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Abstract

The Hong-Ou-Mandel experiment leads indistinguishable photons simultaneously reach-

ing a 50:50 beam splitter to emerge on the same port through two-photon interference.

Motivated by this phenomenon, we consider numerical experiments of the same flavor for

classical, wave objects in the setting of repulsive condensates. We examine dark solitons

interacting with a repulsive barrier, a case in which we find no significant asymmetries in

the emerging waves after the collision, presumably due to their topological nature. We also

consider case examples of two-component systems, where the dark solitons trap a bright

structure in the second-component (dark-bright solitary waves). For these, pronounced

asymmetries upon collision are possible for the non-topological bright component. We

also show an example of a similar phenomenology for ring dark-bright structures in two

dimensions.
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1 Introduction

The well-known Hong-Ou-Mandel (HOM) effect in quantum mechanics describes particle in-

terference of two indistinguishable photons [1]: when two identical single-photon wave packets

simultaneously enter a 50:50 beam splitter, one in each input port, both always exit the splitter

at the same output port, although each photon has (on its own) a 50:50 possibility to exit either

output port. With this effect, we can test (by the manner of the so-called HOM dip) the degree

of indistinguishability of two incoming photons experimentally. Moreover, the HOM effect has

been applied to demonstrate the purity of a solid-state single-photon source [2] and has provided

a mechanism for logic gates in linear optical quantum computation [3]. Experimental realiza-

tions have also been implemented for larger particle numbers such as three photons impinging

on a multiport mixer [4], and for one and two-photon pairs [5]. Multi-photon experiments and

the associated generalizations of the Hong-Ou-Mandel effect have been reviewed in [6].

Recent studies have generalized the HOM effect to the interference of massive particles [7–

11]. In fact, Bose-Einstein condensates (BECs) at very low temperatures provide a setup for

studying an analog to the HOM effect for massive (bosonic) particles, such as atoms. Lewis-

Swan and Kheruntsyan realized the HOM effect for massive particles by using a collision of two

BECs and a sequence of laser-induced Bragg pulses as the splitter [12]. On the other hand, this

has been further explored experimentally in a plasmonic setup using surface plasmon polaritons

to interact through a semitransparent Bragg mirror [13]. In its most recent implementations, a

variant of the HOM experiment involving atoms rather than photons was realized in [14] and

another one in the frequency domain involving photons of different colors was achieved in [15].

The latter led to the observation of a pair of photons of the same color at the output of the

frequency-domain beam-splitter.

Considering the more classical aspect of matter waves, solitary waves or solitons have been

extensively studied in the context of BECs; for a recent review, see, e.g., [16]. Bright solitary

waves for attractive interactions have been created in 7Li [17, 18] and 85Rb [19], and their

interactions (also with barriers) have been explored both at the mean-field and at the quantum-

mechanical level [20–26]. At the junction of the HOM effect and matter-wave solitons, we

previously have proposed a mean-field analogue of the HOM effect with bright solitons in BECs

[27]. In our setup, the bright solitons play the role of a classical wave analogue to the quantum

photons, while the role of the beam splitter is played by a repulsive Gaussian barrier. Although

these are not quantum mechanical objects at the level of consideration of [27], our analysis

showed that their wave character is responsible for an intriguing phenomenology. In particular,

we showed that even very slight deviations of the bright solitons from perfect symmetry (of

the order of a few percent in the relative speed, or in the relative amplitude) yield an output

whereby the bright solitons emerge essentially in only one of the two ports. This feature is

demonstrated to be generic in a wide regime of soliton and barrier parameters.

It is then natural to inquire whether similar phenomena may be present in the context of

repulsive BECs. While the work of [12] considered this possibility between two BECs, here

we consider it at the level of topological wave excitations existing within the (same) BEC.

2



In particular, we consider the potential of HOM phenomenology with dark (single or multi-

component) solitons. Dark matter-wave solitons, which are characterized by localized dips

in the atomic density with certain phase slip across their center, have received considerable

research interest in atomic systems in recent years [16, 28]. In BECs they can be created

by phase imprinting [29–31], destructive interference [32, 33], density engineering [34], and by

dragging a potential barrier through the condensate [35–37], among others. Collisions of DSs

in an elongated BEC have been observed experimentally [32, 33, 38], showing their potential

non-destructive transmission or reflection with a shift in their trajectories. However, it is

important to caution here about the necessity for the quasi-one-dimensional nature of the

associated geometry, as under less restrictive trapping conditions, different types of collisional

effects may arise [39]. On the other hand, interactions of the DSs with localized impurities

have been considered in the literature [40, 41], with relevant investigations proposed also in

the context of BECs [42–45]. Moreover, such issues on soliton-impurity interactions have been

extended to dark-bright (DB) solitons [46, 47], ring dark solitons [48], and vortices [49, 50].

