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We study a system of N non-interacting spin-less fermions trapped in a confining potential, in
arbitrary dimensions d and arbitrary temperature T . The presence of the confining trap breaks the
translational invariance and introduces an edge where the average density of fermions vanishes. Far
from the edge, near the center of the trap (the so called “bulk regime”), where the fermions do not
feel the curvature of the trap, physical properties of the fermions have traditionally been under-
stood using the Local Density (or Thomas Fermi) Approximation. However, these approximations
drastically fail near the edge where the density vanishes and thermal and quantum fluctuations are
thus enhanced. The main goal of this paper is to show that, even near the edge, novel universal
properties emerge, independently of the details of the shape of the confining potential. We present
a unified framework to investigate both the bulk and the edge properties of the fermions. We show
that for large N , these fermions in a confining trap, in arbitrary dimensions and at finite temper-
ature, form a determinantal point process. As a result, any n-point correlation function, including
the average density profile, can be expressed as an n × n determinant whose entry is called the
kernel, a central object for such processes. Near the edge, we derive the large N scaling form of
the kernels, parametrized by d and T . In d = 1 and T = 0, this reduces to the so called Airy
kernel, that appears in the Gaussian Unitary Ensemble (GUE) of random matrix theory. In d = 1
and T > 0 we show a remarkable connection between our kernel and the one appearing in the
1 + 1-dimensional Kardar-Parisi-Zhang equation at finite time. Consequently our result provides
a finite T generalization of the Tracy-Widom distribution, that describes the fluctuations of the
position of the rightmost fermion at T = 0, or those of the largest single fermion momentum. In
d > 1 and T ≥ 0, while the connection to GUE no longer holds, the process is still determinantal
whose analysis provides a new class of kernels, generalizing the 1d Airy kernel at T = 0 obtained
in random matrix theory. Some of our finite temperature results should be testable in present-day
cold atom experiments, most notably our detailed predictions for the temperature dependence of
the fluctuations near the edge.
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I. INTRODUCTION

A. Overview

Over the past few years, experimental developments in trapping and cooling of dilute Bose and Fermi gases have
led to spectacular progress in the study of many-body quantum systems [1, 2]. Even in the absence of interactions
bosons and fermions display collective many-body effects emerging purely from the quantum statistics [3–5]. For
non-interacting fermions, which we focus on here, the Pauli exclusion principle induces highly non-trivial spatial (and
temporal) correlations between the particles. Remarkably, the recent development of Fermi quantum microscopes
[6–8] provides a direct access to these spatial correlations, via a direct in situ imaging of the individual fermions, with
a resolution comparable to the inter-particle spacing. It is thus important to have a precise theoretical description of
these correlations in such fermionic gases.

In many experimental setups, including the aforementioned Fermi quantum microscopes, the fermions are trapped
by an external potential. This trapping potential breaks the translational invariance and generically induces an edge
of the Fermi gas. Indeed, beyond a certain distance from the center of the trap, the average density of fermions
vanishes. Far from the edge, i.e., close to the center of the trap, the properties of the Fermi gas are well described by
standard tools of many-body quantum physics, like the local density (or Thomas-Fermi) approximation (LDA) [4, 9].
However, this approximation breaks down close to the edge where the density vanishes, and where the fluctuations
(both quantum and thermal) are large [10]. The purpose of this paper is to develop a general framework, which
encompasses the LDA (and actually puts it on firmer ground) and provides an analytical description of the edge
properties of the Fermi gas in any spatial dimension d, and at finite temperature T .

This framework, whose main results were recently announced in two short Letters [11, 12], is based on Random
Matrix Theory (RMT) [13, 14] and, more generally, on the theory of determinantal point processes [15–17]. The
simplest example is the case of N non-interacting spin-less fermions in a one-dimensional harmonic potential V (x) =
1
2mω

2x2 at zero temperature T = 0. In this case, by computing explicitly the ground-state wave function, one can
show [13, 18, 19] that there exists a one-to-one mapping between the positions of the fermions x1, x2, . . . , xN and
the (real) eigenvalues λ1, λ2, . . . , λN of random N × N Hermitian matrices with independent Gaussian entries, the
so called Gaussian Unitary Ensemble (GUE) in RMT. Although this connection has certainly been known for a long
time [13], it is only recently that the powerful tools of RMT have been used to compute the statistics of physical
observables for fermions [18–22] (see section III for an extended discussion of these applications). In particular, it is
well known that, in the large N limit, the (scaled) density of eigenvalues (or equivalently the density of fermions) has

a finite support and is given by the celebrated Wigner semi-circular law fW (z) = 1
π

√
2− z2.

Going beyond the average density, the fluctuations at the edge of the Wigner sea have also generated a lot of
interest in RMT. Of particular interest is the statistics of the largest eigenvalue λmax = max1≤i≤N λi. Indeed, its
probability distribution function (PDF), properly shifted and scaled (see section III below for more detail) is given for
large N by the celebrated Tracy-Widom (TW) distribution for GUE [23], which is now a cornerstone of extreme value
statistics of strongly correlated variables. Since its discovery in RMT, this TW distribution (and its counterparts
for other matrix ensembles) have emerged in a wide variety of systems, a priori unrelated to RMT. These include
the longest increasing subsequence of random permutations [24], directed polymers [25, 26] and growth models [27]
in the Kardar-Parisi-Zhang (KPZ) universality class in (1 + 1) dimensions as well as for the continuum (1 + 1)-
dimensional KPZ equation [28–31], sequence alignment problems [32], mesoscopic fluctuations in quantum dots [33],
height fluctuations of non-intersecting Brownian motions over a fixed time interval [34, 35], height fluctuations of
non-intersecting interfaces in presence of a long-range interaction induced by a substrate [36], and also in finance [37]
(see [38, 39] for reviews). The TW distributions have been recently observed in experiments on nematic liquid crystals
[40] and in experiments involving coupled fiber lasers [41]. From the aforementioned connection between fermions
and RMT, it follows that the quantum fluctuations of the rightmost fermion xmax(T = 0) = max1≤i≤N xi are also
governed by the TW distribution for GUE. Hence, non-interacting spin-less fermions in a one-dimensional harmonic
trap at T = 0 provide one of the simplest physical system where the TW distribution appears.

It is natural to ask what happens at finite temperature T > 0 and/or in higher dimensions, d > 1? These are
natural and relevant questions both experimentally and theoretically. In this case, the connection with the Gaussian
Unitary Ensemble of RMT is lost. Nevertheless, it is still possible to show that the system is a determinantal process
(this is an exact statement at T = 0 and any d [12] and true only for large N at T > 0 [11]). This means that all
n-point correlation functions of the d-dimensional Fermi gas, Rn(x1,x2, . . . ,xn), can be expressed as the determinant
of an n×n matrix whose entries are given by Kµ(xi,xj) where the function Kµ(x,y) is called the kernel and depends
on the chemical potential µ. It is thus the central object of the theory as it gives access to the computation of all
the correlation functions. Therefore, it is important to characterize the behavior of this kernel, in the limit of a large
number of fermions N � 1, both in the bulk and at the edge of the Fermi gas. In two recent Letters, we announced,
giving few details, results for the limiting kernels first in the case d = 1 and T ≥ 0 in Ref. [11] and then in d > 1,
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but only for T = 0 [12]. In this paper, we present a detailed derivation of these results, which relies in particular on
a path-integral representation of the kernel Kµ(x,y). This allows us to study the problem in any dimension d ≥ 1
and for any finite temperature T ≥ 0, hence generalizing our previous results [12] to finite temperature. We will
show that this method allows us to recover, in a fully controlled way, the LDA results in the bulk but also allows
one to compute the correlations at the edge. In addition, as we will demonstrate below, this path-integral method is
extremely powerful as it allows us to treat a wide class of trapping potentials of the form V (x) ∼ |x|p at large |x|,
with p > 0, and demonstrate the universality of our results, both in the bulk and at the edge.

B. Model

We study in this paper a model for N spin-less non-interacting fermions in a d-dimensional potential V (x). It is

described by an N - body Hamiltonian ĤN =
∑N
j=1 Ĥj , where Ĥj = Ĥ(pj ,xj) is a one-body Hamiltonian of the form

Ĥ ≡ Ĥ(pj ,xj) with

Ĥ =
p̂2

2m
+ V (x) , p̂ =

~
i
∇ . (1)

We will consider here only confining potentials V (x) such that the one body Hamiltonian Ĥ admits an infinite number
of bound states. One such class consists of confining potentials of the form V (x) with V (x) ∼ |x|p at large |x|, with
p > 0, and here we will mainly focus here on this class (and only briefly mention some other cases). The simplest
such confining potential is the isotropic d-dimensional harmonic oscillator

V (x) ≡ V (r) =
1

2
mω2r2 , r = |x| . (2)

C. Outline and summary of the main results

The paper is organized as follows. In section II, we provide the general framework to study the correlations of N
non-interacting fermions in an arbitrary confining potential at zero temperature T = 0 and in arbitrary dimension d.
The main result is the determinantal structure of the n-point correlations in the ground state, given in Eq. (15), with
the associated kernel in Eq. (9). In section III, we focus on the one-dimensional system (d = 1), for the special case
of a harmonic potential V (x) = 1

2mω
2x2, still restricted to T = 0. This case is particularly interesting because of its

connection, valid for any finite number of fermions N , with the Gaussian Unitary Ensemble (GUE) of random matrix
theory (RMT), see Eqs. (20) and (21). From this connection, many interesting properties, which are summarized in
that section, can be obtained for the fermion problem. In particular, this relation with RMT shows that the statistics
of the position of the rightmost fermion, at zero temperature, is governed by the celebrated Tracy-Widom distribution
for GUE, see Eqs. (47) and (48). In section IV we study the case of N non-interacting fermions in a one-dimensional
(d = 1) arbitrary potential V (x) at finite temperature T > 0. The main result of this section is to show that the n-
point correlations still have a determinantal structure in the limit of a large number of fermions N � 1 [see Eqs. (93),
(94)]. As explained in detail in that section, this structure is due to a large extent to the equivalence, when N � 1,
between the canonical and the grand-canonical ensemble. In section V we apply the general analysis performed in
section IV to the case of N non-interacting fermions in a one-dimensional harmonic potential at T > 0. This case is
of particular interest as it is exactly solvable and the limit of large N can be studied in detail. The main results of
this section concern the local correlations which are described, in the limit N →∞, by the limiting kernels given by
Eq. (120) in the bulk (i.e., near the center of the trap) and by Eq. (134) at the edge of the Fermi gas. They generalize
the well known sine kernel, see Eq. (35), (in the bulk) and the Airy kernel, see Eq. (37), (at the edge), which both
play a fundamental role in RMT. The resulting kernel at the edge (134) allows us to compute the fluctuations of
the rightmost fermion at finite temperature as a Fredholm determinant (137), which generalizes the Tracy-Widom
distribution (48) for finite temperatures. Quite remarkably, exactly the same Fredholm determinant has appeared in
the context of stochastic growth models in the KPZ equation [see Eqs. (305), (307)]. This establishes an unexpected
connection between free fermions at finite temperature and the KPZ equation at finite time t [see Eq. (309)]. In
section VI we study the case of N non-interacting fermions in a harmonic potential, in arbitrary dimension d and at
zero temperature. Our analysis is based on a path-integral representation of the correlation kernel, given in Eqs. (168)
and (169), which can then be analyzed in a very elegant way in the large N limit. The most interesting results of
that section are certainly the expression of the density profile [see Eqs. (201) and (203)] and the kernel [see Eqs.
(227) and (228)] at the edge, the latter being a generalization of the Airy kernel (37) for any finite d. In section VII,
we provide the full analysis of the correlations for a general d-dimensional soft potential, of the form V (x) ∼ |x|p
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(for large |x| and p > 1), at finite temperature T > 0. Using again a path integral representation of the kernel, we
show that the local correlations both in the bulk and at the edge are universal, i.e., independent of the (smooth)
confining potential considered here. The resulting universal correlation kernels in the bulk (274) and at the edge (296)
generalize respectively the sine kernel (35) and the Airy kernel (37) for any finite dimension d and temperature T .
The last section VIII contains a discussion of our results, including the connection with the KPZ equation mentioned
above, and our conclusions. Some technical details have been relegated in Appendix A and B.

