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We consider a system of non-interacting fermions in one dimension subject to a single-particle
potential consisting of (a) a strong optical lattice, (b) a harmonic trap, and (c) uncorrelated on-site
disorder. After a quench, in which the center of the harmonic trap is displaced, we study the occu-
pation function of the fermions and the time-evolution of experimental observables. Specifically, we
present numerical and analytical results for the post-quench occupation function of the fermions,
and analyse the time-evolution of the real-space density profile. Unsurprisingly for a non-interacting
(and therefore integrable) system, the infinite-time limit of the density profile is non-thermal. How-
ever, due to Bragg-localization of the higher-energy single-particle states, the approach to even
this non-thermal state is extremely slow. We quantify this statement, and show that it implies a
sensitivity to disorder parametrically stronger than that expected from Anderson localization.

PACS numbers: 05.30.-d, 37.10.Jk, 67.85.Lm

I. INTRODUCTION

In the past twelve years or so there has been a significant
increase in the level of theoretical activity on questions of
thermalization, especially for isolated quantum systems
[1–7]. There are several reasons for this. One is the grow-
ing availability of experimental realizations, for example
in cold-atom systems [8–12] and in the nuclear spins of
solid-state dopants [13]. Another is the growing theoret-
ical understanding of how quantum-mechanical systems
approach thermal equilibrium.

The key concept in the classical statistical mechanics of
isolated systems is ergodicity, which essentially depends
on chaos. For quantum systems, it has been conjectured
that a single typical many-body eigenstate of energy E
already matches the microcanonical ensemble in the ex-
pectation values it gives for local observables. This claim,
related to Berry’s conjecture [14], is referred to as the
eigenstate thermalization hypothesis (ETH) [3, 15, 16].

For this hypothesis to be true, nearby states in the
many-body spectrum must have similar values of all local
observables. However, one can easily think of examples
in which this is not the case. One class of these occurs in
disordered systems, where the single-particle eigenfunc-
tions are localized, and hence small changes in the total
energy may lead to dramatic rearrangements of the spa-
tial density profile. It has been discovered more recently
that this idea extends to the case of interacting parti-
cles, where it goes by the name of many-body localization
(MBL) [1, 2, 4–7, 17–23].

A second class occurs in integrable systems, where the
number of conserved quantities is so large that neighbor-
ing states in the many-body spectrum are very likely to
have different values of many of them, and thus disagree
on many of their local observables. It is believed that this
can be addressed by restricting the microcanonical en-
semble to a distribution in which additional temperature-
like parameters are introduced to constrain the values
of these conserved quantities: the so-called generalized

Gibbs ensemble (GGE) [24–30]. That said, it is not
always clear how to properly enumerate the conserved
quantities that should be included in such a modified en-
semble.

The vast majority of work in this area considers sys-
tems with (continuum- or lattice-)translationally invari-
ant Hamiltonians. However, the most popular experi-
mental realizations, using cold atomic gases, generally in-
volve a spatially inhomogeneous trapping potential. This
suggests that it would be worth considering the influence
of such a potential — clean or disordered — on the re-
laxation of a many-fermion system after a quench. This
question is theoretically interesting because it concerns
a quantum system relaxing under the influence of bulk
but inhomogeneous forces. It is also of interest because
of its direct relevance to experiment: indeed, reports of
experiments exhibiting two or even all three of these in-
gredients (lattice, trap, disorder) may already be found
in the literature [9, 31–36].

In this work, we consider a global quantum quench
applied to a one-dimensional system of spinless, non-
interacting fermions in a potential consisting of a strong
optical lattice, a harmonic trap, and sometimes also un-
correlated site disorder. The quench protocol consists
of letting the system equilibrate, and then, at the mo-
ment of the quench, suddenly displacing the center of
the harmonic trapping potential from its initial position
by ∆j lattice sites. Such quenches were first studied ex-
perimentally over a decade ago [37–39]. We investigate
the representation of the pre-quench state in the post-
quench eigenbasis, which is the initial condition for all
subsequent time-evolution. We also analyze how that
time-evolution affects the values of observables such as
the moments of the fermions’ spatial density profile.

Since our fermions are non-interacting, the population
of each post-quench single-particle eigenstate is a con-
stant of motion, and the system is trivially integrable.
Nonetheless, as we change the trap-jump distance ∆j and
the strength of the disorder W we observe considerable
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FIG. 1. Main panel: We compare the real-space time-averaged
density profile of the fermions without disorder (blue curve
with triangles) and in the case of very weak disorder (green
curve with squares) to the equilibrium prediction for a system
with the same number of particles and the same total energy
(red curve with circles). Note that even the center of mass of
the weakly disordered time-averaged profile (solid green line)
does not coincide with the equilibrium or clean case predic-
tion (solid blue line). Inset: The occupation function of the
post-quench states ordered by their energy in the weakly dis-
ordered (green) and clean (blue) cases. Note the occupation of
states with energies E > 2J : these states are Bragg-localized.
Parameters: number of lattice sites L = 241; trap spring con-
stant κ = 0.0025; hopping integral J = 1; chemical potential
µ = 0; pre-quench trap center j0 = 96; post-quench trap
center j1 = 121; disorder strength W = {0, 10−5}.

variation in the timescales on which different observables
relax to their time-averaged values, and in the extent to
which those time-averaged values agree with equilibrium
predictions. A precise definition of the time-averaged
density is given in Section IV.

For example, for large enough trap jumps, even when
the disorder is extremely weak, we find that the violation
of parity present in the initial conditions is preserved in
the infinite-time (t → ∞) density profile. This repre-
sents a dramatic failure to match the form predicted by
equilibrium statistical mechanics (see Fig. 1). This is
not due to Anderson localization. Rather, it is associ-
ated with the extreme disorder-sensitivity of the Bragg-
localized states in the upper part of the single-particle
spectrum. For clarity, we note in passing that Bragg
localization and Anderson localization are conceptually
quite distinct. While the latter is defined as the absence
of diffusion in the presence of randomness, the former
occurs in a setting here where such a definition is not
natural, because the unbounded trap potential in any
case eventually prevents diffusion. A natural description
of Bragg localization is rather that there are high-lying
eigenstates that are exponentially localized on a shorter
length-scale than the classically allowed region set by
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FIG. 2. (a) Center of mass x1 (blue curve with circles; left-
hand scale) and skewness x3 (red dashed curve; right-hand
scale) as functions of time, for a quench with trap-jump size
∆j = 10. The center of mass oscillates around the post-
quench trap center (solid black line). (b) The same, but for
a larger trap-jump size ∆j = 25. Again, the post-quench
trap center is indicated by the solid black line; but now, even
though there is no disorder, on observable time-scales the cen-
ter of mass instead oscillates around a different point, between
pre- and post-quench trap centers. Parameters: number of lat-
tice sites L = 241; trap spring constant κ = 0.0025; hopping
integral J = 1; chemical potential µ = 0; post-quench trap
center j1 = 120; disorder strength W = 0.

the trap. While we use uncorrelated on-site disorder for
simplicity, any term in the Hamiltonian that breaks the
parity symmetry, e.g. an Aubry-André potential or even
a non-integer post-quench trap position j1, would yield
analogous effects.

