
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear looped band structure of Bose-Einstein
condensates in an optical lattice

S. B. Koller, E. A. Goldschmidt, R. C. Brown, R. Wyllie, R. M. Wilson, and J. V. Porto
Phys. Rev. A 94, 063634 — Published 23 December 2016

DOI: 10.1103/PhysRevA.94.063634

http://dx.doi.org/10.1103/PhysRevA.94.063634


Nonlinear looped band structure of Bose-Einstein condensates in an optical lattice

S. B. Koller,1, 2 E. A. Goldschmidt,3 R. C. Brown,1, ∗ R. Wyllie,1, † R. M. Wilson,4 and J. V. Porto1

1Joint Quantum Institute, National Institute of Standards and Technology
and University of Maryland, Gaithersburg, Maryland 20899, USA
2Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

3United States Army Research Laboratory, Adelphi, Maryland 20783, USA
4Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA

(Dated: November 22, 2016)

We study experimentally the stability of excited, interacting states of bosons in a double-well op-
tical lattice in regimes where the nonlinear interactions are expected to induce “swallowtail” looped
band structure. A dynamic homogeneous Gross-Pitaevskii calculation indicates that the double
well lattice both stabilizes the looped band structure and allows for dynamic preparation of differ-
ent initial states, including states within the loop structure. The homogeneous calculation predicts
that the loop states, unlike the ground states, should be dynamically stable. An inhomogeneous
mean-field calculation including the trap potential, however, implies that the decay is dominated by
inhomogeneous effects and that there is little variation in the decay rate among the states prepared
within the loop structure. By experimentally preparing different initial coherent states and observ-
ing their subsequent decay, we observe distinct decay rates in regimes where multi-valued looped
band structure is expected, though not the stability predicted by the homogeneous calculation.

Interactions in Bose-Einstein condensates (BECs) can
give rise to qualitatively new nonlinear phenomena [1–
5]. For example, superfluids in optical lattices can ex-
hibit additional, interaction-stabilized states arising from
the so-called “swallowtail catastrophe” in which the band
structure becomes multi-valued [6–9]. As the interaction
increases, the collective band structure at the edge of the
Brilloiun zone (BZ) develops a cusp (a discontinuity in
the derivative), and subsequently a loop with multiple
energy states that can be occupied at the same quasimo-
mentum. The existence of loop states is related to dy-
namical asymmetry in Landau-Zener tunneling between
coupled states of the many-body system [10], which has
been used to indirectly observe nonlinear loop structure
[4, 11]. Despite the fact that ultracold atoms in opti-
cal lattices are an ideal system to realize nonlinear wave
dynamics, the interaction strengths needed to generate
such interesting band structure in a single-period square
lattice are prohibitively large for ultracold atom systems.

In addition to multi-valued band structure at the edge
of the BZ, period doubled solutions are also expected
to occur halfway to the edge of the BZ [12]. Adding
a weak lattice at half the main lattice period expands
the parameter regime where band structure loops are ex-
pected [8], making them more experimentally feasible.
The states associated with the loop are collective excited
states, and an essential consideration in their observation
is their stability [13–17]. Even in the weakly interacting,
mean-field limit, dynamical instabilities can arise that
quickly destroy the excited superfluid state [18–20]. How-
ever, dynamically stable mean-field solutions exist [21],
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and there are experimentally accessible regimes where
mean-field calculations predict different decay rates for
the multi-valued bands. Notably, a homogeneous mean-
field theory predicts a regime where excited loop states
are dynamically stable near the band edge, while states
in the ground band are dynamically unstable. An exam-
ple of such looped band structure is shown by the grey
line in Fig. 1a.

