
3

Z
± 4

√
1 +

3

2Z
+

1

2Z2
. (G25)

How do we choose between the plus and minus sign? By
plugging this expression for p back into Eq. G24, it is
simple to check that only the plus sign yields real-valued
solutions for δω. Thus, we have found the instability
threshold, which we denote pRNGH ,

pRNGH = 5 +
3

Z
+ 4

√
1 +

3

2Z
+

1

2Z2
(G26)
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because it is the well-known instability threshold found
by Risken and Nummedal (see Eq. 3.10 in [10]) and
Graham and Haken (see Eq. 7.35 in [11]). Plugging
this value of p into Eq. G24 yields the value of δω of the
sidebands when the instability sets in

(δωRNGHT2)2 =
4

Z2
+

6

Z

(
1 +

√
1 +

3

2Z
+

1

2Z2

)
.

(G27)
One thing to notice is that in the limit Z � 1 (trans-
verse relaxation must faster than longitudinal relax-
ation), the instability threshold pRNGH → 9 from above

and δωRNGHT2 →
√

12/Z.

2. Standing-wave cavity

As before, we restrict ourselves to the case ∆ = 0 and
ω̄ = 0. We will see that calculations for the standing-
wave cavity are significantly more complicated than for
the traveling-wave cavity. The spatial variation of the
primary mode causes the inversion w0 and the coupling Λ
to both depend on z, which makes the integrals more dif-
ficult to compute. For this reason, we treat the problem
to first order in the primary mode intensity |Ẽ0|2, which
allows us to compute the integrals analytically. However,
the theory can be extended to higher order at will, or the
integrals can always be computed numerically.

For the standing-wave laser with perfectly reflecting
end mirrors, the spatial profile of each mode is given by

Υm(z) =
√

2 cos(kmz). (G28)

The spatial modulation of the intensity is responsible for
the spatial modulation of the population inversion w0(z),
given by Eq. E14. This population grating has important
consequences. For one, it reduces the power of the laser,
which is given by Eq. E13. Secondly, the gain is no longer
uniformly clamped by the primary lasing mode, which
will allow new modes to lase even in the absence of PPs.

The spatial variation of the primary lasing mode also
causes Λ to vary with position. In keeping with our ap-
proximations, we can expand Λ to zeroth order in |Ẽ0|2

because in our equations Λ always multiplies |Ẽ0|2, so the

final result is first order in |Ẽ0|2. We define the zeroth
order expansion of Λ to be

χ(3) =
−(1 + iδωT2/2)

(1 + iδωT1)(1 + iδωT2)2
, (G29)

where the symbol χ(3) was chosen to emphasize that this
term now plays the role of a third-order nonlinear coeffi-
cient.

We start with the sideband Eqs. G10-G11, replace
w0(z) with Eq. E14, Λ(z) with χ(3), and keep only terms

to first order in |Ẽ0|2. The resulting equation for the
growth of the positive sideband is

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
1 + γD

2 |Ẽ0|
2

1 + iδωT2
E+

+ χ(3)|Ẽ0|2E+
∫
dz

L
|Υ0(z)|2|Υ+(z)|2

+χ(3)Ẽ2
0E∗−

∫
dz

L
Υ0(z)2Υ∗−(z)Υ∗+(z)

]
,

(G30)

and a similar equation can be written down for Ė−. We
define the longitudinal overlap integrals

Γself =

∫ L

0

dz

L
|Υ0(z)|2|Υ+(z)|2 = 1 (G31)

Γcross =

∫ L

0

dz

L
Υ0(z)2Υ∗−(z)Υ∗+(z) = 1/2. (G32)

The implication is that the self-mixing interaction of a
sideband with itself, mediated by the primary mode in-
tensity, is twice as large as the cross-mixing interaction
of one sideband generating gain for the other sideband,
again mediated by the primary mode intensity. This is
true only for the cosine-shaped modes that we have as-
sumed, and the overlap integrals will change when the
longitudinal spatial profile changes, as when the non-
unity reflectivity of the facets is taken into account. The
sideband equations become

