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Abstract 
We propose an arbitrary pattern lithography process using interference of Bose-
Einstein Condensates (BEC). A symmetric three pulse Raman atom interferometer 
(AI) is used to implement the system.  The pattern information, in the form of a 
phase-only mask, is optically encoded into the BEC order parameter in one of the AI 
arms. The lithographic pattern is represented by a two-dimensional intensity 
variation, and is transformed into a two-dimensional phase variation in the BEC 
order parameter via the use of AC-stark shift induced by a pulsed laser field. The 
BEC probability distribution of the interference result at the end of the AI is 
proportional to the required pattern.  In order to produce features smaller than the 
diffraction limit for the used optical elements, we employ a three-dimensional 
atomic lens system to scale down the resulting pattern.  The operating conditions for 
this lens structure are investigated in order to identify practical constraints.  
Simulations of the overall system using the parameters of 87Rb BEC were performed 
to illustrate its functionality.  The proposed process, while perhaps not suitable for 
general purpose usage, may enable the creation of special purpose patterns on a very 
small scale, with features as small as few nanometers. 

  

 PACS Numbers:  03.75.Hh, 03.75.Dg, 81.16.Nd, 32.60.+i  

I. Introduction 
Recent years have witnessed extensive research for new lithographic processes. The current 
industrial lithography systems are expected to be unable to address future challenges. The 
electronics industry is looking for parallel lithography techniques that are capable of generating 
patterns with the length scale of few nanometers. Current optical lithography systems cannot 
reach this length scale because of diffraction limit.  
 
Multiple approaches have been pursued to go beyond these limits by using atoms for 
lithography. One of the earliest works in this field [1] made use of the intensity-dependent force 
exerted by nearly resonant light on neutral two-level atoms to generate submicron lithographic 
patterns. In this work, a standing wave was used to manipulate a Sodium atomic beam to create a 
grating with period equal to half the wavelength of the standing light wave. This approach was 
later extended to create parallel lines of Chromium on a Silicon substrate [2]. Generation of two 
dimensional patterns followed [3, 4] by using multiple standing waves to create two dimensional 
grating patterns. Multiple efforts targeted the minimization of the feature size obtained by this 
approach [5, 6]. Although the spacing between features is generally set by half the wavelength of 
the standing wave, some efforts show that it is possible to go beyond that limit [6, 7].  
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Unfortunately, this approach does not allow the generation of arbitrary two dimensional patterns.  
The work in [8] suggested an approach for circumventing this constraint by frequency encoding 
the pattern information in the light mask instead of using intensity encoding.  The resolution 
obtained by this technique was barely below the single micrometer scale.  
 
In this paper, we propose an arbitrary pattern nano-lithography system using interferometry of 
Bose Einstein Condensates (BECs). Atomic interferometry using BEC has been demonstrated 
under various configurations [9-11], thus paving the way for the feasibility of the concept being 
proposed here.  We had previously proposed an arbitrary pattern nano-lithography system [12] 
based primarily on the interference of individual atoms. This proposal had several limitations. 
First, while it alluded to the need for using a BEC to achieve a significant speed-up in the writing 
process, no details were presented on how the architecture and components would have to be 
modified for the BEC version. Second, the simulations were based on two-dimensional wave 
packets, ignoring the effect of the finite spatial extent in the third dimension. The analysis 
presented here addresses these two aspects in significant detail. Specifically, instead of using the 
linear Schrodinger equation -as was done in reference [12]- we  use the nonlinear Gross-
Pitaevskii equation as needed for modeling the evolution of a BEC order parameter. Second, we 
take into account the fact that the spatial extent of the BEC order parameter has a finite size in all 
three dimensions. We find that these considerations pose significant constraints on the design 
proposed in reference [12], leading to major modifications of the overall scheme. We also 
investigate the effect of various parameters on the fidelity of the lithographic reproduction 
process. In particular, we show that a very small scattering length, achievable possibly by the use 
of Feshbach resonance, is necessary for high quality reproduction of a desired pattern. We also 
show how the number of atoms in the condensate as well as the initial size of the order parameter 
affect the performance of the lithography system. 
 

II. System structure 
The basic tool for the proposed atom lithography system is the three pulse atom interferometer 
(AI) which was first theoretically proposed by Borde [13] and experimentally demonstrated by 
Kasevich and Chu [14]. In our proposed system, we use a symmetric Mach-Zehnder AI [15, 16]. 
In this structure -shown in Figure 1- a BEC is prepared in the ground state 1 and is moving in the 
z direction. When it encounters the π/2 pulse, it splits mainly into two components: state 1  and 
state 3 . The later state has additional momentum in the y direction which causes it to split from 
state 1 . Both components then encounter the π pulse which causes each packet to change its 
direction.  The component in the AI upper arm is then modified by adding a spatially varying 
phase ( , )x yφ which contains the lithographic pattern information. This process is performed using 
a detuned pulse of light with spatially varying intensity. The details of the phase modification 
process are discussed later. 
 