Here, we dynamically produce nonlinear excited states
of a harmonically trapped BEC in a two dimensional
checkerboard optical lattice and show experimentally
that, depending on which initial nonlinear state is pre-
pared, the subsequent dynamics is multi-valued in pa-
rameter regimes where loop states are expected. In par-
ticular, we observe distinct decay rates near the band
edge in the presence of a weak lattice at half the main
lattice period. In this way, our observations are in qual-
itative agreement with a homogeneous mean-field the-
ory. However, we observe a substantial decay in the
loop states that is not captured by this theory, indicating
that inhomogeneities and correlations that invalidate this
mean-field description may play an important role [22].
While an inhomogeneous mean-field theory that includes
the harmonic trapping potential exhibits this decay, it
otherwise does not provide an accurate description of the
experimental data. However, we note that beyond mean-
field correlations can cause additional instabilities in the
excited states [4, 22], and may play a role in this system.
Finally, by measuring the energy released upon decay, we
show that there is an energy difference between the dif-
ferent state preparations, providing additional evidence
of multi-valued band structure.

Although homogeneous mean-field calculations predict
the existence of stable loop states at the band edge,
such states are not necessarily trivial to produce experi-
mentally. The mean-field interacting states obey Bloch’s
equation and are characterized by a quasimomentum q.
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Raman or Bragg excitation can excite weakly-interacting
BECs to a given quasimomentum q 6= 0 because the
initial and final states are single-particle in nature, as
are such excitation techniques. The loop states, how-
ever, rely on interactions, and it is not clear how well
single-particle Raman excitation couples to such collec-
tive states via intermediate states with only partial trans-
fer. In order to prepare states in the interacting band,
we use a combination of adiabatic and diabatic manipu-
lation of the lattice structure [16, 23] while accelerating
the BEC to momenta near the band edge.

The 2D lattice is produced with a 813 nm laser in a
bow-tie configuration in the xy-plane and weak harmonic
confinement in the z-direction, giving rise to a checker-
board array of 1D tubes with ∼ 100 atoms per tube at
the center of the cloud [24]. The staggered energy off-
set, ∆, between neighboring tubes can be dynamically
controlled on timescales as short as 10 µs, much faster
than any dynamic timescale in the system. For ∆ 6= 0,
the fundamental lattice period increases from the usual
λ/2 to λ/

√
2, and the Bravais lattice and associated BZ

are rotated 45 degrees with respect to the original λ/2
lattice (Fig. 1c). A stable looped structure is expected
along the edge of the smaller BZ for ∆ on the order of
interaction energy parameterized by gn̄ (n̄ is the average
atomic density [25] and g = 4π~2a/m, where a is the
scattering length and m the mass of 87Rb). We develop
three different procedures (described below), to prepare
initial states that we label “(G)round”, “(E)xcited” and
“(L)oop” and then study the stability of each of these
states by measuring characteristic decay timescales as
functions of quasimomentum q, staggered offset ∆, and
atomic density n.

All experiments start with a 87Rb BEC at rest (q = 0)
in the ground band of a Vlat = 10.6ER lattice with
a staggered offset too large to support a loop. (Here,
ER = ~k2R/2m = 3.5 kHz is the single-photon recoil
energy associated with the short period lattice, kR =
2π/λ =

√
2kX .) A force, F , is applied to the atoms us-

ing a magnetic field gradient, resulting in an acceleration
q̇ = F along the direction “X” associated with the long
period of the lattice (see Fig. 1) to near the edge of the

band, which occurs at q = kX = π/(λ/
√

2). The force
is chosen to accelerate fast enough to minimize the de-
cay associated with dynamic instabilities [20], yet slow
enough to preclude band excitation. The resulting accel-
eration rate is calibrated by pulling the atoms through
the entire BZ and observing Bloch oscillations of q [26].
The angle between the force and the X direction of the
BZ was determined to be less than 0.4 degrees by com-
paring Bloch oscillation patterns to atom diffraction after
pulsing the lattice.

For each state preparation sequence, G, L, and E, the
final lattice configuration is identical, with a final stag-
gered offset ∆ of order the interaction energy gn̄. For
the G sequence, the accelerating force is applied until
the desired final q is reached, at which point the offset is
reduced (in 50 µs) to the final value ∆. For the L and

FIG. 1. (a) State preparation of an interacting BEC in the
looped band structure (grey solid and dashed lines). Dashed
parts of the band structure indicate dynamically unstable re-
gions. A combination of forces to accelerate the quasimomen-
tum and control of the staggered offset ∆ are used to prepare
the BEC in the ground (red), loop (black), or excited (blue)
bands as indicated schematically by the lines with arrows and
described in the text. Note that until the final state prepara-
tion step, the staggered offset is too large to support a loop.
The insets show the final wavefunctions calculated by a time-
dependent Gross-Pitaevskii (GP) simulation. (b) Real-space
lattice potential with staggered wells in 2D. (c) 2D Brillouin
zones associated with the lattice of period λ/2 (blue) and
λ/

√
2 (red). Acceleration is from q = 0 at Γ to q = kX at X.