In the complete absence of disorder, parity is eventu-
ally restored by the dephasing of these Bragg-localized
states, but the timescale on which this occurs is ex-
tremely long. Thus on experimentally relevant timescales
the clean case is not actually materially different from the
disordered one. In both, for example, the center of mass
oscillates not about the new center of the trap, but about
a point between the pre- and post-quench trap centers
(see Fig. 2). The question whether the center of mass
reaches the new trap center, and in particular the role
of Bragg localized states [40] and the existence of parity
doublets [41], was already raised following the original
experiment [39].

The plan of the remainder of this paper is as follows. In
Sec. II, we introduce the model and discuss the quench
protocol. In Sec. III, we analyze the representation of
the pre-quench state in the post-quench basis — the ini-
tial condition for the post-quench time-evolution — for
a range of trap-jump sizes ∆j. Sec. IV provides an anal-
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ysis of the time-evolution of the moments of the density
and investigates the short and long time properties of the
density itself. We also include the influence of disorder
on the dynamics, elucidating the competition between
the two forms of localization in the system. We conclude
with Sec. V, in which we briefly summarize our results,
and also discuss possible future developments, especially
the introduction of atom-atom interactions and the asso-
ciated questions of many-body localization.

II. MODEL AND QUENCH PROTOCOL

We consider spinless fermions moving in one dimension
on a lattice of L sites with open boundary conditions.
The Hamiltonian reads

Ĥi = −J
L−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
+

L∑
j=1

[
1

2
κa2 (j − j0)

2
+ εj

]
c†jcj . (1)

Here the operator c†j creates a fermion on site j, and
J is the hopping matrix element between neighboring
sites. The on-site energy consists of a harmonic trapping
potential of spring constant κ centered at j0 plus ad-
ditional uncorrelated on-site disorder taken from a uni-
form box distribution: εj ∈ [−W,W ]. For convenience
we shall henceforth set both ~ and the lattice constant
a to unity. We find the single-particle eigenstates {αk}
of Ĥi and populate the lowest N of them to obtain the
initial ground state of the N -fermion problem. Alterna-
tively we can choose a chemical potential µ and populate
all single-particle eigenstates for which the eigenenergy

E
(i)
k is smaller than µ.

In this paper, we study the non-equilibrium dynamics
of this model that arise from a particular spatially inho-
mogeneous global quench. At time t = 0 the center of
the harmonic trapping potential is displaced from site j0
to site j1, while the disorder potential is left unchanged.
Thus the post-quench Hamiltonian Ĥ is exactly the same
as (1) but with j0 → j1. This Hamiltonian has a set
of single-particle eigenstates {βk} with eigenenergies Ek.
We define the ‘jump size’ ∆j as |j1 − j0|.

The subsequent time-evolution of the many-body state
of the system can be understood as a dephasing of the
contributions of the individual post-quench eigenstates,
due to their different eigenenergies. The pre-quench
state, represented in the post-quench basis, serves as the
initial condition for this time-evolution. In the coming
sections, we study further the nature of this initial con-
dition, and of the subsequent time-evolution of physical
observables such as the center-of-mass of the atom cloud.
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FIG. 3. The post-quench occupation function n(E) (green;
circles) for four different jump sizes ∆j. For comparison we
also plot the continuum result (blue; solid line) and the result
for a thermal state with the same total energy and particle
number (red; dashed line). For small ∆j (panels (a) and
(b)), the continuum approximation is a good one. As soon
as we start populating states above E = 2J , i.e. Bragg lo-
calized states, the continuum approximation fails (panels (c)
and (d)). Parameters: number of lattice sites L = 241; trap
spring constant κ = 0.0025; hopping integral J = 1; chemical
potential µ = 0; post-quench trap center j1 = 121; disorder
strength W = 0.

III. THE POST-QUENCH OCCUPATION
FUNCTION

In order to study the time-evolution of the system for
times t > 0, we need to know the state at time t = 0, i.e.
we need to represent the pre-quench state in the post-
quench basis. This will consist of a superposition of
many different Slater determinants, each corresponding
to a different assignment of the N fermions to the L post-
quench single-particle eigenstates. A simple function that
captures its essence, however, is the expectation value of
the occupation of each post-quench single-particle eigen-

state, n
(β)
k . Here k = 1, 2, . . . , L labels the post-quench

single-particle eigenfunctions.

Since the fermions are non-interacting, each n
(β)
k is a

constant of the motion. This trivially prevents the sys-
tem from thermalizing; nonetheless, particular observ-
ables — e.g. the center of mass of the atom cloud — may
still relax to their thermal equilibrium values.

In order to determine n
(β)
k we express the pre-quench
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ground state |ψ(N)
0 〉 for N particles as:

|ψ(N)
0 〉 = α†Nα

†
N−1 . . . α

†
2α
†
1|0〉, (2)

where the operator α†k creates a fermion in pre-quench
single-particle eigenstate αk, and |0〉 is the fermionic vac-
uum. The post-quench occupation function is then de-
fined as:

n
(β)
k ≡ 〈ψ(N)

0 |β†kβk|ψ
(N)
0 〉 =

N∑
q=1

|Oqk (∆j)|2 , (3)

where β†k creates a fermion in post-quench single-particle
eigenstate βk, and the overlap matrix Oqk(∆j) is defined
as

Oqk(∆j) ≡ 〈αq|βk〉. (4)

Since there is a one-to-one mapping between the eigen-
state quantum numbers k and the eigenenergies Ek, we
may equivalently represent the occupation function as
n(E), which we sample at the points E = Ek.

In Fig. 3 we plot this post-quench occupation function
for four different jump sizes. For comparison, we show
also the occupation function calculated in the continuum,
and the thermal occupation function for the same total
energy and particle number.

The post-quench occupation function exhibits a re-
markable amount of structure. Unlike the thermal dis-
tribution, it has a very steep slope when departing from
zero and unity. For a wide range of small jump-sizes it
also shows an almost linear structure around the Fermi
energy EF = 0 that has a plateau-like substructure.

The continuum approximation works better for small
trap jumps than for larger ones. The reason is that small
jumps mainly occupy low-lying single-particle eigenstates
of the post-quench Hamiltonian. These resemble the
eigenstates of a continuum harmonic oscillator [42]. Thus
the ‘athermal’ structure of the occupation function in
these cases arises from the harmonic-oscillator nature of
the eigenstates, rather than from the influence of the lat-
tice.

For larger jump sizes, where the quench populates the
higher-lying single-particle eigenstates, the continuum
approximation becomes worse. In particular, for energies
E > 2J the true occupation function and the continuum
approximation to it disagree sharply. This is because the
single-particle eigenstates with energies E > 2J are (to
use the terminology of [42]) Bragg-localized: instead of
extending between the two classical turning points, they
go only as far as the atom can propagate before being
Bragg-reflected from the optical lattice.