After phase imprinting, a lens system - also realized by a detuned pulse of light - can be used to 
suppress the spreading of the BEC packet as well as to reduce its spatial extent. To keep the BEC 
components in both AI arms in spatial proportion, the lens system is replicated on the lower arm.  
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At the end of the AI, a final π/2 pulse is used to merge the BEC components from both arms. 
Due to the phase modification of the upper arm, the interference result will be proportional to the 
required lithographic pattern. The resulting interference result goes through another lens system 
to suppress distortion and then deposited onto a substrate to realize the pattern.  
 

 
Figure 1. Architecture of 2D lithography system using BEC. See text for details. 

III. Mathematical Analysis of the System 
In this work, we only consider the case when the interaction between the atoms in the BEC is 
very small. The dynamics of the BEC can then be described by the time dependent Gross-
Pitaevskii equation [17]  
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Here, ( , )r tψ r
 is the order parameter, rr is the coordinate of the center of mass of the condensate, 

m is the mass of a single atom, ( , )V r tr is the external potential, N is the number of BEC atoms 
and 0U represents the interaction between the atoms, given by 
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π= h
,         ( 2 ) 

where sa  is the scattering length. 
 
In this system we assume that the condensate will propagate through the three zone atomic 
interferometer without confinement. Hence, during the Raman interaction the potential ( , )V r tr  is 
only due to the electric dipole interaction with the light field. During the dark zones, the 
condensate will propagate in free space with ( , ) 0V r t =

r
 , except when it encounters the light 

pulses that represent the pattern and the lenses. 
 
At the beginning of the AI, we assume that the BEC is in the ground state. We assume that the 
BEC source is prepared to have a low interaction energy compared to the BEC kinetic energy, as 
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in [18]. In this case, it is appropriate to express the BEC ground state order parameter to have a 
Gaussian profile in the x, y and z directions [19-22]. 
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x y z

x y zr tψ
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= = − − −
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  ( 3 ) 

The internal states of the atoms composing the condensate play a critical role in the splitting, 
redirecting and merging of the BEC packets inside the AI. The atoms are modeled as a three 
level Λ system as shown in Figure 2. Considering the internal atomic states, the BEC order 
parameter can be expressed as  

1 1 2 2 3 3

1 2 3

( , ) ( ) ( , ) 1 ( ) ( , ) 2 ( ) ( , ) 3
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Here, 1 2 3( ),  ( ) and ( )C t C t C t represent the fraction of the BEC atoms in each internal state. The 
normalization condition of the order parameter requires that  
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For 87Rb atoms, we chose state 1 to correspond to level 52S1/2 with ( )1,  1FF m= = , state 2 to 

correspond to level 52P1/2 with ( )' 2,  0FF m= =  and state 3  to correspond to level 52S1/2 with

( )2,  1FF m= = − .  
 
Initially, all atoms are assumed to be in state 1 . Hence, 1 2 3( 0) 1,  ( 0) 0,  ( 0) 0C t C t C t= = = = = = .  

 
Figure 2. Three level system used by the atom interferometer. See text for details. 

A. Free space propagation of BEC 
Due to the nonlinear term in the GPE equation, it is difficult to study the BEC time evolution 
analytically. As such, we use numerical methods to calculate the condensate time evolution. In 
our simulation, explicit finite difference method is used to calculate time evolution. Forward 
difference is used for the time derivatives and central difference is used for the spatial 
derivatives. 
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Here, xΔ , yΔ and zΔ are the numerical grid resolution in the three spatial coordinates and tΔ is 
the time step used. Using these approximations in equation (1), an iterative algorithm is 
implemented to calculate the time evolution of the BEC order parameter.  
 
B. Interaction of BEC with the AI π and π/2 pulses 
For the three-zone Raman AI, light field interaction is the mechanism to split the condensate into 
two separate paths, redirect the separated components and to merge them at the end of the AI. 
Light interaction changes the internal state of the wave packet. In this section, we study how the 
BEC order parameter interacts with the AI light fields. The goal here is to reach a mathematical 
form that can be used for the simulation of the electromagnetic interaction in the spatial domain. 
The details of the mathematical derivation are shown in Appendix A. The time evolution of the 
BEC internal states during laser field interaction is given by  
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With the ability to calculate the time evolution in free space and the ability to calculate the order 
parameter interaction with light fields, the evolution through the AI can be modeled numerically.  
 
C. Imprinting a spatially varying phase shift 
AC-stark shift – which is also called light shift – is used to imprint the lithographic pattern 
information on the BEC wave packet. This technique of quantum phase engineering has been 
demonstrated for BEC  [23, 24]. AC-stark shift is due to a detuned light-matter interaction. For 
an atom in state 1 , an AC field that couples states 1 2↔ will cause an energy shift of state 1 . 

This energy shift is given by 2 4δΩh [25], where Ω is the Rabi frequency and δ is the detuning. 

The energy shift leads to a phase shift given by 2

0
( 4 )d

τ
δ τΩ∫ , where τ  is the interaction time. 