(d) Overlap between the dynamic GP simulation and the ideal
wavefunctions for the E, L, and G preparations sequences, as
a function of q.

E sequences, when the accelerating force brings the BEC
to q ≈ kX/2, the sign of the staggered offset is switched
(in 50 µs), projecting the state into the excited band.
Switching at q ≈ kX/2 avoids the most unstable regions
0 < q < kX/2 in the excited band and kX/2 < q < kX
in the ground band. The accelerating force continues to
increase q with the BEC in the excited band until the de-
sired q is reached, at which time the offset is switched to
the final ∆ and the accelerating force is terminated. The
wavefunctions in the excited and loop bands are nearly
identical for ∆ → −∆ when q is near kX so the sign of
the final ∆ determines whether the E or L state is pre-
pared. See the Appendix for further information on the
state preparation.

To characterize the preparation sequences, we sim-
ulated the dynamics using the time-dependent Gross-
Pitaevskii (GP) equation in a homogeneous system with
the time sequences used in the experiment, starting with
the GP ground state at q = 0. We then calculated the
overlap of the dynamically created nonlinear wavefunc-
tions, ψ, with the solutions of the stationary GP equa-
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FIG. 2. Decay of visibility as a function of hold time for
states prepared by the (G)round (red), (L)oop (black), and
(E)xcited (blue) sequences. The examples here correspond to
the case of q = kX , ∆/h=0.7 kHz and gn̄/h=0.31(1) kHz.
The fitted rates for the G-, L-, and E-preparations are
1.29(9) ms−1, 0.84(8) ms−1, and 0.21(3) ms−1, respectively.
Large inset: absorption image with analysis regions S (solid
lined squares), B1 (dashed line central square), and B2 (dot-
ted lined triangles) [25]. Smaller insets: absorption images at
different decay times, as indicated.

tion, ψnq where n = G, L, E is the band index, at the
same q and ∆. The resulting overlap with the given tar-
get state is better than 90% for the range of q studied
for all three sequences, as shown by the solid lines in
Fig. 1d. Note that unlike for linear equations, two dif-
ferent nonlinear solutions to the same GP equation are
not expected to be orthogonal, and overlap with the un-
wanted states does not imply preparation infidelity. In-
deed, there is significant overlap between the different
solutions of the stationary GP equation. We note that
non-adiabatic excitation of the states, in addition to in-
homogeneity, can contribute to the instability of dynam-
ically prepared states.

Having prepared states near the desired state in a given
lattice configuration, the BEC is held in the lattice for a
variable time tD. The lattice is subsequently turned off
in 1.5 ms, chosen such that the quasimomentum distri-
bution is mapped to position following time-of-flight [25].
We take an absorption image and determine the occupa-
tion of the first and second BZ for each preparation se-
quence and tD. To quantify the decay, the absorption sig-
nal is integrated over regions of the BZ that contain the
initial coherent BEC to get the average column density
S within those small regions. The signal S is compared
to the integrated column density B1 (B2) contained in
the first (second) BZ, with visibility defined as [25]

Vi =
S −Bi

S +Bi
+ C, (1)
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FIG. 3. Measured decay rates vs quasimomentum q of
the G (red, light grey), L (black), and E (blue, dark grey)
states for a) ∆/h=0.7 kHz and and gn̄/h=0.31(1) kHz and
b) ∆/h=1.1 kHz and gn̄/h=0.29(1) kHz. The color scheme
for the G (red), L (black) and E (blue) prepared states is
the same as in Fig. 2 and error bars indicate the standard
deviation from the exponential fit.

where C is chosen so that the visibility Vi decays to zero.
The observed relaxation of Vi is approximately exponen-
tial, so to characterize the decay timescale we fit it to an
exponential function. Example Vi are shown in Fig. 2,
with example images of the filling of the first and second
BZ as insets. The large inset indicates the regions S, B1,
and B2.