II. CORRELATIONS FOR NON-INTERACTING FERMIONS AT ZERO TEMPERATURE

A. Many body ground state wave function

Let us start with N -fermions strictly at zero temperature. Consider first the single particle eigenfunctions ψk(x)

which satisfy the Schrödinger equation, Ĥψk(x) = εkψk(x), where Ĥ = −[~2/(2m)]∇2 +V (x) is the Hamiltonian and
the energy eigenvalues εk are labeled by d quantum numbers denoted by k ∈ Zd. Because of the confining potential
these quantum numbers labeled by k should not be identified with the usual momentum, which we denote by p.

At zero temperature, the ground state many-body wave function Ψ0 can be expressed as an N ×N Slater determi-
nant,

Ψ0(x1, · · · ,xN ) =
1√
N !

det[ψki(xj)]1≤i,j≤N (3)

constructed from the N single particle wave functions labeled by a sequence {ki}, i = 1, . . . , N , with non-decreasing
energies such that εki ≤ µ where µ is the Fermi energy. For a sufficiently confining potential, µ generically increases
with increasing N [4, 18]. As an example, we consider the isotropic harmonic oscillator (2). In this case the energy
levels

εk =

d∑
a=1

(
ka +

1

2

)
~ω , ψk(x) =

d∏
a=1

φka(xa) , φk(x) =

[
α√
π2kk!

]1/2

e−
α2x2

2 Hk(αx) (4)

where the ka’s are integers which range from 0 to ∞, Hk(z) is the k-th Hermite polynomial of degree k and

α =
√
mω/~ (5)

is the characteristic inverse length scale. Note that, in this example, each, non-groundstate, single particle energy level
is degenerate in d > 1. Hence the N -body ground state is degenerate, whenever the last single particle level is not fully
occupied. This situation will be discussed later in section IV. For now, since we are interested in the large N limit
where this effect of degeneracy is subdominant, we will assume that the last level is fully occupied. In this case, for
the harmonic oscillator, by filling up completely the levels up to µ one obtains N =

∑
k∈Zd θ (µ− ~ω(k1 + ..+ kd)),

where θ(x) is the Heaviside theta function. This leads for large N , to

µ ' ~ω[Γ(d+ 1)N ]1/d. (6)

For more general potentials, the relation between µ and N is usually more complicated (and detailed below), but
given our assumption of an infinite number of bound states, we will always be able to study the limit of large N � 1,
which is the subject of this paper.

B. Quantum probability and determinantal structure of correlations

Consider now the quantum probability, i.e. the squared many-body wave function

|Ψ0(x1, · · · ,xN )|2 =
1

N !
det[ψ∗ki(xj)] det[ψki(xj)] . (7)

Using the fact det(AT ) det(B) = det(AB), it can also be written as a determinant

|Ψ0(x1, · · · ,xN )|2 =
1

N !
det

1≤i,j≤N
Kµ(xi,xj) (8)
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where we have defined the kernel Kµ(x,y) as

Kµ(x,y) =
∑
k

θ(µ− εk)ψ∗k(x)ψk(y) . (9)

As we will see later, this kernel will play a central role for the calculation of the correlations. For instance one
usually defines the n-point correlation function Rn(x1, · · · ,xn) as

Rn(x1, · · · ,xn) =
N !

(N − n)!

∫
dxn+1 · · · dxN |Ψ0(x1, · · · ,xN )|2 (10)

obtained by integrating over N − n coordinates and keeping n coordinates {x1, · · · ,xn} fixed. For n = 1 this
corresponds to the marginal density

R1(x) = N

∫
dx2 · · · dxN |Ψ0(x,x2, · · · ,xN )|2 . (11)

Incidentally this is also related to the average local density of fermions

R1(x) = NρN (x) , ρN (x) =
〈
ρ̂N (x)

〉
0

, ρ̂N (x) =
1

N

N∑
i=1

δ(x− xi) (12)

where 〈· · · 〉0 denotes the average w.r.t. the ground state quantum probability in Eq. (7). The last equality follows
from the indistinguishability of the fermions, i.e., the fact that the quantum probability |Ψ0(x1, · · · ,xN )|2 is invariant
under the exchange of any two coordinates. More generally, the Rn’s contain information about higher correlations
of the local densities, e.g., one has

R2(x,y) =
〈 ∑

1≤i 6=j≤N
δ(x− xi)δ(y − xj)

〉
0

= N2〈ρ̂N (x)ρ̂N (y)〉0 −NρN (x)δ(x− y) (13)

and similarly for higher order correlations.
Now we note that the kernel Kµ(x,y) has the reproducing property∫

Kµ(x, z)Kµ(z,y) dz = Kµ(x,y) , (14)

which follows from the ortho-normalization of the single particle wave functions,
∫
ψ∗ki(z)ψkj (z) dz = δki,kj . If the

kernel satisfies the reproducing property in Eq. (14), then there is a general theorem [13] that states thatRn(x1, · · · ,xn)
in Eq. (10) can be expressed as an n× n determinant

Rn(x1, · · · ,xn) = det
1≤i,j≤n

Kµ(xi,xj) . (15)

Note that this result (15) has been obtained here within the formalism of first quantization. It can also be derived
within the formalism of second quantization: this is then a consequence of the Wick’s theorem applied to fermionic
(i.e., anti-commuting) operators [3]. Indeed the kernel in Eq. (9) can be expressed, in the second quantization
formalism, as

Kµ(x, y) = 〈Ψ0|Ψ†(x)Ψ(y)|Ψ0〉 , (16)

where Ψ†(x) and Ψ(y) are respectively the creation and the annihilation fermionic operators at positions x and y and
|Ψ0〉 is the ground state.

Any multi-particle probability distribution, whose n-point marginal can be expressed as the determinant of a kernel
as in Eq. (15), will generally be referred to as a distribution with a determinantal structure. The associated random
process corresponding to the random positions of the N fermions is then called a d-dimensional determinantal point
process [15, 16]. Let us also point out a very simple consequence of this determinantal structure. Setting n = 1 in Eq.
(15) simply gives

R1(x) = Kµ(x,x) . (17)

This implies, from Eq. (12), that the average density is given by the kernel evaluated at identical points

ρN (x) =
1

N
Kµ(x,x) . (18)

To summarize, the kernel Kµ(x,y) is the key object for any determinantal process. Once we know the kernel, we
can determine, in principle, any n-point correlation function by computing an (n× n) determinant [see Eq. (15)].
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III. ONE DIMENSIONAL HARMONIC OSCILLATOR AT ZERO TEMPERATURE AND RMT

In this Section, we consider the special case d = 1 and the harmonic oscillator potential V (x) = 1
2 mω2 x2.

In this special case, a host of analytical results for the zero temperature quantum statistics have been derived
over the years [18, 42–46]. It turns out there is a close connection between the ground state quantum probabil-
ity |Ψ0(x1, · · · ,xN )|2 of N fermions in a 1d harmonic trap and the joint probability distribution of N real eigenvalues
of an (N × N) Gaussian Hermitian random matrix, known as the Gaussian Unitary Ensemble (GUE) in RMT. Al-
though the connection between free fermions and GUE eigenvalues was known implicitly for a long time [13], this
connection was first used explicitly, to our knowledge, in the context of studying the statistics of nonintersecting step
edges on the vicinal surface of a crystal [47]. Subsequently, a connection between nonintersecting lines in presence of
a potential V (x) = x2/2 + c/x2 (with x ≥ 0 and c > 0) and the eigenvalue statistics of Wishart ensembles of RMT
was established [36]. However, in the precise context of free fermions in a 1d harmonic trap, this connection to GUE
eigenvalues was noticed and exploited only recently, first somewhat a posteriori in Ref. [18] and then more explicitly
in Ref. [19, 22], in the context of counting the number of fermions in an interval [−L,L] in the ground state.

To establish the precise connection to GUE eigenvalues, we consider the first N single particle levels with energies
εk = (k + 1/2)~ω where k = 0, 1, 2, . . . , N − 1. The many-body ground state is constructed by filling up these first

N levels with N fermions. Thus the ground state energy is E0 = N2

2 ~ω, and the Fermi energy µ = (N − 1/2)~ω
corresponds to the highest occupied single particle energy level in the many-body ground state. To construct the
many-body ground state wave function, we substitute the explicit single particle harmonic oscillator wave functions
[labeled by k = 0, 1, 2 . . . , (N − 1) in Eq. (4)] in the (N ×N) Slater determinant (3). This gives

Ψ0(x1, x2 · · · , xN ) ∝ e−α
2

2

∑N
i=1 x

2
i det[Hi(αxj)] , (19)

where we recall that Hi(x) is the Hermite polynomial of degree i and α =
√
mω/~ is an inverse length scale. By

arranging the rows and columns in the determinant, it is easy to see that it can be reduced to a Vandermonde
determinant up to an overall constant, det[Hi(αxj)] ∝ det[xj−1

i ] ∝∏i<j(xi − xj). Hence, the ground state quantum

probability is given by [19]

|Ψ0(x1, · · · , xN )|2 =
1

zN

∏
i<j

(xi − xj)2e−α
2 ∑N

i=1 x
2
i , (20)

where zN is a normalization constant.
Consider now a random (N ×N) complex Hermitian matrix X with independent Gaussian entries, such that the

joint distribution of independent matrix entries is given by, Prob.[X] dX ∝ exp
[
−Tr(X2)

]
dX. This joint distribu-

tion remains invariant under a unitary transformation, X → U†XU , which justifies the name of such an ensemble
of random matrices as the GUE [13]. Each realization of this matrix can be diagonalized to give N real eigenvalues
{λ1, λ2, · · · , λN} which are also random variables. What can be said about the joint distribution of these N eigenval-
ues? To obtain this eigenvalue distribution, one first makes a change of variables from the independent matrix entries
to the eigenvalues and eigenvectors of X. Thanks to the rotational invariance, the eigenvector degrees of freedom
decouple from the eigenvalues and hence can be integrated out. This provides an explicit expression for the joint
distribution of eigenvalues [13]

P (λ1, λ2, · · · , λN ) =
1

ZN

∏
i<j

(λi − λj)2 e−
∑N
i=1 λ

2
i , (21)

where ZN is the normalization constant. The Vandermonde term
∏
i<j(λi − λj)2 in Eq. (21) owes its origin to the

Jacobian of the change of variables from the matrix entries to eigenvalues and eigenvectors [13].
Comparing Eqs. (20) and (21), it is clear that the quantum statistics of the Fermion positions xi’s in a 1d harmonic

trap at T = 0 is identical, up to a trivial rescaling factor α, to the classical statistics of GUE eigenvalues λi’s [19].
The routes of arrival to the identical joint distribution are, however, quite different in the two problems. Interestingly,
in the RMT literature, to calculate further observables from this joint eigenvalue distribution, the determinantal
structure of this joint distribution was noticed and exploited extensively [13, 14]. In particular, the joint distribution
in Eq. (21) was indeed expressed as the determinant of a kernel,

P (λ1, λ2, · · · , λN ) =
1

N !
det

1≤i,j≤N
K(λi, λj), with K(λ, λ′) =

1√
π
e−

1
2 (λ2+λ′2)

N−1∑
k=0

1

2k k!
Hk(λ)Hk(λ′) (22)
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where Hk(z) is the k’th Hermite polynomial. We recall that the Hermite polynomials are orthogonal on the real axis
with respect to (w.r.t.) to the Gaussian weight∫ ∞

−∞
e−z

2

Hn(z)Hm(z) dz =
√
π 2n n! δn,m . (23)

In the RMT literature, this orthogonal property of Hermite polynomials were exploited to derive the determinantal
structure of the joint distribution, hence is known in RMT as the orthogonal polynomial method [13]. But this is
precisely equivalent to the many-body quantum mechanics of N fermions in a trap, once one recognizes that the joint

distribution in Eq. (21) is just the square of the Slater determinant and that e−λ
2

Hk(λ) is just the k-th single particle
eigenfunction of a harmonic oscillator. The kernel K(λ, λ′) in Eq. (22) is also identical, up to a trivial rescaling factor,
to the one defined for fermions in Eq. (9) in the case of a 1d harmonic oscillator.