In the remainder of this section we expand on these
observations, providing an exact-diagonalization study of
the single-particle eigenstates, a detailed explanation of
Bragg localization, and a derivation of the continuum
approximation to the occupation function. We shall fo-
cus on the dependence of the occupation function on the
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FIG. 4. Selected post-quench single-particle eigenfunctions,
determined by exact diagonalization. Each eigenfunction is
offset vertically by its eigenenergy. The highest-lying eigen-
function is shown together with its almost degenerate partner.
The outer parabola shows the classical turning points as a
function of energy while the inner parabola shows the Bragg
turning points. Upper panel: clean case (W = 0). Lower
panel: very weak disorder (W = 10−5). Parameters: number
of lattice sites L = 241; trap spring constant κ = 0.0025;
hopping integral J = 1; post-quench trap center j1 = 121.

jump size ∆j; the influence of the hopping strength J
and the disorder strength W is discussed in Appendices
A and B.

A. Post-quench single-particle eigenstates

Fig. 4 shows some of the post-quench single-particle
eigenstates, obtained by numerical exact diagonalization
[43]. The nature of these eigenstates was first discussed
in [40, 42]; here we briefly summarize their properties.

In the clean case, and in the absence of the harmonic
trap, i.e. when κ = W = 0, our model is just a tight-
binding model with a band dispersion E(k) = −2J cos k,
where k is the wave number. In this limit the density
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of states is only non-zero for |E| 6 2J , the region which
we call the band. We will use the terminology of the
band, especially ‘top’ and ‘bottom’ to refer to E = ±2J
respectively, even when κ 6= 0.

Adding a harmonic trap, i.e. setting κ 6= 0, imposes a
finite spatial extent on the eigenfunctions. As discussed
in [42], this may be determined semiclassically by consid-
ering the orbit of a particle whose total energy is given by
E = −2J cos k + κx2/2. For E < 2J , the orbit has only
the conventional classical turning points, where k = 0:

j = j1 ± jc, jc =

√
2E + 4J

κ
. (5)

By contrast, for energies E > 2J the orbit acquires in
addition two Bragg turning points, where k = ±π:

j = j1 ± jb, jb =

√
2E − 4J

κ
. (6)

Bragg reflection exponentially suppresses the wave func-
tion in the region between the two Bragg turning points.
We call this region ‘Bragg-forbidden’ and the states that
exhibit such suppression ‘Bragg-localized’. As can be
seen in Fig. 4, these turning points provide a good de-
scription of the spatial extent of the numerically deter-
mined eigenfunctions.

How are these eigenstates affected by the addition of
disorder? In the clean (W = 0) case, the Hamiltonian H
is symmetric under a reflection about the trap center j1.
Hence each eigenstate is either odd or even under such
a reflection. For energies E well above 2J , i.e. well into
the Bragg-localized regime, each even eigenstate has an
odd partner with almost the same energy. These may be
thought of as bonding and anti-bonding combinations of
a left Bragg-localized and a right Bragg-localized state.
In the E → ∞ limit, the energy splitting between the
bonding and anti-bonding states tends to zero, and the
left- and right-localized states become exact eigenstates
of the problem. But for any finite eigenenergy they are
hybridized by a non-zero tunnelling matrix element T :

T ≈ e−jb(E)/ξ(E), (7)

where the decay length ξ(E) is given approximately by

ξ(E) = − 1

ln

(
E
2J −

√(
E
2J

)2 − 1

) . (8)

(For details of the derivation of (7) and (8), see Appendix
C.)

However, the introduction of very weak disorder, W ∼
T , is sufficient to suppress this hybridization, thus mak-
ing the left- and right-localized states the true eigen-
states of the problem. This phenomenon is illustrated
in Fig. 4. The two highest-energy eigenfunctions in the
upper panel are the hybridization-split bonding and anti-
bonding states; the two highest-energy eigenfunctions in
the lower panel are the left- and right-localized states.

The hybridization between them has been suppressed
even though the disorder strength is more than five orders
of magnitude smaller than the bandwidth! This implies
that the post-quench time evolution is sensitively depen-
dent on even very weak disorder. Some examples of this
will be shown in Sec. IV.

B. The continuum approximation to the
post-quench occupation function

In order to tell which features of the post-quench oc-
cupation function are due to the structure of the under-
lying lattice and which, by contrast, are present also in a
continuum treatment, we calculate the overlap Oqk(∆j)
for harmonic oscillator wavefunctions in the continuum;
i.e. we compute the overlap of two harmonic oscillator
eigenfunctions corresponding to the trap potential, one
of which is displaced with respect to the other by ∆j.
Some results on this continuum limit have already been
obtained in [44].

For convenience, we center the two eigenfunctions re-
spectively at x = ±x0. The overlap is given by:

Ocont.
qk (x0) ≡

∞∫
−∞

ψ∗q (x+ x0)ψk(x− x0) dx, (9)

where the normalized harmonic oscillator eigenfunction
is given by:

ψk(x) =
1√
2kk!

π−1/4e−x
2/2Hk(x). (10)

Here Hk(x) denotes the kth (physicists’) Hermite polyno-
mial, and we have chosen units in which ~ = m = ω = 1.
Using Eq. (7.377) in [45], one finds:

Ocont.
qk (x0) =

√
2αβ!

2βα!
(−1)max(k−q,0) e−x

2
0 xα−β0 Lα−ββ (2x2

0),

(11)
where α ≡ max(k, q), β ≡ min(k, q), and Lkn(x) are the
associated Laguerre polynomials.

To complete our derivation we must relate the contin-
uum shift of the eigenfunctions x0 to the displacement
of the harmonic trap in lattice units ∆j. The natural
length scale of the continuum quantum harmonic oscil-
lator is ζ = 1/

√
mω. For the lattice problem, we may

obtain expressions for m and ω by Taylor-expanding the
lattice kinetic energy −2J cos k around k = 0. This gives
for the effective mass

m∗ =
1

2J
, (12)

while the effective frequency is given by

ω∗ =

√
κ

m∗
=
√

2κJ. (13)

The result is ζ = (2t/κ)
1/4

. We thus find that 2x0 =
∆j/ζ.
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IV. TIME-EVOLUTION OF EXPERIMENTAL
OBSERVABLES

The occupation function analyzed in the previous section
is the initial condition for the post-quench time-evolution
of the atom cloud. We now turn to the question of how
this initial condition translates into the time-evolution of
the cloud’s spatial density profile.