The behavior of the decay is qualitatively and quanti-
tatively different for the different preparation sequences:
the E sequence leads to slower decay (near the band edge)
that initially fills the second BZ before eventually fill-
ing the first BZ, while the G and L sequences lead to
decay that initially fills the first BZ. (For the G and
L sequences, the relatively small total energy available
within the ground band can relax into the direction per-
pendicular to the lattice, resulting in a narrowing of the
momentum distribution around q=0 in the 2D plane at
long times [16]. In contrast, the much larger energy as-
sociated with the gap to the excited band results in sig-
nificantly more heating within the 2D plane after decay.)
V1 is used to extract decay rates for the G and L prepa-
rations and V2 is used to extract a decay rate for the E
prepared states. Despite the fact that the final lattice
configurations are identical for the G and L sequence, we
find that the L prepared states decay more slowly than
the G states over a range of parameters.

We first study the stability of the G, L, and E states as
a function of quasimomentum q. Fig. 3 shows the decay
rates for the ground and loop states for two different stag-
gered offsets ∆/h = 0.7 kHz, 1.1 kHz and similar interac-
tion energy gn̄/h ≈ 0.31 kHz. The slower, excited band
decay (in blue) is shown primarily for reference when in-
cluded. We find the L decay rate is approximately 40%
smaller than the G decay rate for q near the band edge,
indicating greater stability of the loop states in that re-
gion. The discrepancy in decay rate disappears, however,
at smaller q. The closing of the discrepancy between the
L and G decay rates occurs at larger q for larger stag-
gered offset ∆. This is the same behavior predicted by
the homogeneous mean-field theory for the loop closure



4

150 200 250 300 350 400

gn̄/h (Hz)

0.0

0.5

1.0

1.5

2.0
ra

te
(m

s−
1 )

a)

250 300 350 400

gn̄/h (Hz)

0.0

0.5

1.0

1.5

2.0

ra
te

(m
s−

1 )

b)

0.7 0.8 0.9 1.0 1.1

∆/h (kHz)

0.0

0.5

1.0

1.5

2.0

ra
te

(m
s−

1 )

c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

∆/h (kHz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
te

(m
s−

1 )

d)

FIG. 4. Decay rates vs interaction energy gn̄ for different
states G (red, light grey), L (black), E (blue, dark grey) with
q = kX and a) ∆/h=0.9 kHz and b) ∆/h=1.1 kHz. De-
cay rates vs offset ∆/h with c) q = 0.82 kX and gn̄/h =
0.29(1) kHz and d) q = kX and gn̄/h = 0.4(2) kHz. Verti-
cal error bars indicate the standard deviation from the fit of
the decay and horizontal error bars on a) and b) indicate the
standard deviation of the mean of all measured instances.

point (see [21] and the Appendix).
The homogeneous mean-field theory also predicts a

critical value of the offset ∆ for a given interaction en-
ergy gn̄, above which no loop is present, and this value
of ∆ is predicted to increase with increasing gn̄. We thus
expect the loop to only be present for a value of ∆ that
is set by the interaction energy. We observe this behav-
ior, as the difference between the L and G decay rates
decreases for increasing ∆ or decreasing atomic density
(see Fig. 4). In particular, the interaction necessary to
observe a difference between the G and L state is higher
for larger staggered offset, as seen in Fig. 4a-b. In ad-
dition, Fig. 4c-d shows that the loop and ground decay
rates converge closer to the band edge for larger staggered
offset, as in Fig. 3.