While ring dark solitons have yet to be observed as stable objects experimentally, despite

theoretical proposals for their stabilization [51], DB structures have been a focus of considerable

experimental interest, as is evidenced by a relevant recent review [52].

In our numerical experiments reported here, we start from dark solitons in repulsive BECs

(within the mean-field description of the quasi-1D Gross-Pitaevskii (GP) equation with repul-

sive interactions), and arrange systematic simulations for the collisions between dark-soliton

pair and impurity. Unlike the bright solitons, we find that scattering of the dark-soliton pair

(with slight asymmetry) by the impurity is not able to effectively yield the strongly asymmetric

behavior reminiscent of the HOM effect. Thus, we further pay attention to the DB solitons

in a two-component BEC, with the localized Gaussian impurity (either repulsive or attractive)

added on the bright-soliton component. In such a case, systematic simulations show that the

dark-soliton component presents an analog of the HOM effect generically. Finally, we give a

prototypical case example of analogous behavior in a 2D setup for the ring DB solitons [53].

2 Scattering of dark-soliton pair by impurity

Firstly, we examine the collision phenomenology in the setting of the normalized quasi-1D GP

equation with repulsive interactions:

i
∂ψ(x, t)

∂t
=

[

−1

2

∂2

∂x2
+ |ψ(x, t)|2 + q√

2πσ
e−

x
2

2σ2

]

ψ(x, t) , (1)

where ψ(x, t) is the dimensionless wave function with normalized temporal and spatial coordi-

nates t and x, and the Gaussian barrier has a normalized width σ and strength q. Derivation

of the dimensionless form of this equation, and discussion of the relevant physical units can be

seen, e.g., in [16, 21, 42]. Here, we simply mention that typically the density is measured in

units of (2a)−1, the spatial extent is measured in units of
√

~/(mΩ), time in units of Ω−1 and

energy in units of ~Ω. Ω here plays the role of the transverse confinement frequency, which is

effectively tunable in our setting (in the absence of longitudinal confinement).
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By a procedure similar to [42, 54], we firstly calculate the profile of the background field

with impurity, ψ(x, t) = ψb(x)e
−iψ2

0t, where ψ2
0 is the normalized density of the BEC cloud:

ψb(x) ≈ ψ0 −
q

4
e2σ

2ψ2
0

[

e−2ψ0xerfc

(−x+ 2σ2ψ0√
2σ

)

+ e2ψ0xerfc

(

x+ 2σ2ψ0√
2σ

)]

, (2)

with the assumption that the impurity is small, where erfc(z) = 1 − 2√
π

∫ z

0
e−η

2
dη gives the

complementary error function. The background field density ψ2
b (x) describes an effective back-

ground condensate wave function modified by the localized impurity. Dynamics of a single

dark soliton on top of such a background with impurity can be approximately described by an

adiabatic perturbation, which is briefly summarized in the appendix.
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Figure 1: Phase diagram of E± before (the left two panels for t = 0) and after (the right two

panels for t = 1.6x1/ sinϕ1) collision. The relevant parameters are q = 0.3, σ = 0.1, ψ0 = 1,

and x1 = 15.

For scattering of a dark-soliton pair with small asymmetry, we perform direct simulations

of Eq. (1) using a fourth-order Runge-Kutta algorithm in time, and fourth-order centered

difference in space scheme. Our initial condition involves two oppositely moving dark solitons

that collide at the center of the impurity, with the form,

ψ(x, 0) = ψb(x){cosϕ1 tanh[cosϕ1(x+x1)]+i sinϕ1}{cosϕ2 tanh[cosϕ2(x−x2)]−i sinϕ2} , (3)

where 0 ≤ ϕ1,2 < π/2, x1,2 > 0, and x1/x2 = sinϕ1/ sinϕ2. For sufficiently large values of x1

and x2, Eq. (3) approximately represents a pair of two dark solitons located at −x1 and x2, with
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oppositely moving velocities sinϕ1 and − sinϕ2. The above condition for x1/x2 then ensures

that the solitons arrive at the the center of the impurity concurrently. In our setup, we control

a small difference between ϕ1 and ϕ2, ensuring that |(ϕ2 − ϕ1)/ϕ1| 6 0.15. Two normalized

integral quantities on each side of the barrier are computed in the numerical experiments1