The density of atoms at lattice site j is given by the di-
agonal elements of the following equal-time Green’s func-
tion:

Cij(t) ≡ 〈c†i (t)cj(t)〉. (14)

With a little algebra (see Appendix D), we may write this
in terms of the single-particle post-quench eigenfunctions
and their eigenenergies. This allows us to obtain the
density profile at any time t > 0:

ρj(t) =

N∑
l=1

∣∣∣∣∣
L∑
a=1

Oale
−iEatψaj

∣∣∣∣∣
2

. (15)

Here Ea is the eigenenergy of post-quench eigenstate βa,
and ψaj is its (lattice) wave function.

The contributions of single-particle eigenstates βa and
βb to post-quench observables dephase on a timescale
τab ∼ 1/(Ea − Eb). This is largest for neighboring en-
ergy levels, Ea and Ea+1. This dephasing does not, of
course, imply that the observables actually become time-
independent, even at long times. However, if we examine
an observable — such as the density profile — averaged
over a time interval τav,

ρ̄j(τav) ≡ 1

τav

τav∫
0

ρj(t)dt, (16)

we find that this tends to a limiting form as τav →∞:

ρ̄j ≡ lim
τav→∞

(ρ̄j(τav)) =

L∑
a=1

na |ψaj |2 . (17)

Following Deutsch [15], we call ρ̄j the time-averaged den-
sity.

In the clean system (see Fig. 4, upper panel), the
density profile of every post-quench single-particle eigen-
state is symmetric about the post-quench trap center j1.
Hence the time-averaged density (17) will be centered
at j1 as well. However, because the eigenenergies of
the bonding and anti-bonding Bragg-localized states are
very nearly degenerate, the restoration of this symmetry
about j = j1 occurs very slowly. This is demonstrated in
Fig. 2, where the cloud’s center of mass seemingly equi-
librates at a position between the original trap center j0
and the new trap center j1. In reality, though, a very
slow drift — not visible on experimental timescales —
will eventually restore the center of mass to j = j1 (see
Fig. 7).

However, this symmetry-restoring drift ceases to occur
as soon as the disorder is able to disrupt the hybridization
between the left- and right-localized states. As discussed
above, this occurs for any W & T , where T — given in
(7) — is exponentially small in 2jb(E), the width of the
Bragg-forbidden region. Therefore, even for such weak
disorder, the parity-breaking imposed by the initial con-
ditions remains visible in the infinite-time density profile
(see Fig. 1). This is a localization mechanism for the
atom cloud which is conceptually quite distinct from An-
derson localization.

As a diagnostic for this we define the jump efficiency,
which expresses the post-quench displacement of the cen-
ter of mass as a fraction of the jump size ∆j. Fig. 8 shows
a plot of the jump efficiency as a function of jump size for
various disorder strengths. This clearly demonstrates the
distinction between Bragg and Anderson localization.

In the remainder of this section we will study two facets
of the post-quench density profile — its early-time be-
havior and its time-averaged value — in more detail.
The early-time behavior, analyzed in Sec. IV A, is simi-
lar for the clean and weakly disordered cases. The time-
averaged state, however, is not; therefore, we analyze the
clean case in Sec. IV B, and then the disordered cases in
Sec. IV C.

A. Early-time behavior

To characterize the time-evolution of the density (15)
shortly after the quench, we consider in particular two
of its moments: the first moment, x1, which corresponds
to the atom cloud’s center of mass; and the third (stan-
dardized) moment, x3, which corresponds to its skewness.
These are defined respectively as

x1(t) ≡ 1

N

L∑
j=1

j ρj(t) (18)

and

x3(t) ≡
1
N

∑
j (j − x1(t))

3
ρj(t)(

1
N

∑
j (j − x1(t))

2
ρj(t)

)3/2
. (19)

We plot them as functions of time in Fig. 2, for two dif-
ferent jump sizes.

The dominant effect is clearly the oscillation of the
center of mass, the frequency of which may be accurately
predicted by a classical oscillator calculation using the
band mass as the mass of the particle — see (13). In
this case, a spring constant of κ = 0.0025 and a hopping
integral of J = 1 yield a frequency of f/J = 0.01125,
which matches the oscillation frequency of x1 in Fig. 2.

For the smaller jump size, this oscillation occurs about
the post-quench trap center, j1, which is shown by the
solid horizontal (black) line. For the larger jump size,
however, it appears to occur around a different point,
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FIG. 5. The density profile of the atom cloud at various times
after the quench (blue dashed curve), showing the contribu-
tions of selected individual pre-quench single-particle eigen-
states (solid curves, various colors). The skewness oscilla-
tions are caused by the mobile ‘bump’ in the profile, which
lags behind the center-of-mass oscillations, and which appears
to be due principally to the highest-lying occupied eigenfunc-
tion φF (j). Parameters: number of lattice sites L = 241; trap
spring constant κ = 0.0025; hopping integral J = 1; chemical
potential µ = 0; pre-quench trap center j0 = 106; post-quench
trap center j1 = 121; disorder strength W = 0.

somewhere between j0 and j1. As discussed above, this
is because the quench with the larger jump size pop-
ulates some of the left Bragg-localized states, which on
the timescales shown have not yet tunneled across to their
partners on the right.

The oscillations in the skewness are much smaller-scale
than those of the center of mass. In Fig. 5, we elucidate
their origin by plotting the contributions of selected indi-
vidual single-particle eigenfunctions to the overall density
profile. This decomposition of the density strongly sug-
gests that the skewness oscillation is a finite-size effect.
This is supported by exact diagonalization for larger val-
ues of the chemical potential, which suggests that the
skewness oscillations are suppressed as N increases, and
also by the solution of the fermionic Gross-Pitaevskii
equation [46], which suggests that they are absent in the
continuum. Nonetheless, for typical experimental set-
ups, in which one may have N ∼ 100 atoms per quasi-
one-dimensional tube, they may well be observable.

FIG. 6. The correspondence between the long-time part of the
center-of-mass oscillations and the dephasing of nearly degen-
erate Bragg-localized states. (a) The power spectrum of the
center-of-mass oscillations of the atom cloud. (b) Energy dif-
ferences of neighboring single-particle energy levels converted
to frequencies (horizontal axis) for a pair of single-particle
states near energy E (vertical axis). Insets: a zoomed-in ver-
sion of the same, showing the first two Bragg-localized states.
Note the excellent quantitative match between the frequency
content of the upper and lower panels. Parameters: number
of lattice sites L = 241; trap spring constant κ = 0.0025;
hopping integral J = 1; chemical potential µ = 0; pre-quench
trap center j0 = 105; post-quench trap center j1 = 121; dis-
order strength W = 0.