Thus, to summarize, both the RMT and the many-body free fermions essentially use the same method to analyze
the joint distribution. Hence, for this analysis, one does not really need to know anything about random matrices.
The starting point is really the joint distribution in Eq. (20), which can then be written as the determinant of a
kernel Kµ(x, y). From the general definition of the kernel in Eq. (9), upon summing up the first N single particle
harmonic oscillator eigenfunctions in Eq. (4), one obtains

Kµ(x, y) =
α√
π
e−

1
2α

2(x2+y2)
N−1∑
k=0

1

2k k!
Hk(αx)Hk(α y) . (24)

Note that because the Hermite polynomials are orthogonal polynomials (23), they satisfy the Christoffel-Darboux
identity [13, 14] which allows us to perform the sum over k in (24) explicitly, to yield (for N ≥ 1):

Kµ(x, y) =


e−

α2

2 (x2+y2)

√
π2N (N − 1)!

HN (αx)HN−1(α y)−HN−1(αx)HN (α y)

x− y , for x 6= y

α√
π

e−α
2x2

2N−1(N − 1)!

(
N [HN−1(αx)]

2 − (N − 1)HN−2(αx)HN (αx)
)
, for x = y .

(25)

Consequently, the average density has the exact expression valid for any N

ρN (x) =
1

N
Kµ(x, x) =

α

N
√
π
e−α

2 x2
N−1∑
k=0

1

2k k!
H2
k(αx) (26)

=
α√
π

e−α
2x2

2N−1N !

(
N [HN−1(αx)]

2 − (N − 1)HN−2(αx)HN (αx)
)
. (27)

A large number of precise analytical results for the ground state quantum statistics of free fermions in a 1d harmonic
trap have recently been predicted [18–22], essentially using the determinantal structure of the joint distribution and
the explicit kernel in Eq. (24).

While the results in Eqs. (24)-(27) are exact for all N , it is useful and perhaps more interesting to see how the
average density and the kernel behave asymptotically for large N . In the RMT literature, the large N asymptotics
have been studied in great detail, mostly by using the asymptotic properties of the Hermite polynomials in Eqs. (24)
and (27) [13, 14]. For the benefit of readers not familiar with the RMT literature, we list below the principal RMT
predictions for large N . For details of these derivations, the readers may consult Refs. [13, 14].

A. Large N RMT predictions for the average density

In the large N limit, the average density of fermions (equivalently that of GUE eigenvalues) is given by the celebrated
Wigner semi-circular law [13, 14]:

ρN (x) ≈ α√
N
fW

(
αx√
N

)
, fW (z) =

1

π

√
2− z2 , (28)

with sharp edges at ±
√

2N/α [see Fig. 1]. Note that the average density is normalized to unity,
∫
ρN (x) dx = 1

and ρN (x) has the dimension of α, i.e, inverse length. The result in Eq. (28) indicates that on an average there are
more particles near the trap center x = 0 and less near the two edges. Thus, in the ‘bulk’ of the Wigner sea, i.e, far
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away from the two edges, the density typically scales as ρN (x) ∼ αN−1/2 for large N . This means that the typical
inter-particle separation in the bulk scales as `(x) ∼ 1/[NρN (x)] ∼ 1

α N
−1/2 for large N .

In contrast, near the two edges, the particles are sparse (see Fig. 1) and the typical separation between two particles

at the same edge scales as ∼ N−1/6 [13, 14]. For finite but large N , the sharp edges at ±
√

2N/α gets smeared over
a width wN ∼ N−1/6. This is called the ‘edge’ regime (see Fig. 1). The average density near the edge, for finite but
large N , is described by a finite size scaling form [48, 49]

ρN (x) ≈ 1

N wN
F1

[
x−
√

2N/α

wN

]
(29)

where we have set the width of the edge regime

wN =
1

α
√

2
N−1/6 . (30)

The scaling function is given exactly by [48, 49]

F1(z) = [Ai′(z)]2 − z[Ai(z)]2 (31)

where Ai(z) is the Airy function and Ai′(z) is its first derivative. The scaling function F1(z) has the asymptotic
behavior

F1(z) ≈
{

1
π

√
|z| as z → −∞

1
8πz e

− 4
3 z

3/2

as z →∞ .
(32)

Far to the left of the right edge, using F1(z) ∼
√
|z|/π as z → −∞ in Eq. (32), it is easy to show that the scaling

form (29) smoothly matches with the semi-circular density in the bulk (28). Recently, the edge scaling function F1(z)
has been shown [18] to be universal, i.e., holds even for potentials different from the harmonic one, as long as it is
smooth and confining.

B. Large N RMT predictions for the kernel

The kernel in Eq. (24) can be analyzed similarly in the large N limit. For example, consider first the bulk with
two points x and y, both on the scale of the local inter-particle separation `(x), defined as

`(x) =
2

πN ρN (x)
. (33)

Taking the limit N →∞, and the separation between two points |x− y| → 0, but keeping the ratio |x− y|/`(x) fixed,
it has been shown that the kernel Kµ(x, y) satisfies the scaling form

Kµ(x, y) ≈ 1

`(x)
Kbulk

( |x− y|
`(x)

)
, (34)

with the scaling function

Kbulk(z) =
sin(2z)

πz
. (35)

This is the celebrated sine kernel which also turns out to be universal, i.e., independent of the precise shape of the
trap potential V (x) [18]. Note that when z → 0, Kbulk(z)→ 2/π and consequently, the kernel Kµ(x, x)→ N ρN (x),
in agreement with Eq. (18).

Similarly, near the edges (say the right edge at xedge =
√

2N/α), the kernel Kµ(x, y) in Eq. (24) can be similarly
analyzed in the scaling limit: N →∞, x→ xedge, y → xedge but with the ratios (x− xedge)/wN and (y − xedge)/wN
fixed. Here wN denotes the width wN of the edge regime as defined in Eq. (30). In this scaling limit, one finds [13, 14]

Kµ(x, y) ≈ 1

wN
Kedge

(
x− xedge

wN
,
y − xedge

wN

)
(36)

where the two-variable scaling function is given by the so called Airy kernel [13, 14]

Kedge(a, b) = KAiry(a, b) =
Ai(a)Ai′(b)−Ai′(a)Ai(b)

a− b =

∫ +∞

0

duAi(a+ u)Ai(b+ u) . (37)
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At coinciding points, it is easy to check that

KAiry(z, z) = F1(z) = [Ai′(z)]2 − z[Ai(z)]2 . (38)

This fact, together with the definition ρN (x) = Kµ(x, x)/N then yields back the edge density result mentioned in
Eq. (29).

C. Statistics of the rightmost fermion, of fermion spacings and of number fluctuations

From the connection with RMT, one can immediately obtain interesting predictions for various observables asso-
ciated to 1d free fermions at T = 0. Indeed, in any determinantal point process [15, 16], the full counting statistics
can be obtained in terms of Fredholm determinants (denoted in this paper by Det). The Laplace transform of the
probability PJ(n) that there are exactly NJ = n fermions in a given (arbitrary) subset J of the real axis is given by

〈e−pNJ 〉 = Det[I − (1− e−p)PJKµPJ ] (39)

where PJ(x) is an indicator function, such that PJ(x) = 1 if x ∈ J and PJ(x) = 0 otherwise, i.e. the projector on the
interval J . In particular the hole probability, i.e., the probability that there is exactly zero fermion in the subset J is
then

PJ(n = 0) = Det[I − PJKµPJ ] . (40)

There are important applications of this formula both in the bulk and at the edge, which we now discuss.
Fermion spacing distribution. One example in the bulk concerns the distribution of spacings (or gaps) between

fermions, analog of the famous spacing distribution in RMT. Denoting by {x(i)}i=1,...,N the ordered set of fermion

positions (i.e., x(1) < x(2) < . . . < x(N)), we define the spacing g = |x(i+1) − x(i)| between two consecutive fermions.
The mean spacing near the center (which we consider here) is ḡ = 1/(NρN (0)). The simplest guess for this spacing
distribution is the famous Wigner surmise

pW2 (s) =
32s2

π2
e−4s2/π , s = g/ḡ , (41)

which is normalized so that
∫ +∞

0
ds pW2 (s) =

∫ +∞
0

ds s pW2 (s) = 1, i.e., the mean fermion spacing is set to unity. As
is well known this is the exact result for N = 2. Thus, it is an exact statement for 2 fermions in a quadratic well (at
T = 0). It also approximates rather well the exact distribution for a large number N of fermions. The latter, close to
the origin, can be obtained as

p2(g) =
1

NρN (0)
∂2
gD(g) , D(g) = Det[1− P[0,g]KµP[0,g]] . (42)

In the bulk, setting g = s/(NρN (0)) = sπ2 `(0) (we made this rescaling by π/2 to conform to the standard convention
used in RMT), one can replace the kernel in Eq. (42) by its limiting form, namely the sine-kernel in Eq. (35). The
fermion spacing distribution is then described by the so called Mehta-Gaudin distribution

p2(g) ' NρN (0)D̃′′(s) (43)

where D̃(s) can be expressed in terms of a particular solution of a Painlevé V equation, denoted by σ(x), such that

D̃(s) = exp

(∫ πs

0

σ(x)

x
dx

)
(44)

where σ(x) satisfies

(xσ′′(x))2 + 4(xσ′(x)− σ)
(
xσ′(x)− σ(x) + [σ′(x)]2

)
= 0 , (45)

with the boundary condition σ(x) ∼ −x/π as x → 0. From the Painlevé equation (45) the asymptotic behaviors of

D̃′′(s) can be obtained as [13, 50–52]

D̃′′(s) ∼


π2s2

3
− 2π4s4

45
+
π6s6

315
− π6s7

4050
− 2π8s8

14175
+

11π8s9

496125
+

2π10s10

467775
+O(s11) , s→ 0

π4

16

(
2

πs

)1/4(
s2 − 2

π2
+ o(1)

)
exp

(
ln 2

12
+ 3ζ ′(−1)− π2s2

8

)
, s→ +∞ .

(46)
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−1/6
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edgeedge

N
−1/6

N
−1/2

bulk

2N

α α

_

FIG. 1. The average density, for large N , has the Wigner’s semi-circular form: ρN (x) ≈ α2

πN

√
2N
α2 − x2, where α =

√
mω/~.

The typical separation between particles in the bulk scales as ∼ N−1/2, where as near the edge it is much larger ∼ N−1/6.

Note that from Eq. (43) one obtains that the average gap is given ḡ = 1/(NρN (0)) = π`(0)
2 , with `(x) given in Eq. (33).