E−(t) =

∫ 0

−∞(ψ2
b − |ψ|2)dx

∫ +∞
−∞ (ψ2

b − |ψ|2)dx
E+(t) =

∫ +∞
0

(ψ2
b − |ψ|2)dx

∫ +∞
−∞ (ψ2

b − |ψ|2)dx
. (4)

It is easily understood by symmetry that for ϕ1 = ϕ2 and other parameters chosen the same

for both incoming dark solitons, we obviously obtain E− = E+ = 0.5 after collision. We now

consider the case with small asymmetry, and compute a phase diagram of E± after collision

for both slow and fast solitons. In the simulation, we control |E±
0 − 0.5| 6 0.03 [E±(t = 0) is

denoted by E±
0 ] in order to satisfy the small difference between the normalized masses of the

two incoming dark solitons; the results are presented in Fig. 1.
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Figure 2: Numerical simulation of a two-dark-soliton collision at center of the impurity. The

relevant parameters are q = 0.3, σ = 0.1, µ = 1, x1 = 15, and ϕ2/ϕ1 = 0.90. (a) ϕ1 = 0.35; (b)

ϕ1 = 0.75; recall that the speed of the first soliton is ∝ sin(φ1); (c) ϕ1 = 0.35 with a parabolic

trapping potential Utr =
1
2
Ω2x2 of Ω = 0.03; (d) ϕ1 = 0.75 with Ω = 0.03.

From this phase diagram, we see that slight initial differences cannot generate amplified

asymmetry in the output. In fact, the basic behavior hereby is simultaneous reflection (trans-

mission) of the two incoming solitons by (through) the Gaussian barrier. Two typical examples

1It should be noted that a collision of dark soliton(s) with the barrier always results in pairwise emission of

much smaller dark and anti-dark entities on each side. For the anti-dark entity, the integration
∫

(ψ2
b
−|ψ|2)dx <

0, and, the emission of such a negative portion may affect the mass redistribution within the left and right

portions of the domain. We verified that this effect had no significant bearing on the reported results.
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are shown in Fig. 2, where the left panel is for simultaneous reflection, while the right panel is

for simultaneous transmission. Recalling that the speed of the first soliton is ∝ sin(φ1), we infer

that the left panel corresponds to a slow soliton collision, while the right panel to a fast one, yet

the mass distribution between the regions x < 0 and x > 0 does not change significantly, upon

the collision event, among the two cases. We vary the parameters for the repulsive impurity

(q and σ), background (ψ0), and initial soliton position (x1) in the numerical simulation and

the results retain features similar to the one shown above. Additionally, when the conventional

parabolic trapping potential Utr(x) = 1
2
Ω2x2 is introduced, the general features of the phase

diagram in Fig. 1 do not change, with two typical examples shown in Figs. 2(c) and (d). On

the other hand, for an attractive impurity (q < 0), the dark soliton (pair) can generally pass

through the barrier, being unable to cause the HOM-analog asymmetry. A particular case oc-

curs for a pair of slow solitons with slight asymmetry: after the collision, one soliton is trapped

by the barrier for a short while before it is released to either side of the barrier. However, such

an atypical situation is not included in our analogue.

3 Scattering of DB-soliton pairs by impurity

Given the limited ability of dark solitons to feature HOM type extrema in transmission/reflection,

which can possibly be partially attributed to their topological character (associated with a

phase slip), we now turn to composite structures featuring a non-topological (bright) compo-

nent, namely to dark-bright solitary waves. An associated physical system can for example be

composed of two different hyperfine states of the same alkali isotope [52]. If this condensate is

confined in a highly anisotropic trap, with the longitudinal frequency much smaller than the

transverse frequency, the mean-field dynamics of the BEC can be described by the following

dimensionless system of two coupled GP equations,

i
∂ψD(x, t)

∂t
= −1

2

∂2ψD(x, t)

∂x2
+ (|ψD(x, t)|2 + g12|ψB(x, t)|2)ψD(x, t) + VD(x)ψD(x, t) ,

(5a)

i
∂ψB(x, t)

∂t
= −1

2

∂2ψB(x, t)

∂x2
+ (g12|ψD(x, t)|2 + |ψB(x, t)|2)ψB(x, t) + VB(x)ψB(x, t) .