B. Time-averaged state (clean case)

As emphasized above, in the clean case all single-
particle eigenstates have densities symmetric about the
post-quench trap center, which means that the time-
averaged density profile will have this symmetry too.
Therefore, we should be able to see in the power spec-
trum of the center-of-mass oscillations the slow modes
that restore this symmetry at long times. As shown in
Fig. 6, indeed we can. Panel (a) shows the frequen-
cies present in the power spectrum, with an inset con-
centrating on the low-frequency spectrum. Panel (b) is
a histogram of the frequencies obtained from the gaps
between neighboring post-quench single-particle energy
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FIG. 7. A comparison between three densities: the time-
averaged density calculated from expression (17) (‘time-
averaged (infinite)’); the time-average of consecutive densi-
ties at large but finite times (‘time-averaged (finite)’) (simi-
lar to (16)); and the density of a thermal equilibrium state
with the same total energy and number of atoms (‘thermal’).
The finite average was taken at Jt = 50000 for 1000 con-
secutive time steps separated by ∆t = 1/J . The vertical
lines denote the position of the center of mass for the corre-
sponding density. The time-averaged density does not per-
fectly match the thermal prediction for any non-zero jump
size. For larger jump sizes (bottom), as the Bragg-localized
states are populated, the approach to the time-averaged state
becomes very slow. This happens because Bragg localization
generates a very long time-scale, Eq. 20, below which a time-
average deviates strongly from the infinite-time result. This
is shown by the disparity between the ‘time-averaged (finite)’
and ‘time-averaged (infinite)’ curves in the lower panel. Pa-
rameters: number of lattice sites L = 241; trap spring con-
stant κ = 0.0025; hopping integral J = 1; chemical potential
µ = 0; disorder strength W = 0.

levels. The quantitative match between these graphs is
striking. Furthermore, the oscillation frequency calcu-
lated above (f/J = 0.01125) provides an upper bound to
the frequency spectrum.

This analysis demonstrates how long a time scale one
would need to go to to see the atomic cloud oscillating
about the new trap center. This time may be estimated
as the dephasing time of the highest occupied Bragg-

localized state, i.e.

τlong ≈ 1/TF = ejb(EF )/ξ(EF ), (20)

where EF denotes the eigenenergy of that state, and the
functions jb(E) and ξ(E) are defined in (6) and (8) re-
spectively. This should be compared with the time scale
associated with the center-of-mass oscillations immedi-
ately after the quench, which is given by

τshort ≈ 1/f∗ =
2π√
2κJ

. (21)

Only for times τav � τlong will a time-averaged density
profile match the symmetric prediction of (17).

While this time-averaged density has a center of mass
which matches the thermal equilibrium prediction, other
moments of the time-averaged and thermal profiles do
not agree, as shown in Fig. 7. Due to the reflection sym-
metry about j = j1, the center of mass, the skewness,
and in fact all odd moments of the density do ‘thermal-
ize’. However, the same is not true for the even moments:
even for small trap jumps, the two densities are different.
Related questions have also been discussed for hard-core
bosons [47].

In addition to the two densities obtained from the oc-
cupation functions, we have plotted an average density
over many consecutive time steps at very large times.
This underlines that (a) there is a long period of time over
which the density reaches a ‘finite-time-averaged’ state,
where the in-band single-particle states have dephased
but the weakly-hybridized pairs of Bragg-localized states
have not, and (b) the true time-averaged density emerges
only at significantly longer times than used in this exam-
ple.

C. Time-averaged state (disordered case)

As we have already emphasized, we find that even
weak disorder, provided that it is large compared to the
splitting between symmetric and anti-symmetric Bragg-
localized states, causes the time-averaged density to be
significantly asymmetric about the new trap center. This
asymmetry, which would be impossible in thermal equi-
librium, can be seen in Fig. 1.

The reason for the asymmetry is twofold. First, an ar-
bitrarily weak disorder potential breaks the parity sym-
metry of the clean Hamiltonian. This has the conse-
quence, for W & T , that the eigenstates become localized
on the left or the right of the trap. Second, as disorder
is made stronger, this effect extends to the delocalized
states in the center of the trap.

To quantify the influence of disorder, we define the
‘jump efficiency’ η as follows:

η ≡ xt→∞1 − xt=0
1

∆j
. (22)

Here the pre-quench center-of-mass position of the cloud,
xt=0

1 , is calculated from the pre-quench distribution;



9

0 10 20 30 40 50 60

∆j

0.0

0.2

0.4

0.6

0.8

1.0
η

W=0.0

W=0.001

W=0.1

W=0.15

W=0.2

W=0.25

W=0.4

W=0.55

W=2.0

0.0 0.2 0.4 0.6 0.8 1.0

W/J

0.0

0.2

0.4

0.6

0.8

1.0

η

∆j=1

y=1−1.619(W/J)2

FIG. 8. The jump efficiency η as a function of the jump size
∆j, for various disorder strengths. This graph illustrates the
qualitative distinction between Anderson and Bragg localiza-
tion. For W = 0 the jump efficiency η is always unity. For
the disordered cases Bragg localization appears in the form
of a ∆j-dependent decrease in η. Inset: The jump efficiency
η as a function of disorder strength W/J for a fixed jump
size ∆j = 1. Parameters: number of lattice sites L = 241;
trap spring constant κ = 0.0025; hopping integral J = 1;
chemical potential µ = 0; post-quench trap center j1 = 121.
Each disorder-average is performed over 10000 disorder real-
izations.

the time-averaged post-quench center-of-mass position,
xt→∞1 , is calculated from (17). Put simply, this jump
efficiency describes (as a number between 0 and 1) how
much of the way from the pre-quench trap center to the
post-quench trap center the atom-cloud moves.

Fig. 8 shows the jump efficiency as a function of jump
size for different disorder strengths. The most striking
feature is that, even in the limit where the jump size
∆j → 0, the jump efficiency does not remain unity;
rather, it has the form

ηp ≡ lim
∆j→0

[η(∆j)] ≈ 1− αW 2. (23)

This may be understood as the development of a corre-
lation between (a) whether the disorder potential shifts
the center-of-mass of a particular post-quench eigenfunc-
tion to the left or to the right, and (b) whether the post-
quench occupation of that eigenfunction goes up or down.
Each of these effects is first-order in the disorder potential
V (x), but each by itself would average to zero. However,
the development of a correlation between them gives an
effect of order W 2 that survives the disorder average. We
present in appendix E a toy calculation that displays this
physics.

As the jump size is increased, the plateau in η(∆j) at
some point gives way to a decrease in the jump efficiency.
This is because the jump size is now large enough to
populate some of the Bragg-localized states of the post-

quench trapping potential. As discussed above, these
are sensitive to even weak disorder, and once localized
they effectively contribute almost nothing to the jump
efficiency. Indeed, the shape of the curves in Fig. 8 may
be well approximated by the equation

η = fdηp, (24)

where fd is the fraction of the pre-quench atoms that are
projected into non-Bragg-localized states, and ηp is the
‘plateau value’ of the jump efficiency defined in (23). As
previously stated, to obtain the Bragg-localization effects
visible in Fig. 8 we require only a parity-breaking poten-
tial while features associated with Anderson localization
require randomness.