Ė+ = −
¯̀

2
E+ +

ᾱwth
2

[
1 + γD

2 |Ẽ0|
2

1 + iδωT2
E+ + Γselfχ

(3)|Ẽ0|2E+ + Γcrossχ
(3)Ẽ2

0E∗−

]
(G33)

Ė− = −
¯̀

2
E− +

ᾱwth
2

[
1 + γD

2 |Ẽ0|
2

1− iδωT2
E− + Γselfχ

(3)∗|Ẽ0|2E− + Γcrossχ
(3)∗Ẽ2

0E∗+

]
, (G34)

which we express as(
Ė+
Ė∗−

)
=

(
M+ R+

R∗− M∗−

)(
E+
E∗−

)
(G35)

where

M+ = M∗− = −
¯̀

2
+
ᾱwth

2

(
1 + γD

2 |Ẽ0|
2

1 + iδωT2
+ Γselfχ

(3)|Ẽ0|2
)

(G36)

R+ = R∗− =
ᾱwth

2
(Γcrossχ

(3)|Ẽ0|2). (G37)
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As we did for the traveling-wave laser, the sideband gain
is easily calculated from these two coupled first-order dif-
ferential equations. Normalizing the gain to the total
loss, we find

ḡ
¯̀ =

1 + γD
2 |Ẽ0|

2

1 + (δωT2)2

+ Real[χ(3)]|Ẽ0|2 ·
{

Γself + Γcross = 3
2 ; AM

Γself − Γcross = 1
2 ; FM

,

(G38)

which is equivalent to Eq. 19 after expressing |Ẽ0|2 in
terms of p from Eq. E13. There are two things to
notice here. As the laser pumping is increased, the
term γD|Ẽ0|2/2 grows, and consequently the gain is not
clamped at the threshold value. This is due to spatial
hole burning, or more precisely, the imperfect overlap of
the standing-wave modes together with a finite amount
of carrier diffusion. We view this background gain as
a Lorentzian-shape whose amplitude increases with the
pumping, and is therefore fully capable of pulling the
sidebands above threshold, without any additional PP
contribution to the gain.

Secondly, the PP contribution to the gain never van-
ishes. Even when the sidebands are phased such that an
FM waveform is emitted from the laser, there is still a PP
within the laser cavity. The reason for this is the imper-
fect overlap of the two sidebands’ spatial modes, which
means that at any given position within the cavity, the
plus and minus sideband are likely to have different am-
plitudes. Therefore, even if the two sidebands are phased
such that their contributions to the beat note at δω de-
structively interfere with each other, the destruction is
not perfect. The amplitude of the PP varies with posi-
tion in the cavity, and in locations where the two side-
band amplitudes are equal the PP will not exist, but the
spatially averaged effect of the FM PP yields the factor
of 1/2 in Eq. G38. By the same token, sidebands phased
for AM will not fully constructively interfere, yielding a
factor of 3/2 for the PP contribution to the gain rather
than the factor 2, as it would be for the traveling-wave
laser.

Depending on the particular values of T1, T2, and γD,
either FM or AM sidebands will have a lower instability
threshold. This can be determined by solving Eq. G38 for
the pumping level at which the ḡ = ¯̀, and gives rise to the
three different kinds of instability discussed in Sec. III D
of the main text.

Appendix H: Comparison of theory and data

In this appendix, we take the theory at face value and
calculate the predictions of the theory for the three un-
coated lasers. We then compare the results with the mea-
surements. (In the main text, we focused on comparing
the experimental δωsb with the theoretical δωcr, a com-

0.93  (LL-9.8) 
0.49  (TL-4.6) 
0.40  (DS-3.8) 

experimental 

(a) 

(b) 

Theoretical prediction 
of (T1/T2, psb) based 
on experimental  

TL-4.6 
DS-3.8 

LL-9.8 

FIG. 12. Numerical solutions of the instability threshold ob-
tained by setting the gain ḡ in Eq. G38 equal to the loss ¯̀,
yielding both (a) the sideband separation δωsbT2 and (b) the
pumping psb. The experimentally measured values of δωsbT2

are compared to the theory to infer T1/T2, which also gives
the theoretical prediction for the instability threshold psb.

parison that is more robust against our uncertainty in γD
and T1 and neglect of GVD and ∆.)