Rightmost fermion statistics. One important application of the formula (40) at the edge is as follows. In order to
probe the statistics at the edge of the cloud of fermions, it is natural to consider the rightmost fermion, xmax(T =
0) = max1≤i≤N xi, where the quantum fluctuations of the positions of the N fermions are described by the quantum
probability in Eq. (20). Now, the cumulative probability distribution of xmax(T = 0) is precisely related to the hole
probability in Eq. (40): Prob. [xmax(T = 0) ≤ y] is precisely the probability that the interval J ≡ [y,+∞) is free of
particles. Using the expression (40) for the hole probability associated to the interval J = [y = xedge + swN ,+∞)
(see below), one obtains that the typical quantum fluctuations of xmax(T = 0), correctly centered and scaled, are
governed by the celebrated Tracy-Widom (TW) distribution for GUE, F2(x) [23]. Indeed one has

xmax(T = 0) = xedge + wN χ2 , (47)

where, in the limit of large N , the cumulative distribution function (CDF) of the random variable χ2 is F2(s) =
Pr(χ2 ≤ s), which can be written as a Fredholm determinant [53]

F2(s) = Det(I − PsKAiryPs) , (48)

where KAiry(a, b) is the Airy kernel given in Eq. (37) and Ps is a projector on the interval [s,+∞). Note that F2(s)
can also be written in terms of a special solution q(x) of the following Painlevé II equation [23]

q′′(x) = xq(x) + 2q3(x) , q(x) ∼ Ai(x) , x→∞ . (49)

The TW distribution F2(s) can then be expressed as

F2(s) = exp

[
−
∫ ∞
s

(x− s)q2(x) dx

]
. (50)

In particular its asymptotic behaviors are given by [54]

F2(s) ∼


τ2
e−

1
12 |s|3

|s|1/8
(

1 +
3

26|s|3 +O(|s|−6)

)
, s→ −∞ ,

1− e−
4
3 s

3/2

16πs3/2

(
1− 35

24s3/2
+O(s−3)

)
, s→ +∞ ,

(51)

where τ2 = 21/24eζ
′(−1) where ζ ′(x) is the derivative of the Riemann zeta function.

Number variance. Another interesting observable is the number of fermions NL in a symmetric interval [−L,L] (or
in any fixed interval), which is also a random variable. Its mean is easily computed from the average density ρN (x) in

Eq. (12) as 〈NL〉 = N
∫ +L

−L ρN (x) dx, which for large N can be easily evaluated from the limiting semi-circle law (28).
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What about the higher cumulants of this random variable, for instance the variance Var(NL), and eventually the full
distribution of NL? In RMT, the variance was computed a long time ago by Dyson [55], but only in the bulk limit
when L = s `(0) where `(0) is the inter-particle spacing in the center of the trap given in Eq. (33) for x = 0, and s is
a dimensionless number of order O(1). In particular, for large s, one has

Var(NL=s`(0)) ∼
1

π2
log s+O(1) , s→∞ , (52)

a result that can also be obtained using the LDA [4]. In the bulk regime one can show that the full distribution of NL,
properly centered and scaled, is a Gaussian [56, 57]. It is only recently that the fluctuations of NL, beyond the bulk
regime, i.e. for L� `(0), were studied. The variance Var(NL) has indeed found a renewed interest [18, 21, 43–46, 58]
in the context of free fermions, thanks to its connection to entanglement entropy (see also below). Its dependence on
L was first studied numerically [18, 44] for various trapping potentials, including the harmonic potential, and it was
observed that it displays a striking non-monotonic behavior. Recently, a full analytical computation of the variance
as well as the full distribution of NL for fermions in a harmonic potential was performed in [19, 22]. Using RMT
tools, in particular Coulomb gas techniques, the variance was computed for any L and large N , thus extending the
analysis of Dyson [55] far beyond the bulk regime.

Entanglement entropy. The other interesting observable at T = 0 is the Rényi entanglement entropy Sq of the
interval [−L,L] around the trap center with the rest of the system. Consider the many-body fermionic system in its
ground state, so that the density matrix of the full system in this pure state is simply, ρ̂ = |Ψ0〉〈Ψ0|. Consider now the
subsystem A ≡ [−L,L] and let ρ̂A = TrĀρ̂ denote the reduced density matrix of the subsystem A, obtained by tracing
out the complementary subsystem Ā (so that A and Ā together constitute the full real line). The Rényi entanglement
entropy of the subsystem A, parametrized by q ≥ 1, is then defined as, Sq = 1

1−q ln Tr ρ̂qA. In the limit q → 1, this

reduces to the standard von Neumann entropy, S1 = −Tr[ρ̂A ln ρ̂A]. For free fermions in a harmonic trap in one
dimension at T = 0, the Rényi entropy was studied numerically [18, 44]. Exploiting the connection of the fermionic
system to RMT, the Rényi entropy was recently computed analytically for large N , and for a wide range of L [21]. For

instance, it was shown [21] that for all L such that
√

2N/α − L � wN [where we recall that wN = 1/(α
√

2)N−1/6,
see Eq. (30)], there is an exact relationship between the Rényi entropy and the number variance Var(NL) discussed
above

Sq =
π2

6

(
1 +

1

q

)
Var(NL) . (53)

However, around the edge, this relation breaks down and computing the scaling behavior of Sq near the edge remains
a challenging open problem [21].

Let us close by indicating that, as a property of determinantal point processes which generalizes (39), see e.g.
[15–17], there exists a class of averages over the positions of the fermions which can be expressed exactly in terms of
a Fredholm determinant (which is valid for any finite N)

〈 N∏
i=1

f(xi)
〉

0
= Det(I − Lf ) , Lf (x, y) = (1− f(x))Kµ(x, y) , (54)

where Kµ(x, y) is the kernel associated with the determinantal process. In Eq. (54), the average is the quantum
average in the ground state and the function f(x) is arbitrary, provided the right hand side exists. Such formula can
be useful for studying linear statistics of free fermions [59].

D. Momentum distribution function for fermions in a harmonic trap

To close this section, we point out the remarkable property that the quantum joint PDF in the ground state of N
non-interacting fermions in a harmonic potential is completely symmetric under the interchange of all positions with
all momenta

(αx1, · · · , α xN ) ≡inlaw (
p1

~α
, · · · , pN

~α
) ≡inlaw (λ1, · · · , λN )GUE , (55)

each set being distributed as the eigenvalues of a GUE random matrix as indicated in formula (20) and (21). This
identity is true for arbitrary N . As a consequence, all properties obtained in this paper for the positions of the
fermions are also valid for their momenta, as long as we are studying the harmonic confining potential. In particular
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the density in momentum space n(p) is also, at T = 0, given by the Wigner semi-circle and exhibits a sharp edge at

p = pedge = ~α
√

2N . The fluctuations of the largest momentum take the form, for large N

pmax = ~α
√

2N + ~α2wNχ2 , (56)

where wN is defined in (30) and χ2 is distributed according to the Tracy-Widom GUE distribution (50). All the
predictions below for the correlations in the bulk and at the edge, at zero and finite temperature, and in any dimension,
extend accordingly in momentum space.

IV. CORRELATIONS FOR NON-INTERACTING FERMIONS AT FINITE TEMPERATURE T > 0

We now want to study the effect of non-zero temperature for N non-interacting fermions in an external confining
potential. The discussion below holds for arbitrary dimensions, but we will focus for simplicity on the d = 1 case.
For the harmonic oscillator at T = 0 one could use, as in the previous section, the techniques of RMT. However at
finite temperature, even for the harmonic oscillator potential, these direct RMT connections are lost and one needs
to develop new techniques.

We will focus on the canonical ensemble at temperature T = 1/β that corresponds to a fixed number of fermions
N , which is often the situation studied in cold atoms experiments. Before doing that, we first describe the energy
basis of the Hilbert space, and the determinantal properties of the corresponding wave functions, in a more general
setting. This general formalism is then applied to the harmonic oscillator, in the following section.

A. N-fermion Hilbert space and occupation number basis

In order to study excited states, we need to consider the full Hilbert space of the N particles. A natural basis of
this Hilbert space is formed by the eigenstates of the N particle Hamiltonian ĤN . For non-interacting fermions, these
eigenstates and this basis can be constructed from the eigenstates of the single particle Hamiltonian Ĥ. In the case of
the one-dimensional harmonic oscillator, the eigenfunctions φk(x) are given in (4). The associated energy eigenvalues
are εk = ~ω(k+ 1/2) where k is an integer which ranges from 0 to ∞. From these single particle eigenstates, one can

construct all many-body eigenfunctions of ĤN by putting N fermions in N different single particle levels indexed by
k1 < k2 < . . . < kN . The fermionic nature of the particles allows at most one particle in a given single particle level.
Hence one introduces the set of occupation numbers, denoted by {nk}, k = 0, 1, 2, . . . with nk = 0, 1, to label the
many body states, with nk1 = nk2 = . . . = nkN = 1 for the occupied single particle states and nk = 0 otherwise. They
satisfy the constraint

∑∞
k=0 nk = N . The corresponding many-body eigenfunction is given by a Slater determinant,

with the corresponding eigenenergy,

Ψ{nk}({xi}) =
1√
N !

det
1≤i,j≤N

φki(xj) , E ≡ E{nk} =

∞∑
k=0

nkεk (57)

with, e.g. E = ~ω (k1 + k2 + · · ·+ kN +N/2) for the harmonic oscillator.
An important property, already discussed and used in Section II for the ground state, but which extends to any

N -body eigenstate, i.e. to all the excited states, is that the squared modulus of the wave function can be written as
a determinant

|Ψ{nk}(x1, . . . , xN )|2 :=
1

N !

∣∣∣∣ det
1≤i,j≤N

φki(xj)

∣∣∣∣2 = det
1≤i,j≤N

K(xi, xj ; {nk}) (58)

where the kernel K(x, x′; {nk}) is indexed by the set of occupation numbers and is given by

K(x, x′; {nk}) =

N∑
j=1

φ∗kj (x)φkj (x
′) =

∞∑
k=0

nk φ
∗
k(x)φk(x′) . (59)

Note that there is one kernel associated to each eigenstate of the energy operator ĤN . Furthermore, using the ortho-
normalization of the single particle eigenfunctions one easily shows that these kernels obey the following property∫

dz K(x, z; {nk})K(z, y; {n′k}) = K(x, y; {nkn′k}) (60)
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for any two given sets {nk} and {n′k}. Specializing (60) to {nk} = {n′k} and using that n2
k = nk for any k, we see

that each of these kernels satisfy the reproducing property (14). An immediate consequence, as in Section II, is that
if the system is prepared in any of these states, the density and the correlations are given by determinants, as in (18)
and (15).

B. Canonical measure and observables at finite T

Let us first recall the definition of the canonical partition function ZN (β) for N non-interacting fermions at tem-
perature T = 1/β (in this paper we set the Boltzmann constant kB = 1)

ZN (β) = Tre−βĤN =
∑

k1<k2<...<kN

e−β (εk1+···+εkN ) , (61)

where the sum is over all possible N fermion eigenstates of ĤN labeled as described above in terms of all possible
distinct occupied single particle eigenstates. It is also convenient to rewrite it using a labeling by occupation numbers as

ZN (β) =
∑
{nk}

e−β ∑
k≥0 nkεkδ

∑
k≥0

nk, N

 , (62)

where
∑
{nk} denotes the sum over all the possible occupation numbers nk = 0, 1 for k = 0, 1, 2, . . .. In Eq. (62)

δ(i, j) = 1 if i = j and δ(i, j) = 0 if i 6= j: this Kronecker delta function thus imposes the total number of particles
to be exactly N , as we are working in the canonical ensemble.