V. CONCLUSION

We have studied a particular type of relatively simple
quantum quench: a sudden trap displacement applied
to a one-dimensional system of non-interacting lattice
fermions with disorder. The central theme of this work is
to provide an understanding of how confinement, lattice
structure and disorder conspire to provide various dy-
namical regimes to the coherent post-quench time evo-
lution. We discuss these questions using a number of
relatively straightforward real-space observables.

Our main observation is that the disorder in this sys-
tem has two distinct localizing effects: Anderson local-
ization, which occurs via the same mechanism as in the
untrapped system, and Bragg localization, which arises
from the presence in the single-particle spectrum of the
post-quench Hamiltonian of nearly degenerate bonding
and antibonding states that are spatially localized near
the edges of the trap.

As a result of Bragg localization, the time-evolution
of the density profile of the clean system after a quench
shows two regimes. In the short-time regime, the dynam-
ics are driven by the dephasing of the ‘in-band’ states
(those with energies |E| < 2J), and look like collective
oscillations about a position which may not match that
of the actual post-quench trap center. In the long-time
regime, the dephasing of the Bragg-localized states causes
a slow drift of the center of mass from this position to
the center of the trap.

The role of disorder in the long-time evolution is very
pronounced. Since the splitting between the symmetric
and antisymmetric combinations of the Bragg-localized
states is exponentially suppressed in their separation,
extremely weak disorder can dominate over this split-
ting, resulting in a time-averaged state which magnifies
the weak parity-breaking of the disorder potential into a
macroscopic effect. Indeed, for the system parameters we
have studied, as seen in Fig. 8, a disorder strength of less
than a thousandth of the bandwidth of the single-particle
hopping band can reduce the jump efficiency by a factor
of more than two!
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We have assumed throughout that the Bragg-localized
level pairs form a discrete spectrum, and in that sense
all of this analysis is for a finite-size system. This is
the case for which experiments are perhaps most likely
to be realised initially. However, it is interesting to ask
what would happen if we took the thermodynamic limit.
Then the disorder potential would make one left-Bragg-
localized state resonant with a different right-Bragg-
localized state. Would this still suppress the jump ef-
ficiency from unity? If so, by what fraction?

It would also, of course, be interesting to consider
the introduction of interactions between the fermions.
This would allow us to investigate, for example, whether
the logarithmic growth of entanglement entropy seen in
many-body-localized systems also occurs when interac-
tions are added to the Bragg-localized case. Another
related question is whether interactions naturally coun-
teract Bragg localisation. Such an analysis, carried out
by time-evolving block decimation (TEBD), is underway
[48].

Overall, we believe that this kind of quantum quench
provides an ideal platform for studying the interplay of
spatial inhomogeneity, disorder and interactions for the
dynamics in a quantum coherent setting.
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Appendix A: The zero-hopping case

As an aid to understanding the disorder-dependence of
the pre-quench density ρ(t = 0) and the post-quench oc-

cupation function n
(β)
k , we discuss in this appendix the

form they take in the zero-hopping (J = 0) case. With-
out any hopping, the pre- and post-quench eigenfunctions
can be chosen to be eigenfunctions of position. However,
in order to connect smoothly to the J 6= 0 case, we in-
stead take the excited states to be bonding and antibond-
ing superpositions of the pair of parity-related degenerate
position eigenstates.

The left panel of Fig. 9 shows the disorder-broadening
of the discrete energy levels of the harmonic trap. It
permits us to determine possible level crossings and level
occupations for given values of the chemical potential
µ and the disorder strength W . The parabolic curves
show the disorder strength at which neighboring (next-
neighbor, etc.) levels first cross. However, the only line of
relevance in the continuum case is in fact the line W = µ,
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FIG. 9. Left panel: An illustration of the disorder-broadening
of the single-particle energy levels of a finite-size system. Pos-
sible level crossings as a function of W̃ and µ̃ lie on parabolic
curves showing the critical disorder strength at which neigh-
boring (black solid line), second-neighbor (black dashed line),
third-neighbor (black dotted line), etc. levels can cross. Right
panels: The disorder-averaged density profile for three differ-
ent disorder strengths. Parameters: number of lattice sites
L = 241; trap spring constant κ = 0.0025; hopping integral
J = 0; trap center j0 = 121.

which denotes the broadening of (what was in the clean
case) the single-particle ground state. This divides the
(W,µ) parameter space into two distinct regions.

The right panels illustrate the qualitative difference in
the form of the ground-state density between these two
regions. Panel (a) shows a case where W � µ. Here all
lattice sites are occupied with roughly equal probabilities,
though the breaking of particle-hole symmetry due to
the trapping potential is still visible. Panel (c) shows a
contrasting case where W � µ. Here the spatial density
profile has a ‘top hat’ form. Panel (b) shows the density
at the point W = µ: here the average occupation of (what
was in the clean case) the lowest energy site is just about
to deviate from unity.

A careful analysis of Fig. 9 is necessary to understand
the occupation function obtained in the J = 0 quench
problem, some examples of which are shown in Fig. 10.
Due to the lack of hopping, in a single disorder realization
the density can only take the values 0 or 1. The same
is true of the occupation function — except in the clean
case, where our choice of bonding and antibonding forms
of the eigenstates allows also a value of 1/2. The disorder-
averaging, of course, permits other values to emerge as
weighted averages of these.

In panels (a) and (f) we visualize the quench protocol
by showing the diagonal matrix elements (which for zero

hopping are also the eigenvalues) of Ĥi and Ĥ. The trans-
lation of the trap explains the shape of the disorder-free
occupation function for the different jump sizes in pan-
els (b) and (g). These are in the case W � µ, so the
real-space pre-quench density is of top-hat form, i.e. just
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FIG. 10. An illustration of the different qualitative forms
of the post-quench occupation function in the absence of
hopping (J = 0), for different jump sizes ∆j, scaled chem-
ical potentials µ̃ ≡ 2µ/κa2, and scaled disorder strengths,

W̃ = 2W/κa2. (a) The pre- and post-quench trapping poten-
tials. In the absence of hopping and with no disorder, this is
also a graph of the eigenvalues of the pre- and post-quench
Hamiltonians. The black line denotes the chemical potential
µ̃. (b) The post-quench occupation function after a small
trap-jump, as a function of eigenstate quantum number k.
(c) The same as (b), but with moderate disorder. The de-
viation from half-unit values is mainly because changing the
disorder at fixed chemical potential changes the total particle
number. (d) The same as (c), but with a choice of W̃ and µ̃
that restores the original particle number N . Note that there
are still residual deviations from half-unit values. (e) The

occupation function in the case of very large W̃ . (f)-(j) As
panels (a)-(e), but for a larger jump size, ∆j = 10. Param-
eters: number of lattice sites L = 241; trap spring constant
κ = 0.0025; hopping integral J = 0; pre-quench trap cen-
ter j0 = 121. Each disorder-average is performed over 10000
disorder realizations.

one continuous block of occupied sites. Where the two
sites corresponding to a degenerate pair of post-quench
eigenstates both exist within that block, those states get
occupation 1; where only one of the sites overlaps with
the original density profile, they get occupation 1/2; and
where both sites lie outside the block, they get occupa-
tion 0.