(5b)

Scaling of Eqs. (5) and the relevant physical units can be found in [46, 47]. Upon the choice of the

inter-component nonlinearity strength g12 = 1, the (ratio of) nonlinearity coefficients is taken to

be unity, which leads the system of Eqs. (5) to a variant of the well-known Manakov model [55].

Such an assumption is consistent with experiments based on two different hyperfine states of
87Rb [56–59], where the scattering lengths characterizing the intra- and inter-component atomic

collisions are almost equal2. In what follows, we will also briefly touch upon the immiscible

2It should be borne in mind that slight deviations from the limit especially towards the immiscible side

may be responsible for fundamentally different dynamical evolutions involving phase separation between the

components [56]. Yet, DB solitons have been identified as existing on both sides of this transition [60].
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(between the two components) regime of g12 > 1. For simplicity, though, it should be assumed

that g12 = 1, except where specified otherwise. On the other hand, VD,B(x) represent the

normalized external potentials; in our setup, we consider a localized Gaussian potential (im-

purity) added in the component 2 that supports a bright soliton, namely VB(x) =
q√
2πσ

e−
x
2

2σ2

and VD(x) = 0. The potential can be generated by off-resonant Gaussian laser beams, and for

a blue- or red-detuned laser beam, the impurity potential can either repel (q > 0) or attract

(q < 0) the atoms of the relevant component of the condensate.

For our analog of the HOM phenomenology, the Gaussian impurity plays the role of the

splitter, and the DB-soliton pairs with slight asymmetry play the role of photons. With the

boundary conditions |ψD|2 → µ and |ψB|2 → 0 as |x| → ∞, the incoming soliton pairs (the

initial conditions in the simulation) are chosen as the following form that describes two DB

solitons colliding at the center of the impurity:

ψD(x, 0) =
√
µ{cosα1 tanh[k1(x+ x1)] + i sinα1}{cosα2 tanh[k2(x− x2)]− i sinα2} ,

(6a)

ψB(x, 0) = A1sech[k1(x+ x1)]e
iv1x + A2sech[k2(x− x2)]e

−i(v2x+∆) , (6b)

where αj is the dark soliton’s phase angle,
√
µ cosαj and Aj are the amplitudes of the dark and

bright solitons, kj and (−1)jxj are associated with the inverse width and the initial position

of the DB solitons, and (−1)j−1vj and ∆ represent the soliton velocity and a relative phase.

These parameters of the DB-soliton pairs satisfy the following relations:

k2j + A2
j = µ cos2 αj , (7a)

vj = kj tanαj (j = 1, 2), (7b)

x1/v1 = x2/v2 . (7c)

In our analogue, we choose two independent parameters kj and vj , and consider nontrivial

deviations between the parameters of the two DB solitons. In this case, there are two sets of

masses, respectively, for the dark and bright components in order to quantify relevant transfer.

E−
B (t) =

∫ 0

−∞ |ψB|2dx
∫ +∞
−∞ |ψB|2dx

E+
B (t) =

∫ +∞
0

|ψB|2dx
∫ +∞
−∞ |ψB|2dx

, (8a)

E−
D(t) =

∫ 0

−∞(µ− |ψD|2)dx
∫ +∞
−∞ (µ− |ψD|2)dx

E+
D(t) =

∫ +∞
0

(µ− |ψD|2)dx
∫ +∞
−∞ (µ− |ψD|2)dx

. (8b)

We prescribe these normalized masses to feature small deviations from symmetry (with |E±
B,D(0)−

0.5| 6 0.03 in general). The simulation results will be systematically presented below
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Figure 3: Numerical simulation of a two-DB-soliton collision at the center of impurity. The

relevant parameters are q = 1, σ = 0.1, µ = 2, k1 = 0.66, k2 = 0.46, v1 = v2 = 0.5, x1 = 10, and

∆ = 0. The lower two panels show the collision with a parabolic trapping potential Utr =
1
2
Ω2x2

of Ω = 0.03.