For nearly constant values of Ω andδ , the phase shift can be approximated as 2( 4 )δ τΩ . As the 
Rabi frequency Ω  is proportional to the electric field of the interacting light, the added phase is 
proportional to the intensity thereof. By controlling this intensity, it is possible to introduce any 
required phase shift to the BEC order parameter. The intensity of the phase modulating light 
pulse can be controlled by using a spatial light modulator (SLM), for example, as shown in 
Figure 3.  
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In order to determine the required intensity modulation to generate a specific lithographic 
pattern, we can consider a simple case where the BEC is split into two identical components. If a 
spatially varying phase shift ( )rφ is added to only one of these components, the interference 
result can be expressed as

( ) ( ) ( ) ( )[ ] ( ) ( )1 2 1 exp( ( )) 2 exp( ( ) 2)cos ( ) 2f r r r r i r r i r rψ ψ ψ ψ φ ψ φ φ= + = + − = −
r r r r r r r r

. The 

corresponding probability distribution can be written as ( ) ( ) ( ) ( )2 2
2 1 cos ( )f fP r r r rψ ψ φ= = ⎡ + ⎤⎣ ⎦

r r r r

. To ensure that the final interference result is proportional to the required lithographic pattern
( )F rr , the phase ( )rφ is chosen to be ( )1( ) cos ( ) 1r F rφ −= −

r r
, where ( )F rr  is scaled to have a peak 

value of 2 and a minimum value of zero.  
  
From this discussion, we can see that the intensity of the phase modulating light pulse should be 
proportional to the inverse cosine of the required lithographic pattern. This, in turn, implies that 
the intensities of the phase modulating light should be ( )1

0( ) cos ( ) 1I r I F r−= −
r r

, where 0I is a 
constant.  
 

 
Figure 3. The proposed technique to imprint spatially varying phase pattern to a BEC. See text for details. 

D. Lens system 
In the previous section, it was shown that the phase modulation required to generate the 
lithographic pattern is performed using optical intensity variation. Light diffraction limits the 
resolution of this intensity variation to the scale of hundreds of nanometers. In our proposed 
atomic lithography system, we aim to achieve lithography in the single nanometer scale. Hence, 
an atomic lens system is required to shrink the wave packet to the desired scale after pattern 
phase imprinting. The lens system also plays a crucial role in suppressing wave packet distortion 
after phase imprinting. The phase imprinting step changes the momentum profile of the BEC 
order parameter. Free space propagation after this step will lead to distortion and loss of the 
lithographic pattern information. A lens system is required to perform imaging of the wave 
packet until the pattern is deposited on the substrate.  
 
Previously [12], we developed a quantum mechanical wavefunction diffraction theory using 
linear Schrödinger equation and assuming the wavefunction of an atom to be two dimensional 
only. This theory was then used to develop an analytic transfer function for free space 
propagation, as well as for propagation through a lens realized via light shift. The transfer 
function was then used to design a Fourier transform system that consists of two lenses separated 
by some distance. Here, we first extend this model to the case where the spatial variation of the 
wavefunction along the direction of propagation is also taken into account. This model is used to 
produce the design for the lithographic system. However, since the GPE is nonlinear, the actual 

SLM 
I(x,y) 

BEC  

Laser Pulse 
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behavior of the BEC order parameter is, obviously, expected to deviate from the ideal behavior. 
Numerical simulations of the evolution of the BEC order parameter were carried out.  When 
discussing the results of these simulations, we will point out the extent to which the behavior of 
the BEC based system deviates from the linear diffraction theory. 
 
To develop the transfer function of the free space propagation of a 3D wave function we start 
with the 3D Schrodinger equation  

2 2 2 2

2 2 2
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r ti r t
t m x y z
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All solutions of this equations can be expressed as a linear superposition of the plane wave 
solution 2exp( . ( 2 ) )A ik r i m k t−

r r
h , where A is some constant. After a free space propagation of 

time T, the Fourier domain expression of the wavefunction can be expressed as  
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Hence, the transfer function for a free space propagation of time T is given by

2
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h h . Consequently, for an arbitrary wavefunction ( )in rΨ
r

at time 
0t = , the wavefunction expression at t T= can be calculated via convolution to give 

  
2 23 2 ( 2 ) ' ( ) . '2( ) ( 2 ) ( ') 'im r T i m T r i m T r r

out inr im T e r e e drπ −Ψ = − Ψ∫
r r r r

h h hr r r
h ,   ( 10 ) 

which is analogous to the Fresnel diffraction integral from classical optics. Guided by this 
expression, a Fourier transform lens system can be achieved by using two instances of light shift 
induced phase modification separated by a free space propagation of time lensT  .  The first phase 
shift modification process will add a phase of 2( 2 )lensm T r−

r
h to the wavefunction ( )in rΨ

r
. After a 

free space propagation of time lensT , the wavefunction is expressed as 
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We design the second phase modification to add a phase of 2( 2 ) 3 / 4lensm T r π− +
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This analysis shows that the resulting wavefunction after the lens system is a scaled Fourier 
Transform (FT) of the input wavefunction 
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Figure 4. a) Fourier Transform atomic lens scheme b) proposed implementation to create three-dimensional phase 

shift. See text for details.  