Adding disorder to the system allows the levels to
cross, and also leads, for a fixed chemical potential, to
a change of the total particle number. This means that
disorder distorts the clean post-quench distribution func-
tion in two qualitatively different ways. These are shown
separately in panels (c), (d), (h), and (i).

Panels (c) and (h) show the occupation function when
µ and W are chosen so as not to mix any neighboring
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FIG. 11. The post-quench occupation function n
(β)
k in the

presence of hopping J and moderate disorder W . For conve-
nience we have picked a constant particle number N = 31.
Parameters: number of lattice sites L = 241; trap spring
constant κ = 0.0025; hopping integral J = 1; pre-quench
trap center j0 = 115, post-quench trap center j1 = 121.
Each disorder-average is performed over 10000 disorder re-
alizations.

levels (i.e. below the thick black parabola in Fig. 9).
However, different disorder realizations may still push
the highest occupied level through the chemical poten-
tial, resulting in an average total particle number that is
non-integer.

In panels (d) and (i) the disorder is strengthened, but
the chemical potential is also raised. This results in the
opposite situation: now the disorder cannot empty a pre-
viously occupied state, but there is on the other hand
a strong possibility of the lower levels’ being permuted.
Since the energy-level permutation is more likely at lower
energies, the departure from the clean behavior is asym-
metric, unlike in panels (c) and (h).

Lastly, we have included the case of very strong disor-
der, for comparison with Fig. 11.

Appendix B: The post-quench occupation function
with moderate disorder

In addition to the zero-hopping case, we have analyzed
what happens to the occupation function when we intro-
duce moderate disorder into the J 6= 0 system. (Here
‘moderate’ means a disorder strength high enough to do
more than just lift the degeneracy between neighboring
Bragg-localized states.) The results of this analysis are
shown in Fig. 11. In order to have comparable results
upon disorder averaging we have chosen a fixed particle
number N rather than a fixed chemical potential µ. We
have plotted the occupation function not as a function of
energy, but rather eigenstate quantum number k ordered
by energy.
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The results show that as the disorder becomes
stronger, the trap jump has an increasingly minor effect
upon the post-quench occupation function. This is as
expected, since the disorder profile, unlike the trapping
potential, is not displaced at the moment of the quench.
Furthermore we see that in the case of very strong dis-
order the occupation functions for the J = 0 model (see
Fig. 10) and that for the J 6= 0 model become qualita-
tively similar. This is again as it should be, since the

nearest-neighbor coherence
∣∣∣〈Jc†i ci+1

〉∣∣∣ ≈ J2

W for large

disorder.

Appendix C: Hybridization between left- and
right-Bragg-localized states

In this appendix we obtain an approximate form for the
matrix element T responsible for the hybridization of left-
and right-Bragg-localized states. The calculation is simi-
lar in structure to that of the hopping integral in a tight-
binding model.

We first split the Hamiltonian into three parts:

H = Hkin + V0 + V1. (C1)

Here Hkin is the lattice kinetic energy,

Hkin = −2J cos(k̂a), (C2)

while the potential terms V0 and V1 are defined as follows:

V0(x) =
1

2
κx2 Θ(−x), (C3)

V1(x) =
1

2
κx2 Θ(x), (C4)

where Θ(x) is the step function. HL ≡ Hkin + V0 has
only left-localized eigenstates, while HR ≡ Hkin +V1 has
only right-localized ones. We may thus calculate the hop-
ping integral from the left- to the right-localized states
by introducing V1 as a perturbation to HL.

Following [42], we use a WKB approximation for the
left-localized eigenstate, i.e. an eigenstate of HL with
eigenenergy E:

φL(x) ∼ exp

i x∫
x0

k(x′)dx′

 , (C5)

where the wavenumber k(x) is the solution to the equa-
tion

− 2J cos(ka) + V0(x) = E (C6)

and x0 is an arbitrary reference point. We see that, for
x > 0, k is independent of x. The calculation is not very
sensitive to the structure of φL(x) for x < 0, so we make

the following rather crude approximation:

φL(x) =



0 x ≤ −xc;

1√
xc(E)− xb(E) + ξ(E)

−xc < x ≤ −xb;

e−x/ξ(E)√
xc(E)− xb(E) + ξ(E)

x > −xb.

(C7)
Here xc(E) and xb(E) are respectively the classical and
Bragg turning points of the semiclassical orbit,

xc(E) =

√
2E + 4J

κ
, xb(E) =

√
2E − 4J

κ
, (C8)

and ξ(E) is the decay length in the Bragg-forbidden re-
gion,

ξ(E) = − a

ln

(
E
2J −

√(
E
2J

)2 − 1

) . (C9)

Since the transformation x → −x transforms HL into
HR, it follows that the eigenstate of HR with energy E
is given by φR(x) = φL(−x).

The hopping integral is

T =

∞∫
−∞

φ∗L(x)V1(x)φR(x) dx. (C10)

This integral is dominated by the region in which φR(x)
is constant; hence

T ≈ κ

2

xc(E)∫
xb(E)

x2 e−x/ξ(E)

xc(E)− xb(E) + ξ(E)
dx. (C11)

For large energies we can approximate this integral as:

T (E) ≈ κ

2
[xb(E)]

2
exp

(
−xb(E)

ξ(E)

)
, (C12)

which is the form quoted in (7).

Appendix D: The equal-time Green’s function

In this appendix we present a general derivation of the
form of the equal-time Green’s function (14). This is
useful for our purposes because its diagonal form gives
the density; but it may also be useful in future work for
calculating such quantities as the entanglement entropy
[49].

Defining the following basis transformations:

cj = φ∗kjαk; (D1)

cj = ψ∗kjβk; (D2)

βk = Okqαq, (D3)
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we can expand (14) to

Cij(t) = 〈ψ(N)
0 |eiHtφkiφ∗qjα

†
kαqe

−iHt|ψ(N)
0 〉. (D4)

(Here and in the rest of this appendix we use the Ein-
stein convention that repeated indices are summed over.)
From Blaizot’s book [50] (2.19) we get the following iden-
tity:

e
1
2 ν̃Kν+l̄ννie

− 1
2 ν̃Kν−l̄ν =

2L∑
j=1

[(
e−σK

)
ij
νj + ljσji

]
,

(D5)

where ν̃ = νT =
(
α1, . . . , αL, α

†
1, . . . , α

†
L

)
, K is a 2L×2L

matrix, and

σ =

(
0L×L 1L×L
1L×L 0L×L

)
.