In the canonical ensemble, the quantum joint probability distribution function of the positions xi of the fermions,

Pjoint(x1, . . . , xN ), is defined in terms of the N -body density matrix ρ̂ = e−βĤN /ZN (β) as

Pjoint(x1, . . . , xN ) = 〈x1, . . . , xN |ρ̂|x1, . . . , xN 〉 =
1

ZN (β)

∑
{nk}
|Ψ{nk}({xi})|2e−β

∑
k≥0 nkεkδ

∑
k≥0

nk, N

 (63)

where the sum is over all many-body eigenstates. Using Eq. (57) we can rewrite the joint PDF of the particle positions
in the canonical ensemble as the Boltzmann weighted sum of Slater determinants

Pjoint(x1, . . . , xN ) =
1

N !ZN (β)

∑
k1<···<kN

∣∣∣∣ det
1≤i,j≤N

φki(xj)

∣∣∣∣2 e−β (εk1+···+εkN ) , (64)

where ZN (β) is the canonical partition function (61). It is easy to check that ZN (β) is such that the PDF
Pjoint(x1, . . . , xN ) is normalized to unity.

The first observable we want to compute is the mean density of fermions at finite temperature T defined as

ρN (x) =
1

N

N∑
i=1

〈δ(x− xi)〉 (65)

where from now on 〈. . .〉 means an average computed with the joint PDF (64). This amounts, up to a multiplicative
constant, to integrating the joint PDF Pjoint(x, x2, . . . , xN ) over the last N − 1 variables. This amounts to the
calculation of the following integral

ρN (x) =

∫ ∞
−∞

dx1δ(x− x1)

∫ ∞
−∞

dx2 . . .

∫ ∞
−∞

dxNPjoint(x1, · · ·xN ) (66)

where any of the two forms for Pjoint in Eqs. (63) and (64) can be inserted. More generally, we want to calculate the
n-point correlation function Rn(x1, · · · , xn) at temperature T defined as

Rn(x1, · · · , xn) =
N !

(N − n)!

∫ ∞
−∞

dxn+1 · · ·
∫ ∞
−∞

dxNPjoint(x1, · · · , xn, xn+1, · · · , xN ) . (67)

The question is to handle these multiple integrals in the case of finite T . To understand the difficulty of this
calculation one can note that the joint PDF in Eq. (64) can be written as a determinant, as it is the case for
T = 0, [60]

Pjoint(x1, · · ·xN ) =
1

N !ZN (β)
det

1≤i,j≤N
G(xi, xj , β~) (68)
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in terms of the Euclidean propagator associated to the one-body Hamiltonian

G(x, y; t) = 〈y|e− t
~ Ĥ |x〉 =

∑
k

e−
t
~ εkφ∗k(x)φk(y) . (69)

Unfortunately, and at variance with the case of T = 0, successive integrations over the coordinates xi do not preserve
this determinantal structure. This is because the kernel inside the determinant no longer satisfies the reproducing
property since ∫ ∞

−∞
dz G(x, z;β~)G(z, y;β~) = G(x, y; 2β~) (70)

which is clearly a different kernel. Hence the evaluation of these integrals for arbitrary N is very difficult.

C. Saddle point calculation and equivalence between canonical and grand canonical ensembles

Fortunately, in the limit of large N , it is possible to use a saddle point method to calculate the density and the
n-point correlation functions (at fixed n). As we will see, this is a manifestation of the equivalence between the
canonical and the grand-canonical ensembles for large N .

Consider the density ρN (x) in Eq. (66). Inserting there the expression (63) for Pjoint(x, x2, . . . , xN ), and replacing
|Ψ{nk}({xi})|2 by the determinant of the kernel given in (58) we obtain

ρN (x) =
1

ZN (β)

∑
{nk}

[∫ ∞
−∞

dx1δ(x− x1)

∫ ∞
−∞

dx2 . . .

∫ ∞
−∞

dxN det
1≤i,j≤N

K(xi, xj ; {nk})
]
e−β

∑
k≥0 nkεkδ

∑
k≥0

nk, N

 .

(71)

We now use the property of reproducibility of the kernel for each choice of {nk} noted above in (60). From the
theorem mentioned in Section II leading to Eqs. (15), (18) we can rewrite this multiple integral as:

ρN (x) =
1

ZN (β)

1

N

∑
{nk}

K(x, x; {nk})e−β
∑
k≥0 nkεkδ

∑
k≥0

nk, N

 (72)

where

K(x, x; {nk}) =

∞∑
k=0

nk|φk(x)|2 . (73)

Note that in the limit where T → 0, the system is in the ground state characterized by nk = 1 if k = 0, 1, 2, . . . , N − 1
and nk = 0 if k ≥ N . Hence in this limit, Eq. (72) reads

ρN (x) =
1

N

N−1∑
k=0

|φk(x)|2 . (74)

To calculate the correlation functions given by the integral (67) we use the same method, and in particular the
determinantal form (15) obtained after the N − n integrations. We thus obtain the n-point correlations at finite
temperature (67) as:

Rn(x1, · · · , xn) =
1

ZN (β)

∑
{nk}

 det
1≤i,j≤n

K(xi, xj ; {nk})e−β
∑
k≥0 nkεkδ

∑
k≥0

nk, N

 . (75)

To compute the expression in Eq. (75) we must evaluate the ratio of two sums over the occupation numbers {nk},
each one constrained by

∑
k≥0 nk = N . Both in the numerator and the denominator – i.e., ZN (β) given by (61) – we

rewrite the constraint using an integral representation of the Kronecker delta symbol:

δ

∑
k≥0

nk, N

 =

∫ 2π

0

dλ

2π
exp

iλ
∑
k≥0

nk −N

 . (76)
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Let us first consider the denominator ZN (β). It now reads

ZN (β) =

∫ 2π

0

dλ

2π
e−iNλ

∑
{nk=0,1}

e−β
∑
k≥0(nkεk−iλnk) . (77)

This representation thus makes the nk variables independent of each other and one can perform the sum over each
nk separately. Note that each nk takes values 0 or 1. Performing the sum over nk’s, for all k, we get

ZN (β) =

∫ 2π

0

dλ

2π
e−iNλ

∏
k

(
1 + e−β(εk−iλ)

)
. (78)

Introducing the function

J(µ̃) = − 1

β

∑
k

ln(1 + e−βεk+βµ̃) (79)

which is just the free energy in the grand canonical ensemble at chemical potential µ̃, we can rewrite the partition
function simply as

ZN (β) =

∫ 2π

0

dλ

2π
e−βJ( iλβ )−iλN . (80)

We now consider the full expression (75) and use (76) to rewrite it as

Rn(x1, · · · , xn) =
1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλ

∑
{nk}

det
1≤i,j≤n

[ ∞∑
k=0

nkφ
∗
k(xi)φk(xj)

]
e−β

∑
k≥0(nkεk−iλnk) (81)

=
1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλ

∑
{nk}

∑
k1<...<kN

nk1 . . . nkN e
−β∑

k≥0(nkεk−iλnk)

∣∣∣∣ det
1≤i,j≤n

φki(xj)

∣∣∣∣2 (82)

In the second line we have used the (generalized) Cauchy-Binet-Andreief formula for determinants [61]:

det
1≤i,j≤n

[ ∞∑
k=0

nkφ
∗
k(xi)φk(xj)

]
=

∑
k1<...<kN

nk1 . . . nkN

∣∣∣∣ det
1≤i,j≤n

φki(xj)

∣∣∣∣2 (83)

valid for any set of {nk}. To perform the sum over the occupation numbers we introduce the notation for the
“expectation value” of any observable O[{nj}] at fixed λ〈

O[{nj}]
〉
λ

= eβJ( iλβ )
∑
{nk}

O[{nj}]e−β
∑
k≥0(nkεk−iλnk) (84)

which is such that 〈1〉λ = 1. This allows to rewrite (82) as

Rn(x1, . . . , xn) =
1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe−βJ( iλβ )

∑
k1<..kN

〈nk1 . . . nkN 〉λ
∣∣∣∣ det
1≤i,j≤n

φki(xj)

∣∣∣∣2 (85)

=
1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe−βJ( iλβ )

∑
k1<..kN

〈nk1〉λ . . . 〈nkN 〉λ
∣∣∣∣ det
1≤i,j≤n

φki(xj)

∣∣∣∣2 (86)

=
1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe−βJ( iλβ ) det

1≤i,j≤n

[ ∞∑
k=0

〈nk〉λφ∗k(xi)φk(xj)

]
(87)

and 〈nk〉λ = 1
1+eβεk−iλ

. In the second line we have used explicitly the independence of the variables nk at fixed λ, as

seen from (84). In the third line we have used again the Cauchy-Binet-Andreief formula (in reverse). Thus we finally
obtain the n- point correlation function in the form

Rn(x1, · · · , xn) =

∫ 2π

0
dλ
2π [det1≤i,j≤nK(xi, xj ; {〈nk〉λ})] e−βJ( iλβ )−iλN∫ 2π

0
dλ
2π e
−βJ( iλβ )−iλN (88)
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with

K(x, x′; {〈nk〉λ}) =

∞∑
k=0

〈nk〉λφk(x)φk(x′) , 〈nk〉λ =
1

1 + eβεk−iλ
(89)

and J(µ̃) as defined in (79). At this stage Eqs. (88), (89) and (79) provide an exact representation for the correlation
function in the canonical ensemble for arbitrary N and n, where the integrals over λ still need to be performed. In
particular it holds for R1(x) = NρN (x).

As a remark we note that the crucial property which made this representation possible is the following identity〈
det

1≤i,j≤n

[ ∞∑
k=0

nkφ
∗
k(xi)φk(xj)

]〉
= det

1≤i,j≤n

[ ∞∑
k=0

〈nk〉φ∗k(xi)φk(xj)

]
(90)

which holds for arbitrary averaging 〈. . .〉 for which the variables nk are independent. It can be proved using the
Andreief formula twice, as done above. Here we have further used the fact that the variables nk at fixed λ are
independent Bernoulli random variables. These identities have been used also in the mathematical literature [62] in
the context of determinantal processes.

The next step is to evaluate the remaining integral over λ using the saddle point method, which becomes exact in
the limit of large N . Let us first study the denominator in Eq. (88), i.e. the partition sum. There the saddle point
occurs, in our notation, at λ = λsp = −iβµ̃ where µ̃ is the chemical potential. It is related to the total number of
particles N as N = −∂J/∂µ̃, which reads

N =

∞∑
k=0

1

eβ(εk−µ̃) + 1
. (91)

Hence the chemical potential µ̃ = µ̃(T,N) depends on T and N . In the zero temperature limit, as evident from the
above equation, µ̃(T = 0, N) = µ, where µ is the Fermi level introduced in Section II.

In the thermodynamic language, this amounts to use the equivalence, in the large N limit, between the canonical
ensemble and the grand-canonical ensemble. As is well known, the values of the average occupation numbers nk at
the saddle point are given by the Fermi factor and denoted as

〈nk〉 := 〈nk〉λsp
, 〈nk〉 =

1

eβ(εk−µ̃) + 1
, N =

∞∑
k=0

〈nk〉 (92)

where we recall that for the harmonic oscillator εk = ~ω(k + 1
2 ) for k = 0, 1, 2, . . ..

The same saddle point analysis can be performed to calculate the correlation in Eq. (88). It remains valid as long
as the quantity that is averaged does not grow too fast with N (e.g., as exp(cNa) where a < 1). In this case, the value
of the chemical potential at the saddle point is not modified. Here this quantity is det1≤i,j≤nK(xi, xj ; {〈nk〉λ}) and
it is reasonable to expect that these conditions are satisfied. Therefore, in the large N limit, one obtains from Eq.
(88) our main result

Rn(x1, · · · , xn) ' det
1≤i,j≤n

Kµ̃(xi, xj) , (93)

where the finite temperature kernel is given by

Kµ̃(x, x′) =

∞∑
k=0

φ∗k(x)φk(x′)

eβ(εk−µ̃) + 1
, (94)

and the chemical potential µ̃ is fixed by Eq. (91). The case n = 1 then yields the result for the density

ρN (x) ' 1

N

∞∑
k=0

〈nk〉|φk(x)|2 =

∞∑
k=0

|φk(x)|2
eβ(εk−µ̃) + 1

. (95)

Note that we reserve the notations µ and Kµ(x, x′) for the zero temperature chemical potential and kernel, respectively,
while we denote by µ̃ and Kµ̃(x, x′) their finite temperature versions. When T → 0, we recall that µ̃ → µ, but at
finite T > 0, not only the chemical potential µ̃ differs from µ, but also the full kernel functions are different. Note
also that in the limit T → 0 the Fermi factor becomes θ(µ− εk) and the kernel becomes equal to the one associated
with the ground state, given in Eq. (9) and the same result holds for the density.