Because the theory assumes end mirrors with unity
reflectivity, we can only expect Eq. G38 to apply reason-
ably well to the uncoated QCLs. For each device, γD
is calculated using the theoretical value of Tup (calcu-
lated from the bandstructure) and the diffusion constant
D = 77 cm2/s [48], giving γD = 0.4 (DS-3.8), 0.49 (TL-
4.6), and 0.93 (LL-9.8). For these large values of γD, the
incoherent gain increases rapidly with the pumping, and
we find from Eq. G38 that the FM instability will have
a lower threshold than the AM instability, regardless of
the value of T1. The gain recovery time T1 of each QCL
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Device Tup [ps] γD T2 [fs] δωsbT2 T1/T2 psb Jsb/Jth

LL-9.8 0.54 0.93 81 0.052 11 1.04 1.14
TL-4.6 1.7 0.49 74 0.093 16 1.09 1.17
DS-3.8 1.74 0.40 43 0.042 43 1.02 1.12

TABLE II. Summary of the input parameters and the output
theoretical predictions for the three uncoated devices. Tup is
used to calculate γD. T2 and δωsbT2 are measured quantities,
from which the shaded columns T1/T2 and psb are calculated
from the theory, as explained in Fig. 12. The quantity psb

clearly underestimates the measured Jsb/Jth for reasons dis-
cussed in the text.

is not as easily calculable as Tup because it depends on a
few other time constants of the active region, such as the
escape time of the electron from one injector region to the
next active region. Therefore, we treat T1 as a variable
and calculate the instability threshold psb and sideband
spacing δωsb as a function of T1. The resulting curves
are shown in Fig. 12, and a summary of all input and
output parameters is given in Table II. By comparing
the curves with the measured values of δωsb, we can de-
duce the values T1 = 1.83 ps (DS-3.8), 1.15 ps (TL-4.6),
and 0.91 ps (LL-9.8). For these values of T1, the theory
predicts an instability threshold of psb = 1.02 (DS-3.8),
1.09 (TL-4.6), and 1.04 (LL-9.8). It is encouraging that
these fitted values of T1 are close to the accepted value
of the QCL gain recovery time, which has been shown by
pump-probe experiments [60, 61] and theory [62] to be
around 2 ps. However, the predicted psb is significantly
lower than the measured values Jsb/Jth = 1.12 (DS-3.8),
1.17 (TL-4.6), and 1.14 (LL-9.8), and the discrepancy is
made worse by the fact that J/Jth is likely an underesti-
mate of p (see the discussion in Appendix A). The fact
that the theory underestimates the instability threshold
is perhaps not surprising, as we have only made sure that
one of the two necessary conditions for sideband oscilla-
tion is satisfied (gain, not phase). Our neglect of the
current inhomogeneity also contributes to the underes-

timation, as discussed in Appendix E. We hope that
future work which accounts for the detuning ∆, the de-
tuning between the lasing mode and the cold cavity mode
it occupies, the GVD, and the current inhomogeneity can
accurately predict the instability threshold, which would
be a milestone in the understanding of lasers, and also
yield a novel laser characterization method of lifetimes
and diffusion rates by comparing measured values of psb

and δωsb to an established theory.