In order to bring (D4) into the form of (D5), we write
the Hamiltonian as:

H = ωsβ
†
sβs = ωsO

∗
sqOspα

†
qαp ≡ Hqpα

†
qαp, (D6)

where in the last step we have defined Hqp ≡ ωsO∗sqOsp.
It is convenient to choose K such that (K∗)

T
= K̄∗ =

−K. To achieve this, we symmetrise the Hamiltonian,
making use of the anticommutation properties of the
fermionic operators:

eiHt = eiHqpα
†
qαpt = eiHqp( 1

2α
†
qαp− 1

2αpα
†
q+ 1

2 δqp)t. (D7)

In this form we have e
1
2 ν̃Kν with K =

(
0 −iH̄t
iHt 0

)
and hence obtain: e−σK =

(
e−iHt 0

0 eiH̄t

)
.

We now are in a position to apply (D5) to (D4), which
leaves us with the following equation:

Cij(t) = Akiqj

2L∑
m,n

(
e−σK

)
k+L,m

(
e−σK

)
q,n

Qmn, (D8)

where the matrix element Qmn is defined as follows:

Qmn = 〈ψ(N)
0 |νmνn|ψ(N)

0 〉, (D9)

and Akiqj = φkiφ
∗
qj . The sums are restricted due to the

shape of K and the Fermi-energy, limiting when Qmn is
non-zero. We therefore obtain:

Cij(t) =

N∑
m=1

L∑
k=1

L∑
q=1

φkiφ
∗
qj

(
eiH̄
)
km

(
e−iH

)
qm

(D10)

As a final step we diagonalize the Hamiltonian by revers-
ing (D6) using (D3) which allows us to transform the φ’s
and write the solution in the following form:

Cij(t) =

L∑
a,c=1

N∑
m=1

OamO
∗
cme
−i(ωa−ωc)tψciψ

∗
aj . (D11)

Setting i = j in this formula recovers the expression for
the density ρj(t) given in (15).

Appendix E: A toy calculation of the effect of
disorder on the jump efficiency for small jump sizes

In this final appendix, we present a toy calculation that
allows us to understand the 1− αW 2 dependence of the
jump efficiency at small jump sizes.

It represents the pre-quench single-particle eigenfunc-
tions by:

φ+
nj =

1√
2

(δj,j0+n + δj,j0−n) ; (E1)

φ−nj =
1√
2

(δj,j0+n − δj,j0−n) . (E2)

We have denoted the symmetric and antisymmetric
eigenfunctions separately, while the quantum number
n = 1, 2, 3, ... (we ignore the n = 0 case). Essentially,
this amounts to a cartoon of each harmonic oscillator
eigenfunction in the form of two peaks at its classical
turning points, retaining the information about whether
the function is symmetric or antisymmetric. We thus
obtain the densities:

|φ+
nj |

2 = |φ−nj |
2 =

1

2
(δj,j0+n + δj,j0−n) . (E3)

We need to occupy the symmetric and antisymmetric ver-
sions of N/2 eigenstates to get the correct particle num-
ber, i.e. we occupy the states with 1 6 n 6 N/2, such
that the total density becomes

ρj =

N/2∑
n=1

(δj,j0−n + δj,j0+n) . (E4)

This is a ‘block’ in real space, covering the region j0 −
N/2 6 j 6 j0 + N/2 (with a hole at j = j0, but this
causes only a 1/N effect, which we neglect).

Second, we assume that the post-quench eigenfunc-
tions in the presence of disorder may similarly be ap-
proximated by:

ψ+
nj =

√
1 + σnW

2
δj,j1+n +

√
1− σnW

2
δj,j1−n;

(E5)

ψ−nj =

√
1 + σnW

2
δj,j1+n −

√
1− σnW

2
δj,j1−n,

(E6)

where the random variable σn = ±1 is chosen indepen-
dently for each value of n to encode the presence of
disorder. Note that for both the pre- and post-quench
eigenfunctions we have made the simplifying assump-
tion that the position of the classical turning points is
proportional to the energy of the eigenstate. This cor-
responds to choosing a linear trapping potential rather
than a quadratic one.

With the above choice of eigenfunctions we can de-
termine x1,n, the disorder-dependent center of mass of
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post-quench eigenfunction n:

x1,n =
∑
j

j|ψ+
nj |

2 =
∑
j

j|ψ−nj |
2 = j1 + σnnW, (E7)

which is linear in W and independent of the symmetry
of the eigenfunction.

In order to determine the post-quench occupation func-
tion nβ , we first determine the overlap between a partic-
ular pair of pre- and post-quench eigenfunctions:

OS0S1
n0n1

≡
∑
j

φS0
n0j

ψS1
n1j

(E8)

=

√
1 + σn1

W

2
(δj0+n0,j1+n1

+ S0δj0−n0,j1+n1
)

+

√
1− σn1

W

2
S1 (δj0+n0,j1−n1

+ S0δj0−n0,j1−n1
) .

(E9)

Here S0, S1 ∈ {−1,+1} are the symmetries of the pre-
and post-quench eigenfunctions, and n0 and n1 are their
quantum numbers. Assuming without loss of generality
that j1 > j0, the pure S0 term is always zero, so that we
obtain as squared overlap:∣∣OS0S1

n0n1

∣∣2 =
1 + σn1W

4
δj0+n0,j1+n1

+
1− σn1

W

4
(δj0+n0,j1−n1

+ δj0−n0,j1−n1
) .

(E10)

The post-quench occupation function then takes the form

nS1
n1

=

N/2∑
n0=1

∑
S0=±1

(
1 + σn1W

4
δj0+n0,j1+n1

+
1− σn1W

4
(δj0+n0,j1−n1

+ δj0−n0,j1−n1
)

)
.

(E11)

Since n1 has to be positive, we obtain

nS1
n1

=



1 n1 ≤ N/2−∆;

1− σn1
W

2
N/2−∆ < n1 ≤ N/2 + ∆;

0 otherwise.

(E12)

Hence the post-quench centre of mass is

x1 =
2

N

L/2∑
n1=1

(j1 + σn1n1W )ns1n1
(E13)

=
2

N

N/2−∆∑
n1=1

(j1 + σn1
n1W )

+
2

N

N/2+∆∑
n1=N/2−∆+1

(j1 + σn1
n1W )

(
1− σn1

W

2

)
.

(E14)
Upon disorder-averaging, any term containing an odd
power of σn1

vanishes, while the average of any even
power of σn1

is unity. Hence

x1 =
1

N

[
2j1

(
N

2
−∆

)
+ j1 (2∆)

]

− W 2

N

N/2+∆∑
n1=N/2−∆+1

n1 (E15)

= j1 −∆W 2N + 1

N
(E16)

≈ j1 −∆W 2. (E17)

The jump efficiency is given by the difference between
this post-quench center of mass and the pre-quench one
in units of the jump size:

η ≡ x1 − j0
∆

(E18)

≈ ∆−∆W 2

∆
(E19)

= 1−W 2. (E20)

This is the qualitative behavior that we observe for small
jump sizes in Fig. 8.
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C. McKenzi, A. Browaeys, D. Cho, K. Helmerson, S. L.
Rolston, and W. D. Phillips, J. Phys. B 35, 3095 (2002).
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