Hence we find that the correlations at fixed n are asymptotically determinantal at large N in the canonical ensemble.
Alternatively it is also possible to define the problem of fermions in an external potential directly in the grand
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canonical ensemble. Indeed, the quantities Rn(x1, · · · , xn)dx1 · · · dxn are the probabilities that there is a particle in
each of the intervals [xi, xi + dxi], 1 ≤ i ≤ n (referred to as the correlation density in the mathematics literature).
Clearly such quantities exist and make sense for ensembles where the particle number varies. In fact in the grand-
canonical ensemble, Eq. (93) is an exact equality. Hence the kernel Kµ̃(xi, xj) exactly describes the statistics of a
system in the grand canonical ensemble at the chemical potential µ̃ corresponding to N for all values of µ̃, and not
only those corresponding to N large. In the physics literature, this determinantal property of the grand canonical
ensemble of free fermions is usually derived using Wick’s theorem [3, 63] and has been known for a long time (see
also Ref. [16]). Interestingly, in the mathematics literature, this property has been studied rigorously only rather
recently, using Cauchy-Binet-Andreief identity in the context of general determinantal point processes [64]. Of course
both approaches provide identical results. In this paper, we have preferred the approach using Cauchy-Binet-Andreief
identity to show that the determinantal property also holds in the canonical ensemble with fixed fermion number
N � 1. We have shown that this is true provided the saddle-point solution exists. To prove the existence of such a
saddle point rigorously is a challenging mathematical problem.

We end this subsection by commenting on the case where the single particle spectrum is degenerate. In this case,
the many-body ground-state may be degenerate – an example being the harmonic oscillator in 2d. Each of these
degenerate many-body ground-states can be written as a Slater determinant and each of them constitutes a separate
determinantal point process which can be studied along the lines of section III. However, the zero temperature limit
of the finite T measure in Eq. (63) corresponds to taking a zero temperature density matrix where each of these
degenerate many-body ground-states appears with equal probability. The resulting mixed state is not determinantal,
as in the finite T case. However, using the equivalence between the canonical and the grand-canonical ensemble in
the large N limit, this case can also be treated using Eq. (94) with N given by (91), in the limit β →∞. Note that,
everywhere in the formula given above, the sum over k has to be understood as a sum over all possible single-particle
states (including their degeneracies).

We now analyze these formula (91)-(95) first in the bulk and then at the edge of the Fermi gas.

V. HARMONIC OSCILLATOR IN ONE DIMENSION AT FINITE TEMPERATURE T > 0

Before applying the general formula for the finite temperature kernel and correlations to the harmonic oscillator case,
it is useful to discuss the relevant scales in the problem. We consider the harmonic oscillator potential V (x) = 1

2mω
2x2

in d = 1. We have seen that at T = 0 there is a natural length scale associated to quantum fluctuations in the confining
potential 1/α =

√
~/mω. At T = 0 there are two length scales `(x) = π/NρN (x) and wN = N−1/6/(α

√
2) denoting

respectively the inter-particle distance in the bulk and the edge (see Fig. 1). A finite temperature introduces a
length scale characterizing the width of a wave packet associated with a quantum particle, the thermal de Broglie
wavelength λT = ~

√
2π/(mT ) obtained by the equating kinetic energy and T . Therefore the thermal effects dominate

over the quantum effects only if λT is smaller than the typical inter-particle distance, in which case the system behaves
classically. In the bulk of the Fermi gas, comparing λT and l the quantum to classical crossover occurs at a temperature
scale

T ∼ N~ω . (96)

Similarly at the edge, comparing λT and wN we find that the corresponding crossover occurs at a much lower
temperature

T ∼ N1/3~ω . (97)

We will thus focus on these two regimes (96) and (97) in the following.

In addition, we know that the average density follows the Wigner semi-circle law at zero temperature, a clear
signature of the quantum effects. In the other limit of large temperature T � N~ω the system behaves classically
and we expect the standard Gibbs-Boltzmann distribution of independent particles

ρN (x)
T�N~ω−−−−−→

√
βmω2

2π
e−

β
2mω

2x2

(98)

Our goal below is to study the quantum to classical crossover in the density as well as in the kernel.
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A. High temperature scaling and results in the bulk

As anticipated by Eq. (96) the bulk scaling regime corresponds to the limit T →∞, N →∞, while keeping fixed
the following dimensionless variable

y = N~ω/T = βµ̃ . (99)

Similarly there is a length scale `T =
√

2T/mω2 associated with the high temperature thermal fluctuations from Eq.
(98), hence we can consider the dimensionless length scale, also kept fixed

z = x/`T = x
√
mω2/2T . (100)

In this scaling limit, Eq. (91) fixing the chemical potential µ̃, reads

N =

∞∑
k=0

1

eβ(~ω(k+ 1
2 )e−βµ̃ + 1

'
∫ +∞

0

dk
1

eky/Ne−βµ̃ + 1
=
N

y
ln(1 + eβµ̃) , (101)

where we could replace the sum by an integral since β~ω � 1. This yields the relation

eβµ̃ = ey − 1 . (102)

Hence in that scaling regime βµ̃ is also of order O(1).

1. Density of fermions in the bulk

We now analyze the density ρN (x) given in Eqs. (95) and (92) which we evaluate for x = z/
√
βmω2/2 =√

2N/(α
√
y)� 1. After performing the change of variable k = Np in the sum over k in (95), one obtains:

ρN (x) ' 1

N

∞∑
k=0

φk(x)2

eβ(~ω(k+ 1
2 )e−βµ̃ + 1

'
∫ ∞

0

dp

[
φNp

(
x = z

√
2N/(α

√
y)
)]2

eyp(ey − 1)−1 + 1
(103)

where we have replaced µ̃ by its value given in Eq. (102) and where φk(x) is given in Eq. (4). We now need an
asymptotic expansion of φk(x) for large k (and large x). This expansion is provided by the Plancherel-Rotach formula
[as given for instance in Eqs. (3.10) (3.11) of Ref. [65]]. For −1 < X < 1, one has

e−MX2

HM (
√

2MX) =

(
2

π

)1/4
2M/2

(1−X2)1/4
M−1/4(M !)1/2gM (X)

(
1 +O

(
1

M

))
(104)

with gM (X) = cos
(
MX

√
1−X2 + (M + 1/2) sin−1X −Mπ/2

)
. (105)

Using these formulas (104) and (105) for M = Np and X = z/
√
py – see Eq. (103) – (taking into account that X < 1,

i.e., p > z2/y) one finds

ρN

(
x = z/

√
βmω2/2

)
=
α
√

2

π

∫ ∞
z2/y

dp
1

eyp(ey − 1)−1 + 1
(Np)−1/2 1√

1− z2

py

[gNp(z/
√
py)]

2
(106)

=
α
√

2

π
√
y
√
N

∫ ∞
z2

dq
1

eq(ey − 1)−1 + 1

1√
q − z2

[gNp(z/
√
q)]

2
, (107)

where, in the second line, we have simply performed the change of variable p = q/y. To obtain the large N limit of

Eq. (107) we notice that, thanks to the identity cos2 x = 1/2 + cos (2x)/2, one can replace
[
gNp(z/

√
q)
]2

, given in
Eq. (105), in the integral over q in (107) by 1/2 (the remaining cosine being highly oscillating for large N and thus
subleading). If one finally performs the change of variable q → q + z2 in (107), one obtains finally

ρN

(
x = z/

√
βmω2/2

)
=

α

π
√
y
√

2N

∫ ∞
0

dq
1

eq+z2(ey − 1)−1 + 1

1√
q

= − α√
2Nπy

Li1/2(−(ey − 1)e−z
2

) , (108)
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where Lin(x) =
∑∞
k=1 x

k/kn is the polylogarithm function. Hence from Eq. (108) we obtain the main result of this
section: the fermion density in the bulk takes the scaling form

ρN (x) ∼ α√
N
R
(
y = βN~ω, z = x

√
βmω2/2

)
, (109)

with the bulk scaling function

R(y, z) = − 1√
2πy

Li1/2(−(ey − 1)e−z
2

) , (110)

which is plotted in Fig. 2. Note that it should not be confused with Rn that denotes correlation functions.

4
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FIG. 2. (Color online) Plot of the scaling function R(y, z) associated with the density ρN (x) (109), given in Eq. (110).

We now show, from an asymptotic analysis of R(y, z), that Eq. (109) interpolates between the Wigner semi-
circle (28) in the limit T → 0 and the classical Gibbs-Boltzmann distribution for T →∞:

ρN (x)
T→+∞−−−−−→

√
β mω2

2π
exp

[
−β

2
mω2 x2

]
, (111)

which holds also in the scaling limit β → 0, x → ∞ but keeping x
√
β fixed (with the limit N → ∞ already taken).

Note that the physical mechanism behind this interpolation is very different from those found earlier in other matrix
models [66, 67].

To analyze the T → ∞ and the T → 0 limits of ρN (x) in Eqs. (108) and (110), we need the following asymptotic
behaviors of the polylogarithm function:

Li1/2(X) ∼ X , X → 0 , (112)

and

Li1/2(−eX) ∼ − 2√
π
X1/2 , X →∞ . (113)

From these behaviors in (112) and (113), one finds the asymptotic behaviors of the scaling function R(y, z) in (110):

R(y, z) ∼



√
y

2π
e−z

2

, y → 0

√
2

π

√
1− z2

y
, y →∞ , z →∞ with z2/y fixed .

(114)

From the first line of Eq. (114), one recovers the T →∞ limit where the density converges to the Gibbs-Boltzmann
(Gaussian) form, given in Eq. (111). On the other hand, from the second line of Eq. (114), one obtains the T → 0
limit of the density, which is given by the Wigner semi-circle law Eq.(28).
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2. Kernel and correlations in the bulk

We analyze the kernel Kµ̃(x, x′) in the bulk where both x = uN−1/2/α and x′ = u′N−1/2/α are close to the center
of the trap (and x− x′ is of the order of the typical inter-particle distance). Hence we analyze the formulas (91) and
(94) in the limit N → ∞, β → 0 keeping y = βN~ω in (99) fixed. In this limit the chemical potential µ̃ is given by
Eq. (102) and the large N analysis of Kµ(x, x′) (94) can be performed along the same lines as done before for the
density ρN (x) yielding eventually Eq. (107). Indeed, using the Plancherel-Rotach asymptotic expansions (104) and
(105) we obtain:

Kµ̃(x = uN−1/2/α, x′ = u′N−1/2/α) ' α
√

2N

π

∫ ∞
0

dp√
p

1

ey p(ey − 1)−1 + 1
gNp

(
u

N
√
p

)
gNp

(
u′

N
√
p

)
. (115)

From the explicit expression of gN (X) in Eq. (105), one obtains straightforwardly

gNp

(
u

N
√
p

)
' cos

(
2u
√
p−Npπ

2

)
. (116)

And therefore the product gNp

(
u

N
√
p

)
gNp

(
u′

N
√
p

)
in Eq. (115) reads, for large N :

gNp

(
u

N
√
p

)
gNp

(
u′

N
√
p

)
' 1

2
cos (2

√
p(u− u′)) +

1

2
cos (2

√
p(u+ u′)−Npπ) . (117)

The second term in Eq. (117) is highly oscillating in the large N limit and hence the leading contribution, once
inserted in the integral over p in Eq. (115), comes from the first term of Eq. (117), which is independent of N .
Therefore we finally obtain

Kµ̃(x = uN−1/2/α, x′ = u′N−1/2/α) ∼ α
√
N

1

π
√

2

∫ ∞
0

dp√
p

cos(2
√
p(u− u′))

eyp(ey − 1)−1 + 1
. (118)

Finally, performing the change of variable p→ p/y, one obtains the final form of the finite temperature kernel in the
bulk

Kµ̃(x, x′) = αN1/2Kbulk
y

(
α
√
N(x− x′)

)
, (119)

where

Kbulk
y (v) =

1

π
√

2y

∫ +∞

0

dp
cos(

√
2p
y v)

(1 + ep/(ey − 1))
√
p

(120)

(see also Refs. [64, 68] for alternative derivations of this kernel). In the inset of Fig. 4 we show a plot of the 2-point
correlation function in the bulk gbulk

y (v) = Kbulk
y (0)2 − [Kbulk

y (v)]2 for different scaled temperature parameter y.