To understand the effects of the inhomogeneity intro-
duced by the harmonic trap on the dynamics, we per-
formed 2D GP simulations of the state preparation and
subsequent dynamics in a regime where the homoge-
neous mean-field theory predicts a dynamically stable
loop near the band edge (see more details in the Ap-
pendix). Fig. 5 shows Vi as extracted from these sim-
ulations for gn̄/h = 0.31 kHz and the target states at
q = kX . While the decay is not immediately exponen-
tial as observed in the experiment, the L state (shown by
the black line) does decay on a timescale of a few ms, as
observed. The state in the E band (shown by the blue
line) is much more stable than the states in the L and
the G band, which is consistent with our experimental
observations. However, the difference in the decay rates
of the G and L states does not agree with our experi-

FIG. 5. Simulated visibility Vi (defined in text) as a function
of time for states prepared by the (G)round (red, light grey),
(L)oop (black), and (E)xcited (blue, dark grey) sequences to
q = kX for a temperature T = 50 nK. in an inhomogeneous
lattice. These simulations show faster decay of the G and L
states, and a more stable E state, consistent with the exper-
imental observations, and were produced with an inhomoge-
neous 2D GP calculation (details in Appendix).

mental observations, and generally these simulations do
not provide accurate agreement with our observations for
target states at other values of q. This suggests that be-
yond mean-field correlations or spatial dynamics in the z-
direction are important to fully understand the observed
data.

An additional consequence of the nonlinear band struc-
ture is that the total energy of the looped band state
should be more than the ground band state at the same
q. We investigate the energy released from the differ-
ently prepared states by measuring the cloud width after
decay. For each preparation sequence, we calculate the
mean square width of the quasimomentum distribution,
w2 = 〈r2n(r)〉/〈n(r)〉, at times much longer than the
decay time, where r is the distance measured from the
center of the BZ. As shown in Fig. 6, the loop prepared
states have larger final energy than the ground states,
despite the fact they have identical lattice configurations
and the loop state decays more slowly. The discrepancy
in released energy is reduced, but does not vanish, when
the decay rate gap closes, perhaps indicating either addi-
tional energy due to imperfect state preparation during
the L sequence or a region of multi-valued bandstructure
in which the loop and ground bands have the same sta-
bility. We note that the decay rates and energy released
for the three different state preparations trend in oppo-
site directions: the faster decaying G states have smaller
final w2, while the slower L and E states have larger final
w2. This supports a description of decay driven by dy-
namic instabilities, rather than energetic considerations.

The observed convergence of the decay rate of the G
and L prepared states occurs at values of q, ∆, and gn̄
that agree qualitatively with the trends we expect from
a mean-field calculation. However these points do not
agree with a quantitative analysis of the region where
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FIG. 6. Mean squared width, w2, after decay from the
Ground (red, light grey), Loop (black) and Excited (blue,
dark grey) prepared states, a) as a function of q at an offset
of 700 Hz. (Compare with Fig. 3a)), and b) as a function of
interaction energy gn̄/h for ∆/h=1.1 kHz. Error bars indicate
the standard deviation from different measurements over all
states.

a stable loop is predicted given the Bogliubov spectrum
either in full 2D or restricted to modes in the direction
of the acceleration in quasimomentum [25]. This dis-
crepancy suggests the measured decay rates are due to
a combination of effects beyond just the dynamic sta-
bility of the mean-field state, including inhomogeneities
across the lattice, state preparation infidelities and be-
yond mean-field correlations. It is clear, however, that
the nature of the mean-field state for a given prepara-
tion plays an important role in the relaxation. The de-
cay mechanisms and their interplay with the transverse
degrees of freedom is an interesting topic that could be
further studied by adding a weak lattice in the third spa-
tial dimension to control the magnitude of correlations
and dispersion in that direction.

The authors thank M. Foss-Feig for helpful discus-
sions. This work was partially supported by the ARO’s
Atomtronics MURI. RMW acknowledges partial support
from the National Science Foundation under Grant No.
PHYS-1516421.

I. APPENDIX

A. Lattice and state preparation

All experiments begin with a 87Rb BEC with no dis-
cernible thermal fraction in the |F = 1,mF = −1〉 in-
ternal hyperfine state, optically trapped with trap fre-
quencies (νx, νy, νz) = (12(2), 40(4), 100(9)) Hz. Control
of the atom number, independent of trap parameters, is
achieved by microwave removal of a fraction of atoms be-
fore the final stage of cooling. The lattice depth and off-
set ∆ are determined from an experimentally calibrated
model of the 2D lattice potential [24]. We parameterize
the interaction energy by gn̄, where n̄ is the peak den-
sity averaged over a unit cell, n̄ = (2/λ2)n1D(z = 0)
and n1D is the 1D density along the lattice-free central
tube. The interaction energy, gn̄(λ2/2)