This concept of creating a FT lens pair is illustrated schematically in Figure 4(a). In Figure 4(b) 
we illustrate the fact that light pulses applied in orthogonal direction are necessary in order to 
ensure the FT process occurs in all three dimensions. One of these pulses is launched in the 
positive Z direction along the direction of motion of the wave packet. The other is launched in 
the positive X direction. Each of the two pulses go through a spatial light modulator (SLM) to 
produce two-dimensional intensity variation in the plane normal to the pulse direction. For 
instance, to generate the light shift corresponding to the first of the two FT lenses, each point (x, 
y, z) of the wave packet should have an additional phase shift of  ( )2 2 2( 2 )lensm T x y z− + +h . To 
create this phase shift, the SLM for the pulse moving in the Z direction can be used to modify the 
pulse intensity in the x-y plane by 2 2

1 10( , ) ( 0.5 )I x y I x y/= +  which add a phase shift of 
2 2

1( 0.5 )x yα + , where 1 10( 4 )Iα δ τ/∝ , as discussed earlier. Similarly, the SLM for the pulse 
moving in the x direction can be used to add a phase shift of 2 2

2( 0.5 )z yα + . Engineering 1α and 
2α to be both equal to ( 2 )lensm T− h will result in the required phase shift of 

( )2 2 2( 2 )lensm T x y z− + +h . The timing of the pulses is controlled such that they intersect at the 
position of the wave packet, hence generating the required three-dimensional intensity variation.  
 
It is obvious from the derivation shown above that the nonlinearity of the GPE would cause 
significant deviation in the behavior of the order parameter as it moves through free space and 
lenses. The model we just derived is, therefore, only used as a guideline for designing the 
system. The actual behavior of the system will be determined via numerical simulation which 
takes into account the nonlinearity of the GPE. 
 
In Figure 5, we show an expanded version of the lithography system, now including lenses used 
for demagnification. Following the imprinting of the pattern phase, indicated as pΦ in the upper 
leg of the AI, we apply two successive FT lens pairs, indicated by 1Φ and 2Φ for the first pair, 
and 3Φ and 4Φ for the second pair. It follows from equation (12) that the wavefunction after 4Φ is 
a scaled down version of the wavefunction before 1Φ by a factor /b aT T ( bT < aT ), where aT ( bT ) is 
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the time difference between 1Φ and 2Φ ( 3Φ and 4Φ ). For the lower arm of the AI, a lens system 
identical to the one used for the upper arm is used.  

 
Figure 5. Atom lithography system with the implementation of the lenses shown explicitly. Φp is the pattern phase 

shift. See text for details. 

The last π/2 pulse causes the two arms of the AI to interfere. The output after this pulse is split 
into two components. The component parallel to the Z direction is used for lithography. Since 
the substrate on which the pattern is to be deposited cannot be placed at the location right after 
this π/2 pulse, it is necessary to employ two more FT lens pairs, indicated by 5Φ and 6Φ for the 
first pair, and 7Φ and 8Φ for the second pair. Note that the final pattern on the substrate will be a 
scaled version of the pattern produced immediately after the last π/2 pulse, the scale factor being 

'/ 'b aT T . 
 
The shown phase shifts in Figure 5 are given by: 2
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h , 2
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r
h ,

2
7 2 'bm r TΦ = −

r
h , 2

8
32 '
4bm r T πΦ = − +

r
h . To ensure symmetric operation of the AI, the time 

separation between the three pulses of the AI should be equal. Hence, splitting fs a bT T T T= + + . 
 
The used lens system in figure 5 can be further simplified to make it more practical. The basis of 
this simplification is to combine consecutive light shift processes like 2Φ and 3Φ into a single 
process. This is simply done by adding the phase variation of the two processes. Consequently, 
the intensity variation of the combined process is the addition of the intensity variation of the 
individual components. To get further simplification, the lens system can be rearranged to 
increase the number of consecutive light shift processes, for example, by replacing the phase 
modification process 4Φ by a new phase modification process xΦ that occurs after 1Φ . This 
replacement will allow combining of 1Φ and xΦ into a single phase modification process. Figure 
6 illustrates the simplification procedure where the original arrangement is shown in set (a), the 
rearranged system is shown in set (b), and finally the simplified system is shown in set (c). 
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Figure 6. Proposed simplification of the lens system. See text for details. 

The phase xΦ is assumed to take the form 2 22x x xm r T r φΦ = − +
r r

h where xT and xφ are 
determined by the requirement that the response of the rearranged system be the same as the 
original system. For set (a) in Figure 6, assuming the wavefunction before 1Φ  is expressed as 
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For set (b) in Figure 6, assuming the wavefunction before 1Φ  is ( )in rΨ
r

, the wavefunction just 
after xΦ is given by: 
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1 ( ) ( ) exp 2 exp 2x in a x xr r im r T im r T iφΨ = Ψ − − +
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h h .    ( 15 ) 

Using Equation (10), the wavefunction just before 2Φ can be expressed as: 
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Therefore, after 3Φ the wave function is given by: 
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After free space propagation of time bT the wavefunction is given by:  
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( )2/ 2x b xT T iϕ+h

 ( 18 ) 

By choosing xT to have the form 2 /x a bT T T= and setting / 4xφ π= − , we see that ( ) ( )f fr rΨ = Ψ
r r% , 

so that set (b) is equivalent to set (a). Finally, set (c) is the result of combining consecutive phase 
modification processes such that 1 1n xΦ = Φ + Φ and 2 2 3nΦ = Φ + Φ .  
 