B. Low temperature scaling: density and kernel at the edge

1. Density at the edge

We now focus on the density near the zero temperature edge at xedge =
√

2N
α . We recall that at zero temperature

the density strictly vanishes at the edge, and the edge region has a width wN = 1
α
√

2
N−

1
6 which corresponds to the

typical separation between particles near the edge. To analyze how this density profile gets modified near the edge
we set

x =

√
2N

α
+ swN . (121)

We have also seen from Eq. (97) that in the edge region the crossover from quantum to classical regime occurs at
temperature T ∼ N1/3~ω. Hence we define the dimensionless (inverse temperature) parameter b

b =
~ω
T
N1/3 (122)
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FIG. 3. (Color online) Plot of the scaling function F1,b(s) for the density, given in Eq. (126) corresponding to two different
(scaled) temperatures b = 0.5 (dotted line) and b = 5 (solid line). Inset: plot of F1,b(s) corresponding to b → ∞ (zero
temperature) shown here for comparison with the main plot.

which will be kept fixed in the large N and large T limit in this edge regime. From (99) we see that the variable
y = bN2/3 � 1 in this regime. Hence, from (102) we can set βµ̃ ' y = bN2/3. We insert this value of βµ̃ in Eq. (95),
and use εk = ~ω(k + 1/2). Making further a shift k −N = m (neglecting the 1/2 factor compared to N) we obtain
the following expression for the density

ρN (x) ' 1

N

∞∑
m=−N

[φN+m(x)]2

exp (bm/N1/3) + 1
. (123)

Using the Plancherel-Rotach formula for Hermite polynomials at the edge (see for instance Ref. [65]) yields:

φN+m

(√
2N

α
+

s√
2α
N−

1
6

)
∼ √α 2

1
4

N
1
12

Ai

(
s− m

N
1
3

)
, (124)

up to terms of order O(N−2/3). Hence, by inserting this asymptotic formula (124) into Eq. (123) and replacing the
discrete sum over m ∼ N1/3 by an integral, we obtain the scaling form of the density near the edge

ρN (x) ' 1

NwN
F1,b

(
x− xedge

wN

)
(125)

where the finite temperature scaling function F1,b(s) is obtained as

F1,b(s) =

∫ +∞

−∞
du

Ai(s+ u)2

1 + e−bu
. (126)

In the zero-temperature limit b → ∞, the Fermi factor becomes a Heaviside step function, and we recover
F1,b=+∞(s) = F1(s) given in (31). In Fig. 3, we show how F1,b(s) behaves for different values of the reduced
inverse temperature b. Note that the oscillations are more and more attenuated as temperature increases.

Density at the edge: temperature dependence. It is interesting to discuss the value of the density exactly at the edge
x = xedge. One has

NρN (xedge) ' N1/6α
√

2fe(T/N
1/3~ω) , fe(t) = t

∫ +∞

−∞
du

Ai(ut)2

1 + e−u
. (127)

In the low temperature scaling regime T ∼ N1/3~ω the two limiting behaviors are

ρN (xedge) '



α
√

2

32/3Γ
(

1
3

)2N−5/6 , T � N1/3~ω

(
1−
√

2
)
ζ
(

1
2

)
α√

2π

1

N

√
T

~ω
, T � N1/3~ω .

(128)
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Note that we display the complete low temperature series, as an expansion in power of T 2, in Appendix B.
We recall that in the bulk high temperature regime T ∼ N~ω, one has from (109) and (110)

ρN (xedge) ' − α√
2πNy

Li1/2(e−y − 1) , y = N~ω/T (129)

which gives the two limiting behaviors

ρN (xedge) '



(
1−
√

2
)
ζ
(

1
2

)
α√

2π

1

N

√
T

~ω
, T � N~ω

√
mω2

2πT
, T � N~ω ,

(130)

which shows a perfect matching of the high temperature end of the low T (edge) scaling regime [second line of
Eq. (128)], with the low temperature end of the high T (bulk) regime [first line of Eq. (130)]. We recall that in the
high T regime, the Fermi gas extends well beyond the T = 0 edge. Note that for fixed (large) N this density first
increases as a function of T in the low T regime and then exhibits a maximum for T ∼ N in the high T regime before
decreasing again.

Right tail of the density. Let us consider the behavior of the density scaling function F1,b(s) to the right of the
edge, for large positive s. The analysis of the integral in Eq. (126) in that limit was performed in [69]. It is found
that there are two regimes depending on whether the parameter s̃ = s/b2 is smaller or larger than the critical value
s̃c = 1/4

F1,b(s) '


1

4b2
√
s̃ sin(2π

√
s̃)

exp
(
− 4

3s
3/2
)

, 1� s < b2

4

1√
4πb

exp
(
−bs+ b3

12

)
, s > b2

4 .

(131)

Hence we obtain a transition between a stretched exponential tail in the density, as in the zero temperature case,
to a pure exponential decay in the far tail for s > b2/4. Thus, for a fixed value of the reduced temperature b (not
necessarily large), the decay is always exponential. Note that the pre-exponential factor exhibits a crossover from the
two limiting cases indicated above, in the vicinity of s̃ = 1/4 [69].

Left tail of the density. For s large and negative, the integral over u in Eq. (126) is dominated by the region
u ∈ (−∞, |s|]. Within this interval one can thus replace, for large negative s, the Airy function by its asymptotic form
for large negative argument, Ai(z) ' 1√

π
|z|−1/4 sin ( 2

3 |z|3/2 + π/4), for z → −∞. By substituting the Airy function by

its asymptotic behavior in the integral over u in (126), one finds straightforwardly that F1,b(s) behaves asymptotically
as

F1,b(s) '
1

π

√
|s| , for s→ −∞ , (132)

which matches, as it should, with the Wigner semi-circle expanded close to xedge =
√

2N/α (28).

2. Kernel at the edge

We now consider the finite temperature kernel with both x and x′ close to the edge xedge =
√

2N/α. We set
x = xedge +wNs and x′ = xedge +wNs

′. We insert these coordinates into Eq. (94) and follow the same analysis as in
the case of the density (see above). This finally gives in the scaling limit

Kµ(x, x′) ' 1

wN
Kedge
b

(
x− xedge

wN
,
x′ − xedge

wN

)
(133)

where the scaled finite temperature edge kernel is given by

Kedge
b (s, s′) =

∫ ∞
−∞

Ai(s+ u)Ai(s′ + u)

e−b u + 1
du . (134)
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FIG. 4. (Color online) Plot of the 2-point correlation function at the edge gedgeb (s, s′ = −4) as a function of s and for scaled

inverse temperatures b = 0.5 and 5. Inset: Plot of the 2-point correlation function in the bulk gbulky (v) versus v for scaled
inverse temperatures y = 0.3, 3 and 10.

For s = s′ it reduces to the expression (126) for the density. Note that in the limit of zero temperature, when b→∞,
the non-zero contribution to the integral over u on the right hand side of Eq. (134) comes from u ∈ [0,+∞) and one
gets, using Eq. (37)

lim
b→∞

Kedge
b (s, s′) =

∫ ∞
0

Ai(s+ u)Ai(s′ + u) du = KAiry(s, s′) . (135)

The kernel in Eq. (134) is thus the finite temperature generalization of the Airy kernel (37). Finally, in Fig. 4 we

show a plot of the 2-point correlation function at the edge gedge
b (s, s′) = Kedge

b (s, s)Kedge
b (s′, s′) − [Kedge

b (s, s′)]2 for
different scaled inverse temperatures b.

C. Extremal statistics near the edge at finite temperature

1. Statistics of the rightmost fermion: exact distribution and its tails

We are now in position to study the fluctuations of the position xmax(T ) of the rightmost fermion at finite temper-
ature T . In principle it can be derived from the joint PDF of the fermion positions in Eq. (63) as

Pr(xmax(T ) ≤ w) =

∫ w

−∞
dx1 . . .

∫ w

−∞
dxN Pjoint(x1, · · · , xN ) . (136)

At T = 0, this distribution has a limiting scaling form given by the Tracy-Widom distribution [see Eqs. (47), (48)],
as discussed in section III C. As we have shown in section IV C, in the limit of large N , the positions of the fermions
at finite T form a determinantal point process, with the kernel parametrized by temperature as given in Eq. (133).
As a result (following the discussion in section III C), the multiple integral in Eq. (136) can be written as a Fredholm
determinant [15]. Indeed, at finite temperature T ∼ O(N1/3) (with b = ~ωN1/3/T fixed) and in the N → ∞ limit,
the scaled cumulative distribution function (CDF), denoted by Qb(s), of xmax(T ) can be expressed as the following
Fredholm determinant [53]

Pr

(
xmax(T ) ≤

√
2N

α
+
N−

1
6

α
√

2
s

)
→

N→∞
Qb(s) := Det(I − PsKedge

b Ps) , (137)

where Ps is the projector on the interval [s,+∞), the kernel Kedge
b is given in (134) and α =

√
mω/~.

The first property to note is that in the limit T → 0, i.e. b → +∞, since Kedge
b → KAiry this distribution (137)

converges to the TW distribution for GUE given in (48). Hence Qb(s) is a generalization of the TW distribution
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to finite temperature. The calculation of the Fredholm determinant (FD) in (137) is quite involved. As we have
pointed out in [11] the same FD occurs in the exact solution of the KPZ equation with droplet initial conditions. This
correspondence is recalled in section VIII B and here we will borrow some of the results obtained in that context. This
FD can be expressed in terms of the solution of a non-local generalization of the Painlevé II equation [31], namely
one has

∂2
s lnQb(s) = −

∫ +∞

−∞
dv σ′b(v)[qb(s, v)]2 , (138)

where

σb(v) =
1

1 + e−bv
, (139)

and σ′b(v) = ∂vσb(v). The function qb(s, v) satisfies a non-linear integro-differential equation in the variable s

∂2
sqb(s, v) =

(
s+ v + 2

∫ +∞

−∞
dw σ′b(w)[qb(s, w)]2

)
qb(s, v) , (140)

with the boundary condition qb(s, v) 's→+∞ Ai(s+v). Note that in the zero temperature limit b→∞, σ′b(v)→ δ(v),
hence one recovers that qb(s, 0) satisfies the standard Painlevé II equation (49) which is related to the TW distribution
for GUE. The analysis of this equation (140) is rather non trivial. Alternatively, a numerical evaluation of the FD is
possible, along the lines of Ref. [70] using the method developed by Borneman [71]. This is left for future studies.