ACKNOWLEDGMENTS

This work was supported by the DARPA SCOUT pro-
gram through grant number W31P4Q-16-1-0002. We ac-
knowledge support from the National Science Founda-
tion under awards ECCS-1230477, ECCS-1614631, and
ECCS-1614531. This work was performed in part at
the Center for Nanoscale Systems (CNS), a member of
the National Nanotechnology Coordinated Infrastructure
(NNCI), which is supported by the National Science
Foundation under NSF award no. 1541959. CNS is part
of Harvard University. We gratefully acknowledge the Of-
fice of Naval Research (ONR) for assistance in developing
the 3.85 µm QCL used in this study. The Lincoln Labo-
ratory contribution is based upon work supported by the
Assistant Secretary of Defense for Research and Engi-
neering under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings, con-
clusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the Assistant Secretary of Defense for Research
and Engineering. Benedikt Schwarz was supported by
the Austrian Science Fund (FWF) within the doctoral
school Solids4Fun (W1243) and the project NanoPlas
(P28914-N27). Tobias Mansuripur thanks Dmitry Kaza-
kov and Marco Piccardo for measurements of the beat
note in the dense state, Carlos Stroud for his perspec-
tive on laser instability research in the 1980s, and Jacob
Khurgin for the remark that initiated this research.

[1] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala,
Phys. Rev. Lett. 93, 083904 (2004).

[2] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S.
Ilchenko, and L. Maleki, Phys. Rev. A 71, 033804 (2005).

[3] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky,
R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett.
107, 063901 (2011).

[4] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang,
E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J.
Kippenberg, Nat. Photonics 6, 480 (2012).

[5] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kon-
dratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat.
Photonics 8, 145 (2013).

[6] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem,
A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson,
and A. L. Gaeta, Opt. Express 21, 1335 (2013).

[7] W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[8] H. Haken, Zeitschrift für Phys. 190, 327 (1966).
[9] H. Risken, C. Schmid, and W. Weidlich, Zeitschrift für

Phys. 194, 337 (1966).
[10] H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662

(1968).
[11] R. Graham and H. Haken, Zeitschrift für Phys. 213, 420

(1968).
[12] S. Hendow and M. Sargent, Opt. Commun. 40, 385

(1982).
[13] S. T. Hendow and M. I. Sargent, Opt. Commun. 43, 59

(1982).
[14] L. W. Hillman, R. W. Boyd, and C. R. Stroud, Opt.

Lett. 7, 426 (1982).
[15] L. A. Lugiato, L. M. Narducci, D. K. Bandy, and N. B.

Abraham, Opt. Commun. 46, 115 (1983).



27

[16] L. W. Hillman, J. Krasinski, R. W. Boyd, and C. R.
Stroud, Phys. Rev. Lett. 52, 1605 (1984).

[17] L. A. Lugiato, L. M. Narducci, E. V. Eschenazi, D. K.
Bandy, and N. B. Abraham, Phys. Rev. A 32, 1563
(1985).

[18] L. W. Hillman, J. Krasinski, K. Koch, and C. R. Stroud,
J. Opt. Soc. Am. B 2, 211 (1985).

[19] R. S. Gioggia and N. B. Abraham, Phys. Rev. Lett. 51,
650 (1983).

[20] S. Autler and C. Townes, Phys. Rev. 100, 703 (1955).
[21] B. Senitzky, G. Gould, and S. Cutler, Phys. Rev. 130,

1460 (1963).
[22] B. Senitzky, IEEE Trans. Microw. Theory Tech. MTT-

16, 728 (1968).
[23] M. C. Newstein, Phys. Rev. 167, 89 (1968).
[24] B. Mollow, Phys. Rev. 188, 1969 (1969).
[25] C. R. Stroud, Phys. Rev. A 3, 1044 (1971).
[26] F. Schuda, C. R. Stroud, and M. Hercher, J. Phys. B

At. Mol. Phys. 7, L198 (1974).
[27] F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett.

35, 1426 (1975).
[28] H. Carmichael and D. Walls, J. Phys. B At. Mol. Phys.

9, 1199 (1976).
[29] C. Cohen-Tannoudji and S. Reynaud, J. Phys. B At. Mol.

Phys. 10, 345 (1977).
[30] R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter,

Phys. Rev. A 24, 411 (1981).
[31] D. J. Harter and R. W. Boyd, IEEE J. Quantum Elec-

tron. 16, 1126 (1980).
[32] L. A. Lugiato, F. Prati, D. K. Bandy, L. M. Narducci,

P. Ru, and J. Tredicce, Opt. Commun. 64, 167 (1987).
[33] A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner,
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