The same simplification procedure can be applied to the lens system used after the last / 2π pulse 
of the AI by replacing the phase 8Φ by a phase 'xΦ  that occurs directly after 5Φ . By a similar 
derivation 'xΦ  takes the form 2 2

' '2 / 4x xm r T r πΦ = − +
r r

h , where 2
' ' '/x a bT T T= . Simplifying the 

structure by combining consecutive phase modification processes creates 3 5 'n xΦ = Φ + Φ  and 

4 6 7nΦ = Φ + Φ . Figure 7 shows the simplified version of the atom lithography system. In the 
simplified system, the pattern phase modification process is combined with the phase 
modification process 1nΦ to create a phase 1 1p p nΦ = Φ + Φ . 

 
Figure 7. Simplified atom lithography system. See text for details. 

IV. Practical Considerations 
For possible practical implementation of this lithography system, we propose the use of 87Rb 
BEC.  Consider first the excitations process for the AI, which can be implemented using the D1 
line transitions [26]. The Raman transition consists of states 1 ≡  52S1/2 (F=1, mF=1), 2 ≡  

52P1/2 (F’= 2, mF= 0) and 3 ≡ 52S1/2 with (F= 2, mF= -1), with the quantization axis chosen to be 
in the ŷ direction.  These levels are shown in Figure 8.a. The energy difference between states 
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1 and 3 is 9
13 2 6.8 10ω π= × ×  s-1. The 1 2↔ and 2 3↔ transitions are excited by 

applying σ- and σ+ polarized fields, respectively. Here, we assume the detuning and the Rabi 
frequencies - denoted as δ and Ω, respectively - to be the same for both Raman transitions. In 
order to suppress the effect of spontaneous emission, we have to satisfy the condition 

( )2 1δ τΩ Γ << ,         ( 19 ) 
for all transitions, where τ is the interaction time and 73.61 10Γ = × s-1 is the decay rate of 2  . We 

also need to ensure that, for example, the σ+ polarized field for the 2 3↔ transition does not 

produce a significant transition between the 1  and 3  states. This requires that 13δ ω<< . 
Hence, we choose 13 /10 118.35δ ω= = Γ . For the Raman interaction pulses, the longest 
interaction is required for the π pulse.  For that interaction, Rτ πΩ =  should be satisfied, where 

2 2R δΩ = Ω is the Raman Rabi frequency. Setting the longest interaction time to be 
11 36.1sτ μ −= = Γ s, the Rabi frequency is 4.54Ω = Γ which satisfies Equation (19).  The value of 

Ω  for each transition is related to the intensity I of the beam applied to this transition by the 
relation ( )2 2 / 2satI IΩ = Γ , where satI is the saturation intensity. For the 3 2↔ transition the 

saturation intensity is satI = 3.34 mW/cm2 and for the 1 2↔ transition satI = 3*3.34 mW/cm2 

[26]. Hence, in order to have the same Rabi frequency for both transitions, the intensity of the 
field applied to the 1 2↔ transition has to be a factor of 3 larger than the intensity of the field 
applied to the 3 2↔ transition. Consequently, for 4.54Ω = Γ , the required intensities are

137.7I = mW/cm2 for the 3 2↔ transition and 413.1I = mW/cm2 for the 1 2↔ transition.  
 
Consider next the process for producing the AC-Stark shift needed for the phase mask as well as 
the lenses. As we have described earlier, the beams used for producing these shifts will 
propagate in the x̂ and the ẑ directions, both being perpendicular to the quantization direction,
ŷ , chosen to be parallel to the direction of propagation of the AI beams. Thus, the AC-stark 
shift fields must be π-polarized. For the upper arm, we can use the π-transition coupling state 1
to the F’=2, mF =1 excited state. The saturation intensity for this transition is satI = 3.34 mW/cm2.  
For the lower arm, we can use the π-transition coupling state 3  to the F’=2, mf = -1 excited 
state. The saturation intensity for this transition is satI = 3*3.34 mW/cm2. These transitions are 
illustrated in Figure 8.b. As discussed earlier, the phase shift produced for a given combination 
of Rabi frequency, detuning and interaction time is given by 2( 4 )δ τΩ . Since any phase shift is 
equivalent to any other phase shift differing by integer multiples of 2π, the maximum useful 
value of the Rabi frequency for a given detuning and interaction time is given by  

2
max( 4 ) 2δ τ πΩ = . As an example, we consider the case where the value ofδ for each of the AC-

Stark shift fields is the same as that employed for the AI beams. This is an experimentally 
convenient choice, allowing the beams to be generated from the same laser used for producing 
the AI. Furthermore, it ensures that the effect of the π-polarized field used for one AI leg has 
minimal effect on the π-transition for the other leg. In order to suppress the effect of spontaneous 
emissions, we must also satisfy Equation (19) for these beams. Keeping this in mind, we choose 
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the values of maxΩ to be the same as the values used for the AI (i.e., max 4.54Ω = Γ ). The 
corresponding value of τ is then found to be 4 sτ μ= . 
 