∫
d2r |φ(r)|4, de-

pends on the size of the compressed localized Wannier

function φ(r), (φ(r) is normalized to 1). For the lattice

depths considered here, (λ2/2)
∫
d2r |φ(r)|4 ' 4, giving

rise to an effective factor of four increase in interaction
compared to a lattice-free case with the same average
density. The value of gn̄ is calculated either from an ef-
fective Thomas-Fermi approximation using the measured
total atom number N and trap frequencies (including the
lattice), or from a full 3D ground state solution of the GP
equation in the lattice. The two methods agree to 5 %.

The preparation sequences were empirically chosen to
optimize the coherence of the final state BEC, while
avoiding band excitations and minimizing dynamical in-
stability decay during preparation. The BEC was ini-
tially loaded into a 8.9 ER lattice with positive offset
∆1 > 0 by turning on the lattice beams during 200 ms,
followed by a 400 ms hold time. (∆1/h = 2.8 kHz for
the E and L sequence and ∆1/h = 1.7 kHz for the G
sequence.) In order to minimize excitations during sub-
sequent lattice manipulations, the lattice depth is then
ramped in 0.5 ms to a depth of 10.6 ER and a larger off-
set ∆2. (∆2/h = 3.3 kHz for the E and L sequences, and
∆2 = 2.0 kHz for the G sequence.)

After the increase in lattice depth, a magnetic field
gradient is turned on to accelerate the BEC from q = 0
to the final value near q = kX in a time tF ' 1 ms.
The acceleration time was chosen to prevent excitations,
but to minimize dynamical decay during the acceleration.
The switch from positive to negative offset in the E and
L sequences, as well as the switch to the final offset value,
only couple states with the same q, and were chosen to
project the BEC onto particular states in the resulting
band structure without residual band excitation. The
switch from positive to negative offset was tested at q = 0
by switching back and looking for excitation in the second
BZ. No discernible excited fraction was observed for the
lattice depth used. The GP simulations confirm that
this combination of adiabatic and diabatic manipulations
results in preparation of states with large overlap with
the desired final states.

B. Image analysis

The data was taken by absorption imaging the atom
cloud after 21 ms time-of-flight, effectively measuring
the momentum distribution. The lattice turn-off time of
1.5 ms was chosen to “band map” the quasimomentum
distribution n(q) onto the free particle momentum distri-
bution n(p). (Near the band edges, it is impossible to be
fully adiabatic, but this does not mix q and only results
in some mixing of n(q) at points near the band edges that
differ by reciprocal lattice vectors.) For the G and L se-
quences, some additional coherence decay occurs during
the band mapping. The resulting momentum distribu-
tion is then divided into several regions S, B1, B2 and
K. The relative position of B1, B2 and K are fixed, but
the position of region S depends on q, since the signal in
S measures the initially prepared BEC state. The signals
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FIG. 7. Presence and stability of the loop band for interac-
tion energy gn̄/h = 0.31 kHz as a function of ∆ and q in a
homogeneous lattice. Multi-valued band structure is present
in the region to the right of the solid blue line. The blue
dashed line encloses a region where the loop states are dy-
namically stable. The region to the right of the dashed red
line corresponds dynamically unstable states in the ground
band.

in regions B1 and B2 measure the population outside of
S in the first and second BZ, respectively. These regions
are chosen slightly smaller than the BZ to avoid ambigu-
ous population mixed between different zones. The large
triangles K in the corners of the image are used to de-
termine the background per pixel, K/NK , assuming it is
constant over the image and NK is the number of back-
ground pixels. We calculate the background-subtracted
signal for the decay curves:

(S −KNS/NK)− (Bi −KNBi
/NK)

(S −KNS/NK) + (Bi −KNBi/NK)
+ C,

where NX is the number of pixels in zone X and C is a
single constant for each preparation G, E or L, chosen
so that the visibility decays to zero.