Firstly, we consider the case of unequal inverse widths, and illustrate typical realizations in

Fig. 3. With the parameters in this figure, the difference in the inverse widths directly leads to

a very slight asymmetry of E±
D(0) (that is |E±

D(0)− 0.5| . 1.5%), which, after collision at the

impurity, induces a much larger deviation on the normalized masses (E−
D ≈ 60%). The lower

two panels in this figure also illustrate the collision upon the addition of a trapping potential,

which shows that the general feature does not change. It is relevant to mention here a feature

that can be observed in this case in the dark component which was absent, e.g., in Fig. 2. In

particular, for x < 0, a white “jet” can be discerned past the collision time in this component.

From the colorbar, we can infer that this is a bright solitary wave on top of the finite background,

hence a structure that is referred to as an anti-dark soliton. Similar structures have not only

been discussed in atomic BECs [61], but possible experimental realizations [62], including a

recent successful manifestation thereof [63], have been presented.

Figure 4 examines the role of the difference between k1 and k2 by fixing k1, and varying k2

in the range of 0.6−1.0 (ensuring |E±
D(0)−0.5| . 3.0%), with the results E−

B,D (after collision)

shown in this figure. We see that a peak value occurs for both E−
B,D when k2/k1 varies in the

range, which means more of the soliton mass (or the normalized mass) is found on one side.

We observe that such a maximum asymmetry for the bright (non-topological) component is

considerably stronger than that for the dark component. On the other hand, the situation is

almost symmetric as k2/k1 varies from 1 to higher values (not shown here). For completeness,

Fig. 5 shows the variation upon adding a parabolic trapping potential, also for an immiscible

case of g12 = 1.1. Equation (8a) is still valid when Ω 6= 0, and Fig. 5(a) shows the trapping
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potential would not change the asymmetric output. On the other hand, a typical example of

the immiscibility (g12 = 1.1) is presented in Fig. 5(b), indicating that HOM-type collision of

the DB solitons is possible up to the immiscible regime.
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Figure 4: Plots of E−
B,D as a function of k2/k1 varying from 0.6 to 1.0 (k1 = 0.66). The

relevant parameters are q = 1, σ = 0.1, µ = 2, v1 = v2 = 0.5, x1 = 10, and ∆ = 0.
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To further check the dependence of the maximum asymmetry with k1 and v (v1 = v2 = v),

a phase diagram is presented in Fig. 6, where fixing each group of (k1, v), we vary the value

of k2/k1, and capture the maximum asymmetry of both E−
B,D. It can be seen that features

reminiscent of the HOM asymmetry are clearly evident for the slow solitons with k1 varying

in the range 0.55 − 0.75 (the corresponding suitable regime is within the dashed line in the

figure). The maximum asymmetry with E−
D ≈ 60% is induced by much smaller initial deviation

|E±
D(0)− 0.5| . 1.5%. However, the phenomenology is fundamentally more pronounced in the

bright component where it is clear that a behavior reminiscent of the HOM effect can be

classically observed for these non-topological waves with E−
B exceeding values of 0.9. A case

example of this is shown in Fig. 3.

Another interesting possibility is to explore the behavior of the DB solitons for an attrac-

tive impurity (q < 0). We firstly discuss the case where an asymmetry is induced between

k1 and k2 (for typical parameters, we control k2/k1 varying in the range of 0.8 − 1.0, keeping

|E±
D(0) − 0.5| . 3.0%). For q < 0, a very slight portion of soliton mass (normalized mass) is

trapped by the impurity after the collision. This hardly influences the phenomenology, and the

integration boundary in (8) can be carefully selected3. We study the dependence of E−
B,D as

k2/k1 varies from 0.8 to 1.0, with two groups of results provided in Fig. 7 (two fixed values of

k1 are chosen). We see that generally for the dark (component) solitons the asymmetric output

is more pronounced with small velocity. Again, these asymmetries are much stronger in the

non-topological component carrying the bright structure, rather than in the topological dark

solitons.