It is easy to verify that Equation (19) is satisfied for this combination of parameters. Finally, For 
the saturation intensities noted above for the π-transitions, producing a value of max 4.54Ω = Γ
requires the intensity for the upper leg of to be 137.7I = mW/cm2 and that for the lower leg to be 

413.1I = mW/cm2. 

 

Figure 8. Laser interactions required for the proposed atom lithography system. a) Laser interactions required for the 
Raman AI (Solid lines). b) AC-stark interactions required to implement the lens system for both AI arms (Dashed 

lines). See text for details. 

Another practical consideration is the effect of gravity, and resulting constraints on the physical 
dimension of the AI. A terrestrial implementation of the system can be realized by choosing the 
z-axis to be the downward vertical direction, and releasing the BEC downward under the effect 
of gravity. In this case, using a separation time of 1 second between the AI Raman pulses will 
require a height of ~ 10 meters. However, such a long separation time is not necessary in 
practice. The minimum value of the separation time is dictated by the need to ensure clear 
separation between the spatial extents of the BEC order parameters in the two arms of the AI. 
For the simulations we have reported here, the width of the order parameter at the onset of the AI 
process is 0.1 mm (full width at half maximum). The recoil velocity of 87Rb for the D1 transition 
being ~ 0.6 cm/sec, a clear spatial separation can be achieved for a separation time of ~50 msec. 
In order to accommodate the optical pulses that act as the lens system, a greater separation is 
useful. Use of a separation time of ~100 msec would satisfy this requirement. For this choice, the 
height required for the AI would be ~10 cm. It should also be noted that the trajectories of the 
split components will not be linear. However, the ballistic trajectories will not affect the behavior 
of the lithographic system if the time separation between the first π/2 pulse and the π pulse is the 
same as that between the π pulse and the second π/2 pulse. 
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V. Numerical Simulations 

In numerical simulations, BEC order parameters are represented by three dimensional finite 
grids. The grid limit in each direction was chosen to be large enough such that the order 
parameter values at the edges of the grid are negligible. The grid resolution is selected to 
guarantee both the convergence of the numerical algorithms and the ability to show the fine 
details of the simulated lithographic patterns. To handle the computational complexity, parallel 
computing was used by utilizing the concept of domain decomposition. All simulations were 
performed in the spatial domain in order to include the effect of the nonlinear term of in the GPE 
equation.  
 
As discussed in section III, the initial condition of the BEC order parameter was taken to be in 
the ground state 1 with Gaussian profiles in all directions, as described in Equation (3). The 
Gaussian profile width is taken to be equal in each direction: x y zδ δ δ= = . A typical practical 
value of this width is 30 μm [18, 27]. The other parameters of the GPE equations correspond to a 
condensate 87Rb [26]. For the AI, we assume that the time delay between the first π/2 pulse and 
the π pulse is the same as that between the π pulse and the second π/2 pulse. We take this time to 
be 1 second, which is enough to ensure complete spatial separation of the different BEC 
components. Free space propagation anywhere in the system is simulated using the GPE with the 
finite difference approximations of Equation (6) while setting the external potential term to zero. 
Atom-light interaction is simulated using Equation (7) under the same finite difference 
approximations.  
 
The atom lithography system can be used without the lens system when scaling of the pattern is 
not needed. In this case, the pattern phase imprinting should occur immediately before the last 
π/2 pulse to avoid distortion of the pattern. Figure 9 shows a three-dimensional image of the 
interference result using a pattern that has the shape of a plus sign.   
 

 
Figure 9. a) The required lithographic pattern b) the resulting distribution of the order parameter after the atomic 

interferometer. 

For producing scaled versions of the pattern, it is necessary to use the lens system. We recall that 
the lens system derived in section III.D is based on the Schrödinger equations (SE) for a single 
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atom. In contrast, the evolution of the BEC order parameter follows the nonlinear GPE. As such, 
the input-output relation for the lens system, when applied to the BEC order parameter, is 
expected to deviate to some extent from the ideal result stated in section III.D. We first compare 
the behavior of a single atom with the performance of BEC wave packets for different number of 
atoms. This comparison will prove useful in determining the constraints under which the 
proposed lens system can be used for BEC wave packets. Specifically, we start with a system 
that has a Gaussian distribution of probability in X, Y and Z directions. We then study the 
evolution of this distribution under several different scenarios. First, we treat the system as the 
wavepacket of a single atom. In this case, we use SE to determine the amplitude distribution of 
the wavefunction after evolution for a characteristic time scale. We choose this time scale to be 1 
second since that is the duration of the dark zone in our scheme. Next, we use the same 
distribution for the BEC order parameter of a condensate of N atoms, and determine the 
amplitude distribution of the order parameter after evolution for the same characteristic time. We 
consider three different values of N: 103, 104 and 105. These results are illustrated in Figure 10. 
As can be seen from these results, the deviation from the single atom case increases with 
increasing values of N. This is consistent with the fact that, for a given volume, the importance 
of the nonlinear term of the GPE increases with N.  The simulation results also agree with the 
experimental results of [18, 28], which shows that a BEC with a large number of atoms undergo 
a significant size expansion due to the interaction of atoms in the BEC. 