The mean squared width, w2 = 〈r2n(r)〉/〈n(r)〉, is cal-
culated from images taken after the atom distribution
has relaxed. We note that the band mapping technique
modifies the initial energy distribution, and the observed
time of flight w2 does not directly represent the energy
distribution in the lattice. Within a band, the measured
w2 is monotonically related to the energy in the band.

C. Mean-field loop and stability regions

We model the experimental state preparation, the non-
linear band structure, and the stability of the states with
an effective two-dimensional mean-field theory described
by the energy functional

E =

∫
d2r ψ∗(r)

(−~2
2m
∇2 + Vlat(r) +

g2D
2
|ψ(r)|2

)
ψ(r)

(2)

and the corresponding time-dependent Gross-Pitaevskii
equation

i~∂tψ(r) =

(−~2
2m
∇2 + V (r) + g2D|ψ(r)|2

)
ψ(r), (3)

where V (r) is the external potential g2D = gn̄λ2/2 is
the effective 2D interaction coupling. For calculations of
the nonlinear band structure and the dynamics of state
preparation, we consider a homogeneous system with
only a lattice,

V (r) =
∆

4
(cos(2kXx)− cos(2kXy))

+ Vlat cos(2kXx) cos(2kXy), (4)

Vlat is the lattice depth,
We calculate the nonlinear band structure following

the method of [21]. We find the stationary Bloch
solutions of Eq. (3), which have the form ψnq(r) =
eiq·runq(r) where n is the band index and q is the quasi-
momentum in two dimensions. We work in the reciprocal
space, and expand unq(r) =

∑
k cnke

ik·r. We find {cnk}
numerically for all relevant values of n and q, reconstruct
ψnq, then find the energy of the state using Eq. (2). In
our dynamical simulations of Eq. (3) to model the state
preparation, we consider unit cells of area λ2/2 and im-
pose periodic boundary conditions in the phase-gradient
of ψ(r).

The expected parameter regime for looped band struc-
ture at a representative interaction strength of gn̄ =
0.31 kHz is shown in Fig. 7. Here, the region to the right
of the solid blue line indicates the presence of looped
band structure. We calculate decay rates using a lin-
ear stability analysis, which in this mean-field frame-
work corresponds to a Bogoliubov treatment. We de-
rive the Bogoliubov equations by substituting ψnq(r)→
ψnq(r) + δ

∑
p

(
Un,q+pe

i(p·r−ωt) + V∗n,q−pe−i(p·r−iωt)
)

in

Eq. (3) and linearizing in δ. We diagonalize these equa-
tions to obtain the Bogoliubov spectrum. The imaginary
part of this spectrum corresponds to decay of the equi-
librium state at the rate Im[ω]. In Fig. 7, the region
enclosed by the blue dashed line indicates a dynamically
stable state in the loop, and the region to the right of the
red dashed line indicates dynamically unstable ground
band states.

We model the inhomogeneous state preparation and
the subsequent dynamics using Eq. (3) with both a lattice
and a harmonic trap, so

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2
)

+
∆

4
(cos(2kXx)− cos(2kXy))

+ Vlat cos(2kXx) cos(2kXy), (5)

where (ωx, ωy) = 2π(νx, νy). We first find the station-
ary ground state of Eq. (2), ψ0, using imaginary time
evolution. To account for fluctuations due to finite tem-
perature, we seed this state with random noise according
to the Truncated Wigner formalism [27]. In particular,
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we employ a local density approximation with an initial
state is given by

ψ(r) = ψ0(r) +
∑
q

(
uq(r)βq + v∗q(r)β∗q

)
(6)

where uq(r) = uqψ0(r) and vq(r) = vqψ0(r), where
uq and vq are solutions of the Bogoliubov equations

for a spatially homogeneous system with V (r) = 0 and

BEC density n̄, and βj =
√
nq + 1/2 (xj + iyj)/

√
2,

where xj and yj are normally distributed Gaussian ran-
dom variables with zero mean and unit variance and
nq = (eωq/kBT − 1)−1 is the Bose-Einstein distribu-
tion [28]. The sum in Eq. (6) runs over momenta q
such that qmin < |q| < qmax where qmin is approxi-
mately the inverse Thomas-Fermi radius of the cloud,
and qmax = 10kX .
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