0.8 0.85 0.9 0.95 1.0
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

k2/k1

E
− B
,D

 

 

E−

B (k2, v = 0.5)

E−

D(k2, v = 0.5)

E−

B (k2, v = 0.6)

E−

D(k2, v = 0.6)

E−

B (k2, v = 0.7)

E−

D(k2, v = 0.7)

0.8 0.85 0.9 0.95 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

k2/k1

E
− B
,D

 

 

E−

B (k2, v = 0.5)

E−

D(k2, v = 0.5)

E−

B (k2, v = 0.6)

E−

D(k2, v = 0.6)

E−

B (k2, v = 0.7)

E−

D(k2, v = 0.7)

Figure 7: Plots of E−
B,D as a function of k2/k1 varying from 0.8 to 1.0 (k1 = 0.40 for the

left panel, and k1 = 0.50 for the right panel). The relevant parameters are q = −1, σ = 0.1,

µ = 2, x1 = 10, and ∆ = 0. These solid and dashed lines in both figures, from upper to lower,

correspond to the values of v of 0.7, 0.6, and 0.5, respectively.

A variation of the subject is that deviations in soliton velocities may also induce an asym-

metry of the collisional output. Since the deviation |E±
D(0) − 0.5| markedly increases with

3For instance, the integration can be revised as
∫ 0

−∞
→

∫

−σ

−∞
and

∫ +∞

0
→

∫ +∞

σ
for this situation.
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increasing difference between v1 and v2 (setting k1 = k2 = k), we control |E±
D(0)− 0.5| . 3.0%

in our simulations. In this situation the function E−
B,D varies with v2/v1 (v1 is fixed) is similar

to that of Fig. 7. Therefore, we capture the maximum asymmetry, and draw a two-parameter

diagram for the dependence of the corresponding E−
B,D on v1 and k, as shown in Fig. 8. It

can be seen that the asymmetric outcome is more pronounced for the fast-moving solitons for

both of the dark and bright components, with the bright components, as usual, featuring the

most dramatic asymmetry. This feature is partially different from the one of Fig. 6, where the

maximum asymmetry tends to occur for the narrower solitons, in particular for the slow dark

(component) solitons.
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Figure 8: Two-parameter diagram of the maximum asymmetry for the DB solitons, again for

dark (left) and bright (right) components. The relevant parameters are q = 1, σ = 0.1, µ = 2,

x1 = 20, and ∆ = 0.
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Figure 9: Two-parameter diagram of the asymmetry for the dark solitons (component). The

relevant parameters are q = −1, σ = 0.1, µ = 2, x1 = 20, and ∆ = 0.

Also, for the attractive impurity, the deviations of soliton velocities can induce maximal

asymmetry after the soliton collision. Numerical simulations show that this behavior is captured

in a narrow regime of parameters (k, v1). We study the variation of E−
B,D as a function of v2/v1

that varies in the range of 0.8− 1.0, ensuring |E±
D(0)− 0.5| . 4.0%. The functions are similar

to those shown in Fig. 4, with a maximum asymmetry (peak values) as v2/v1 varies. In the

same way, we draw a phase diagram of the maximum asymmetry for the parameters (k, v1), as

11



illustrated in Fig. 9. We observe that the outcome after the collision is more asymmetric for

the slower and wider dark (component) solitons.

In addition, we briefly examine the dependence of the asymmetric output on the starting

soliton location x1. We perform simulations with different selections of x1. The results are

presented in Fig. 10. These figures show that the trend of asymmetry is increasing in general

as the location x1 increases. Figures 10(a) and (c) display that the optimal point produces a

substantial asymmetry (k2/k1 → 1 or v2/v1 → 1) as x1 increases. Fig. 10(b) shows that for

such type of variation, the asymmetry is generally increasing (k2/k1 varies in the whole range

of 0.8− 1.0) as x1 is increased.
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Figure 10: (a) Plots of E−
D (after collision) as a function of k2/k1. The relevant parameters

are q = 1, σ = 0.1, µ = 2, v1 = v2 = 0.5, k1 = 0.66, and ∆ = 0. x1 is equal to 8, 10, 12,

and 14, respectively. (b) Plots of E−
D as a function of k2/k1. The relevant parameters are

q = −1, σ = 0.1, µ = 2, v1 = v2 = 0.5, k1 = 0.40, and ∆ = 0. x1 is equal to 8, 10, 12, and

14, respectively. (c) Plots of E−
D as a function of v2/v1. The relevant parameters are q = −1,

σ = 0.1, µ = 2, k1 = k2 = 0.3, v1 = 0.60, and ∆ = 0. x1 is equal to 18, 20, 22, and 24,

respectively.