 
Figure 10. Comparison between the x cross section of the single atom wavefunction and the BEC order parameter 

after a free space propagation of 1 second. 

From Figure 10, it is reasonable to assume that the behavior of a BEC with N=103 is close to that 
of a single atom. For the parameters considered here, this corresponds to a density of 1×1010cm-3. 
According to [27], such a low density can be achieved by adiabatically cooling the condensate. A 
different scenario for achieving a single atom behavior is to use a BEC with a higher number of 
atoms (higher density) while reducing the condensate scattering length as. According to the GPE 
equation, an order of magnitude reduction of the scattering length as allows for an order of 
magnitude increase in N while keeping the nonlinear term unchanged. The scattering length of a 
87Rb BEC can be controlled by using Feshbach resonance [29]. In our simulations, we choose to 
use the parameters of 87Rb BEC with 1000 atoms for the naturally occurring value of as.  
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Figure 11 shows the performance of the original and rearranged lens systems on a BEC wave 
packet of the selected parameters. The figure shows that for both lens configurations, the BEC 
wave packet after the lens system is almost identical to that before the lens system when Ta = 
Tb. We get a demagnification ratio of two when Ta = 2Tb. These numerical results show that 
selecting the parameters of the BEC wave packet to be within the proper constraints allows the 
use of the lens system that was designed using Schrodinger equation without a significant loss of 
performance.  

 
Figure 11. Cross section of the BEC order parameter after different configurations of the lens system. 

 
In the rest of this section, we show the simulation results of the BEC lithography system. In 
order to evaluate the effect of the propagating BEC interference result on the substrate, the 
probability distribution of the order parameter is integrated over the propagation direction to 
calculate the equivalent two-dimensional effect.  To test the properties of the lithography system, 
multiple patterns have been used, ranging from intersecting straight lines to circles. In these 
simulations, both the original lens arrangement and the modified lens arrangement were tested in 
order to establish that lens rearrangement does not affect the functionality of the system 
significantly.   Figure 12 shows the result of the lithography system for a pattern that takes the 
shape of a plus sign using the rearranged and simplified lens system illustrated in Figure 7. The 
interference results are shown for three different cases: when no scaling is used, scaling with a 
ratio of 0.8 and scaling with a ratio of 2/3.  Figure 13 shows the results for the same pattern using 
the original arrangement of the lens system illustrated in Figure 5. The case without pattern 
scaling is shown Figure 13.a , while Figure 13.b shows the result when a scaling ration of 0.8 is 
used. Comparison of these results shows that the two proposed lens systems are essentially 
equivalent.  Figure 14 shows the lithography system results for a circular pattern with a radius of 
30 μm using the original lens arrangement for the no scaling and 0.8 scaling scenarios. Figure 15 
shows the results for the same circular pattern using the modified lens systems and using two 



17 
 
 

different scaling ratios.  Figure 16 shows the simulations results using a letter n pattern for 
different scaling ratios. This figure illustrates the fact that the output is a mirrored version of the 
used pattern.  

 

 
Figure 12. Result of the lithography system using the simplified lens configuration a) required lithographic 

pattern b) Normalized effective 2D probability distribution for unity scaling, c) for a scaling ratio of 0.8 d) for 
a scaling ratio of 2/3. 
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Figure 13. Normalized effective 2D probability distribution for a plus sign pattern using the original lens system a) 

with unity scaling b) with a scaling ratio of 0.8 

 
Figure 14. Results of the lithography system for a circular pattern using the simplified lens system a) the desired 

circular pattern b) Normalized effective 2D probability distribution for the unity scaling case. c) Result for a scaling 
ratio of 0.8 d) Result for a scaling ratio of 2/3 



19 
 
 

 
Figure 15. Results of the lithography system for a circular pattern using the original lens arrangement a) Normalized 

effective 2D probability distribution for unity scaling b) for a scaling ratio of 0.8. 

 
Figure 16. Results of the lithography system for a letter n pattern using the modified lens arrangement a) The desired 
letter n pattern b) Normalized effective 2D probability distribution for the unity scaling case c) Result with a scaling 

ratio of 0.8 d) Result with a scaling ratio of 2/3. 
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The simulation results indicate that the system can be used for arbitrary patterns. However, as 
can be seen in the previous figures, the interference results have some distortion. These errors 
result from limited spatial grid resolution. This explains why the distortion is larger for smaller 
lithographic patterns or when using a large scaling ratio like the case in Figure 16.d.  These 
errors can be improved by using a finer spatial grid resolution. However, using a finer resolution 
will increase the computational complexity in a cubic manner because of the use of three-
dimensional grids. The current simulations were performed using a custom developed explicit 
finite difference code running on Matlab. Using domain composition, it was possible to perform 
parallel processing on four cores of (Intel E5-2680) processor. Increasing the number of cores 
beyond four did not yield significant advantage because of the involved communication 
overhead between cores. Using a spatial resolution step of 0.05σ -where σ=30 μm is the standard 
deviation of the initial order parameter Gaussian distribution- the time required for the 
simulation of the whole AI system is about two weeks. Using a smaller spatial resolution would 
result in larger spatial grids and require much smaller simulation time steps leading to a much 
longer simulation time. In order to illustrate the effect of spatial resolution, in Figure 17 we 
compare the simulation results for the circular pattern shown in Figure 14.a using two different 
spatial resolutions. It is clear that when a larger resolution is used, larger simulation errors and 
distortion occurs.  
 

 
Figure 17. Results of the lithography system for a circular pattern for two different numerical simulation resolutions 

a) the spatial step size = 0.05σ  b) the spatial step size = 0.0625σ, where σ is the standard deviation of the initial 
order parameter Gaussian distribution. 

VI.   Summary and Conclusion 
In this paper, we have proposed an arbitrary pattern lithography system using the interference of 
BEC. A symmetric three pulse Raman atom interferometer (AI) is used to implement the system.   
The lithographic pattern is represented by a two-dimensional intensity variation, and is 
transformed into a two-dimensional phase variation in the BEC order parameter via the use of 
AC-stark shift induced by a pulsed laser field applied in one of the AI arms.  The BEC 
probability distribution of the interference result at the end of the AI is proportional to the 
required pattern.   In order to produce features smaller than the diffraction limit for the used 
optical system, we employ a three-dimensional atomic lens system to scale down the resulting 
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pattern, in analogy with the demagnification process employed in conventional optical 
lithography.  The operating conditions for this lens system are investigated in detail, taking into 
account practical constraints, in order to identify realistic parameters.  Simulations of the system 
using the parameters corresponding to 87Rb BEC have been carried out in order to illustrate the 
system functionality.  With the various patterns used in the simulations, we have shown that the 
system is indeed capable of generating arbitrary lithography patterns. The proposed lens system 
has the advantage of flexible control of the pattern demagnification ratio simply by changing the 
timing of the lens system optical pulses.  While the system proposed here is not likely to be used 
for general purpose lithography, it may enable one to create special purpose patterns on a very 
scale, with features as small as few nanometers.  
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APPENDIX A:  

The external potential ( )V r
r

 in the GPE equation (1) results from the interaction with the 
electromagnetic fields. Each of the π and π/2 pulses in Fig. 1 is composed of two counter 
propagating laser fields parallel to the y axis. We call the field propagating in +y direction AE

r
 

and the field propagating in –y direction BE
r

. Using a semi-classical model, the fields are 
expressed as: 
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where 0AE
r

and 0BE
r

express the magnitude and polarization of the corresponding fields. The 

Hamiltonian Ĥ  in this case has two parts: 0
ˆ ˆ ˆ

IH H H= + . 0Ĥ represents the internal energy of 

the condensate and ˆ
IH  represents the interaction energy. Using the electric dipole 

approximation, the interaction Hamiltonian can be expressed as: 
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,  (A3) 

where 0e is the electron charge and εr  is the electron position vector for each atom in the 
condensate. Applying the interaction Hamiltonian to the complete BEC wave function (5) yields 

1 2 3
ˆ ˆ( , , ) ( , ) 1 ( , ) 2 ( , ) 3I IH x y t H c r t c r t c r tψ = ⎡ + + ⎤⎣ ⎦% % % .    (A4) 

To calculate the interaction Hamiltonian matrix, we note first that ˆ 0In H n = , where n  is the 

internal state. Moreover, assuming that AE
r

affects only the 1 2↔  transition and BE
r

affects 
only the 2 3↔  transition, we get

1
ˆ2 3 0IH = ,  

2
ˆ2 1 0IH =  and ˆ1 3 0IH = .  

 
The interaction Hamiltonian can thus be expressed as: 
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( )[ ]
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,   (A5) 

where the Rabi Frequencies Ω are defined as: 
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0 0 0 01 . 2 2 . 1A A Ae E e Eε εΩ = − = −
r rr r

h , 0 0 0 02 . 3 3 . 2B B Be E e Eε εΩ = − = −
r rr r

h .   (A6) 
 
Using the rotating wave approximation [30], Eq. (A5) is simplified to:  
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Using equation (A7), equation (A4) can be written as: 
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During interaction with the light fields, we have a three component condensate. Each component 
occupies an independent atomic state. Assuming that the condensate atoms interact only with the 
atoms in the same state, the complete GPE can be written as: 
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From Eq. (A9) the dynamics of each internal state can be expressed separately as:  
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In order to simplify equations (A10), the time independence is removed by using the following 
state transformation: 
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Applying this transformation to Eq. (A10), we have: 
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Simplifying Eq. (A12) we get: 
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Eliminating the time dependence requires 1 2 3 2 0A Bω θ θ ω θ θ+ − = + − = . A convenient option is 
to choose 1 1θ ω= which leads to 2 1 1 2 1A Aθ ω θ ω ω ω δ= + = + = + and 3 2 2 1B Bθ θ ω ω δ ω= − = + − . 
Moreover, we can choose 1 2 3 2 0A Bφ φ φ φ φ φ+ − = + − = . Consequently Eq. (A13) can be written 
as: 
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 (A14) 

Equations (A14) are used to simulate the interaction with laser fields in the spatial domain. The 
explicit finite difference method is used to discretize the equations for simulation purposes.   
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