4 Scattering of ring DB-soliton pairs by impurity

In this section, we will briefly extend the asymmetric collision to the 2D case, and illustrate a

first example with the ring DB solitons [53]. We consider the evolution of the two-component

BEC very near zero temperature governed by the following coupled GP equations with external

potential (the two-dimensional Manakov model),

i
∂ψD
∂t

= −1

2
∇2ψD + (|ψD|2 + |ψB|2)ψD + VD(r)ψD , (9a)

i
∂ψB
∂t

= −1

2
∇2ψB + (|ψD|2 + |ψB|2)ψB + VB(r)ψB , (9b)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
and r2 = x2 + y2. In order to study the asymmetric interaction of a ring

DB-soliton pair with a localized ring-shaped impurity, we set the external potentials as

VD(r) = 0 , VB(r) =
q√
2πσ

e−
(r−r0)

2

2σ2 , (10)
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where the ring impurity is localized at r = r0. In simulations, the initial condition used to

integrate Eqs. (9) has the same form as (6), whereby kj(x − xj) is replaced by kj(r − rj), in

which rj is the initial ring soliton radius, and relations of other parameters are similar to (6)

and (7). We demonstrate a realization in Fig. 11, where the ring DB-soliton pairs collide at time

t ≈ 10. It can be seen that the asymmetric outcome after collision is still valid for the 2D ring

DB solitons. In particular, in this example the inner ring ends up carrying the majority of the

relevant non-topological component mass, while the outer one is nearly “extinct” in its bright

component. This serves to illustrate that there should be intriguing analogies to the HOM-

type phenomenology in higher dimensions, including possibly ones involving vorticity-bearing

structures, that are worth exploring and comparing/contrasting with the one-dimensional case.
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Figure 11: Numerical simulation of a ring DB soliton collision at the center of the ring-

shaped impurity. The relevant parameters are q = 1, σ = 0.1, µ = 2, k1 = k2 = 0.60, v1 = 0.50,

v2 = 0.45, r1 = 5, r0 = 10, and ∆ = 0.

5 Conclusions and Future Challenges

In the present work we explored the phenomenology of a classical wave analogue motivated

by the Hong-Ou-Mandel effect. Instead of using photons and their quantum interference with

a beam splitter, we considered wave-like excitations in a repulsive bosonic gas described at

the mean-field level by a Gross-Pitaevskii equation. The waves (the interfering entities) were

either dark solitons or dark-bright solitons. The role of the beam splitter was played by an
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external Gaussian beam. Contrary to our earlier findings for the potential of bright solitons to

exhibit very sensitive interference patterns reminiscent of the HOM effect, dark solitons seemed

far less efficient in exhibiting such an effect. This may arguably be due to their topological

character. This, in turn, led us to explore multi-component dark-bright entities where the

non-topological component is symbiotic to the topological one, i.e., supported by the dark

component as an effective trapping potential to the bright component. In this case, the results

were far more promising leading the bright component in one of the waves possibly to nearly

complete extinction, depending on the velocity and width parameters of the incoming waves.

Finally, a proof-of-principle example was shown for the two-dimensional case of ring dark-

bright solitary waves, where the same phenomenology persisted in the presence of the curvature

associated with the ring-like excitations.

While this is a first step in this promising direction of research, numerous additional studies

emerge as relevant for future work. On the one hand, both for the bright and the dark case a

quantitative understanding of the interference phenomenology and how it differs in the presence

of a potential from the integrable (simply phase shifting) phenomenology of the integrable

cubic nonlinear Schrödinger model would be a crucial contribution to this theme. Arguably, an

especially relevant approach to consider in this regard, perhaps first in the single component

attractive case of bright solitons and then in the repulsive two-component setting of dark-

bright ones is through the use of variational methods [64]. Generally, the theme of higher

dimensional explorations that we touch upon here is an especially interesting one. In the

bright soliton (focusing or attractive) case, one can envision for example two solitary waves

that are subcritical (or close to critical) which upon such a collision may become supercritical

in mass and feature collapse rather than their individual tendency towards dispersion. In

the repulsive/defocusing nonlinearity scenario, understanding the quantitative details of how

curvature affects the picture through ring DB collisions, or how the presence of vortices (and the

interaction of vortex-bright solitary waves [52]) modifies the mass redistribution are important

steps towards a deeper understanding of the role of dimensionality. In the case of vortices,

it does not escape us that their topological nature (coupled to the absence of one parameter

families of such solutions for a given background density – contrary to what is the case with

dark solitons) suggests very minor mass redistributions in the component bearing the vorticity.

However, mass redistribution is certainly possible and relevant to explore in the non-topological

component. In the latter, it has been shown to occur even on the basis of stability properties

and tunneling phenomena alone, rather than collision-induced exchanges [65]. These questions

are currently under consideration and will be reported in future publications.

6 Appendix

To describe a dark soliton on top of the background with impurity, we write the solution of

Eq. (1) in the form,

ψ(x, t) = ψb(x)e
−iψ2

0tφ(x, t) , (11)

14



with φ(x, t) chosen as

φ(x, t) = cos(ϕ) tanh[cos(ϕ)(x− x0)] + i sin(ϕ) , (12)

where ϕ is a slowly varying function of t, and x0 =
∫ t

0
sin(ϕ)dτ . Following the adiabatic

perturbation approach [42, 54], φ(x, t) satisfies the following perturbed equation (assume ψ0 = 1

without loss of generality),

i
∂φ

∂t
+

1

2

∂2φ

∂x2
− (|φ|2 − 1)φ = P (φ) , (13)

where the perturbation P (φ) has the form

P (φ) =
2H−(x)

−4 +H+(x)

∂φ

∂x
− 1

2
H+(x)(|φ|2 − 1)φ , (14)

where

H±(x) = qe2σ
2

[

e−2xerfc

(−x+ 2σ2

√
2σ

)

± e2xerfc

(

x+ 2σ2

√
2σ

)]

. (15)

As shown in [42, 54], the evolution equation for ϕ(t) can be derived as

∂ϕ

∂t
=

1

2 cos2(ϕ) sin(ϕ)
Re

[
∫ +∞

−∞
P (φ)

∂φ∗

∂t
dx

]

. (16)

Substituting (14) into (16), and assuming ϕ to be a small quantity [i.e., sin(ϕ) ≈ ϕ and

cos(ϕ) ≈ 1− ϕ2/2], we obtain the following result by neglecting the higher-order terms

(1− A)
∂ϕ

∂t
= B , (17)

where

A =

∫ +∞

−∞

1

4
qe2σ

2

H+(x)sech
4(ξ)[1− ξ tanh(ξ)]dx

+

∫ +∞

−∞

sech4(ξ)
[

2− qe−2x+2σ2erfc
(

−x+2σ2√
2σ

)]

[sinh(2ξ) + 2ξ]

−4 + qe2σ2H+(x)
dx , (18a)

B =

∫ +∞

−∞
sech4(ξ)

[

1− 1

4
qe2σ

2

H+(x) tanh(ξ)

]

dx

+

∫ +∞

−∞

sech4(ξ)
[

4− 2qe−2x+2σ2erfc
(

−x+2σ2√
2σ

)]

−4 + qe2σ2H+(x)
dx , (18b)

where ξ = x − x0. Numerically evaluating the integrals of (18), and considering the effective

particle approach for x0, we can write the effective potential where the soliton center moves in

U(x) = −
∫ x

∞

d2x0
dt2

dx0 ≈ −
∫ x

∞

∂ϕ

∂t
dx0 . (19)

For the repulsive impurity, we can obtain a critical value ϕc that the effective kinetic energy

equals to the height of the effective potential, i.e.,

1

2
sin2(ϕc) = Umax(x) . (20)
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Theoretically speaking, when ϕ > ϕc, the dark soliton transmits the impurity barrier; other-

wise, when ϕ < ϕc, the soliton is reflected by the barrier. We perform direct simulations of

Eq. (1) (the numerical method is the same as in the main content) to find a sequence of values

ϕc, and make a comparison with (20), as shown in Fig. 12. The results accord well when q is

small (ϕc is small as well), which is reasonable under the assumption of our effective potential

approach.
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Figure 12: Comparison of ϕc between the effective potential approach (20) and direct

simulation of Eq. (1) (σ = 0.1).
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Phys. 15, 113028 (2013).

[40] Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).
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