Tails of Qb(s). While we have a formal expression for the full scaled distribution function Qb(s) in terms of a FD
in Eq. (137), can we determine its tails for large |s| explicitly for fixed b? Indeed this is possible for arbitrary b for
the right tail s → +∞. However, for the left tail, we can only provide results in the scaling limit s → −∞, b → ∞,
but keeping the ratio s/b2 fixed.

We start with the right tail. In the limit of large positive s the FD in (137) can be approximated by the first term

in a trace expansion. Indeed in this limit, since Kedge
b (s, s′) is “small”, one can expand the FD in Eq. (137) in the

following way:

lnQb(s) := ln Det(I − PsKedge
b Ps) = −

∞∑
p=1

1

p
Tr
[
PsK

edge
b Ps

]p
. (141)

Keeping only the leading p = 1 term gives, for large s

lnQb(s) ≈ −Tr
[
PsK

edge
b Ps

]
= −

∫ ∞
s

Kedge
b (s′, s′) ds′ . (142)

Taking derivative w.r.t. s, and using lims→∞Qb(s) = 1, yields

Q′b(s) ' Kedge
b (s, s) = F1,b(s) =

∫ +∞

−∞
du

Ai(s+ u)2

1 + e−bu
, (143)

where F1,b(s) is the density near the edge in Eq. (126). Therefore the right tail of Qb(s) coincides to leading order
with the edge density. It turns out that, just the leading term already provides a numerically accurate estimation of
the right tail of Qb(s). Indeed, this is also the case at T = 0, where the edge density provides a numerically accurate
approximation of the right tail of the TW distribution. From the analysis of F1,b(s) in Eq. (131), we see that for
fixed b, as s→∞,

Qb(s) ∼
1√
4πb

exp

(
−bs+

b3

12

)
. (144)

However, if one scales b and s such that s̃ = s/b2 is fixed, then the right tail of Qb(s) undergoes the same crossover
as F1,b(s) at s̃c = 1/4 [as in Eq. (131)].

We now turn to the left tail of Qb(s) as s→ −∞. Here, analyzing the FD for fixed b with s→ −∞ turns out to be
difficult. However, one can make progress in the scaling limit when b→∞, s→ −∞, keeping the ratio s̃ = s/b2 fixed.
In fact, in the context of the height distribution of the KPZ equation at late times (and will be discussed later in
section VIII B), this scaling limit was already investigated in [69] by analyzing the solution of the non-local Painlevé
equation (140). There it was argued that in this scaling limit the CDF behaves as

Qb(s) ∼ e−b
6Φ−(s/b2) , where Φ−(z) =

1

12
|z|3 . (145)
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2. Statistics of the rightmost fermion: finite temperature behavior of the distribution of the position of the rightmost fermion

In the previous subsection we discussed the limiting distribution of the position of the rightmost fermion in the
limit where T ∼ O(N1/3) and N is large. In that analysis, we kept the scaling parameter b = ~ωN1/3/T fixed and
investigated the CDF Qb(s) as a function of s for fixed b. We were able to obtain explicit results for the tails of Qb(s)
for b large, i.e., T � O(N1/3). Thus, in some sense, the system was still in the vicinity of the T = 0 limit. In this
subsection, we consider the opposite high temperature limit where T � O(N1/3), i.e., the b→ 0 limit.

To proceed, we use some recent results from the connection between the KPZ equation in droplet geometry and
the fermion problem [11] (for details, see section VIII B). The height distribution in the KPZ problem was recently
analyzed exactly in the short time limit [72], which corresponds to high temperature in the fermion problem. This
allows one to obtain the high temperature expansion, in powers of the small parameter b, of the cumulants of the
position of the rightmost fermion xmax(T ), and to provide approximate interpolation formula which should be useful
for comparison with cold atom experiments.

Cumulants. We start by discussing the mean position and the variance, as obtained from the analysis of Sec-
tion VIII B. Let us define the rescaled variable

ξ =
xmax(T )− xedge

wN
(146)

where xedge =
√

2N/α is the edge at T = 0. Note that this definition differs from the one of the variable ξ defined
in [72]. The first few terms in the series expansion of the mean position read

〈ξ〉 = − 1

2b
ln(4πb3) +

γE
b
−
√
π

2

b1/2

2
+

(
32π

9
√

3
− 2− 3π

2

)
b2

4
+O(b7/2) (147)

and the variance behaves as

〈ξ2〉c = 〈ξ2〉 − 〈ξ〉2 =
π2

6b2
+
√

2π
1

2b1/2
+

(
4 + 5π − 32π

3
√

3

)
b

4
+O(b5/2) . (148)

These formula give the behavior for small b, and we know that they should crossover at large b to the zero
temperature limit given by the cumulants of the GUE Tracy-Widom distribution. In particular, the mean 〈ξ〉 converges
to mTW = −1.771086807411 . . ., and the variance 〈ξ2〉c converges to σ2

TW = 0.8131947928329 . . .. In fact we know a
bit more: as shown in the Appendix B the large b expansion takes the form

〈ξ〉 = mTW +O(b−4) (149)

〈ξ2〉c = σ2
TW +

π2

3b2
+O(b−4) . (150)

Note that the form of the correction to the variance as a2/b
2 is common to the KPZ universality class [73], although the

prefactor a2 may be non-universal. For the continuum KPZ equation its value is fixed and is computed in Appendix B.
Since the variance is the easiest cumulant to measure in a cold atom experiment we give here an approximation

to the crossover from low to high values of b, by constructing a Padé approximant 〈ξ2〉c|Pade which (i) reproduces all
known terms in the small b expansion given in (148) (ii) converges at large b to σ2

TW as 〈ξ2〉c|Pade ' σ2
TW + a2

b2 . It

reads, with the value a2 = π2/3,

〈ξ2〉c|Pade =
1.64493 + 1.13494 b3/2 + a2 b

4 + 0.813195 b6

b2
(
1− 0.0719632 b3/2 + b4

) (151)

and is plotted in Fig. 5. Although there is some degree of arbitrariness, this curve should be useful to calibrate the
experiments, given that the range of values of b presently available is b ∼ 0.5− 2. Another way to present the result
for the variance of the fluctuations of the rightmost fermion, is to divide it by the (half) size of the fermi cloud (at
T = 0) xedge, and write 〈(

xmax(T )− xedge

xedge

)2
〉c

=
T 2

T 2
F

V
(
b =

TF
N2/3T

)
(152)

where TF = N~ω, and the scaling function V(z) is such that V(0) = π2

24 [see Eq. (148)] and V(z) 'z→+∞ σ2
TWz

2/4 to
yield back the zero temperature limit (i.e., as b→∞). A Padé approximation of the function V(z) is easily obtained
from (151).
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FIG. 5. Plot of the Padé approximate 〈ξ2〉c|Pade given in Eq. (151) with a2 = π2/3. The horizontal line is corresponds to the
variance of the TW distribution σ2

TW, which is the exact result for b→∞, i.e., in the T → 0 limit.

N1/3 N

TW-GUE Gumbel (I) Gumbel (II)

0 T/~!

FIG. 6. Sketch of the behavior of the distribution of the rightmost fermion as a function of T/~ω. When T/~ω � N1/3, the

distribution is given by the TW distribution for GUE [see Eq. (157)] while for T/~ω � N1/3 – and T/~ω � N – it crosses over

to a Gumbel distribution (157), denoted as Gumbel (I) in the figure. The full crossover, when T/~ω ∼ O(N1/3) is described the
finite temperature generalization of the TW distribution (137), which also appears in the KPZ equation in a droplet geometry
(see also Eq. (151) for the second cumulant). Finally, for T/~ω � N , the distribution is described by yet another Gumbel
distribution (denoted as Gumbel (II) in the figure), as discussed in the text [see Eq. (158)].

Finally, we also give the third cumulant of the scaled variable ξ in Eq. (281). For small b it reads

〈ξ3〉c =
2ζ(3)

b3
+

(
32

3
√

3
− 6

)
π

4
+O(b3/2) (153)

which allows to calculate the skewness of the position of the right-most fermion (note that the skewness is independent
of any rescaling)

Sk :=
〈ξ3〉c

[〈ξ2〉c]3/2 = 1.13955− 1.30237 b3/2 + 1.20563 b3 +O(b7/2) . (154)

It decreases from the skewness of the Gumbel distribution (see below) SkGumbel = 1.13955 at high temperature (small
b) to the skewness of the TW distribution for GUE SkTW = 0.224084203610 . . . at zero temperature (large b). Note
however that since 〈ξ3〉c = κ3 +O(b−4) (see Appendix B), we find that the approach to the zero-temperature limit is
from below

Sk = SkTW

(
1− π2

2σ2
TWb

2
+O(b−4)

)
. (155)

Hence the skewness is (weakly) non-monotonic as a function of the temperature.

High temperature limit and the Gumbel distribution. In the high temperature limit of the edge regime, i.e. T �
N1/3~ω (equivalently b � 1), the full PDF of ξ becomes a Gumbel distribution, up to a temperature dependent
constant shift [64, 72]. More precisely one finds

xmax(T )− xedge

xedge
' 1

4y
ln

(
N2

4πy3

)
+

1

2y
γ , y =

~ωN
T

=
TF
T

, (156)
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where γ is a Gumbel random variable with PDF p(γ) = e−γ−e
−γ

. Note that we have used the variable y which was
introduced to study the high temperature bulk regime (which is defined by y = O(1)). Although this formula is
derived here from studying the high temperature limit of the low temperature edge regime, we expect that it should
match in some way with the low temperature limit of the high temperature bulk regime, although as we will see this
matching is not trivial. This result for high temperature in Eq. (156) together with the T = 0 result [see Eqs. (47),
(48)] show that the fluctuations of the position of the rightmost fermion, in the edge regime, interpolates between a
TW-random variable χ2 when T � N1/3~ω and Gumbel random variable γ when T � N1/3~ω [64, 72], i.e. (in terms
of the original parameters T and N),

xmax(T )− xedge

xedge
∼


1

2
N−2/3 χ2 , T � N1/3~ω

T

4N~ω
ln

(
T 3

4πN(~ω)3

)
+

T

2N~ω
γ , T � N1/3~ω .

(157)

It is instructive to compare this Gumbel distribution to the one that we can infer, from extreme value statistics
arguments (see e.g., Ref. [74]), in the very high temperature regime y � 1. In that regime, we know that the
positions of the fermions are independent and identical random variables drawn from the Boltzmann distribution
given in Eq. (98), and therefore xmax(T ) is also distributed according to a Gumbel law. This implies

xmax(T )− xedge

xedge
'
√

lnN

y
− 1− ln(4π lnN)

4
√
y lnN

+
1

2
√
y lnN

γ̃ , (158)

where γ̃ is also a Gumbel random variable (we used the different notation γ̃ in Eq. (158) to emphasize that this
random variable is different from the Gumbel variable in Eq. (156), while both of them have the same statistics).
The behavior (158) is expected to hold for N � 1, and fixed y � 1. Note that xedge in this formula is the T = 0
edge, while at these temperatures the density does not display a true edge, and extends well beyond xedge. We note
that, although we obtain Gumbel laws in the two regimes (156) and (158) the detailed dependence in y and N is quite
different. From its derivation, the regime (156) should hold for large y. If one compares the deterministic terms in
(156) and (158), keeping in mind that the fluctuations increase with temperature, one obtains the stronger condition
for (156) to hold

y � lnN , i.e. N1/3 � T

~ω
� N

lnN
. (159)

The interpolation between these two regimes remains an open problem. It requires to study the Fredholm determinant
associated with the full finite temperature kernel (94) in the region y = O(1). Note that, although the fluctuations
of xmax(T ) are universal (this is shown in section VII D) in the low temperature scaling regime b = O(1) ([i.e., in
Eq. (157)], the extreme value statistics arguments leading to (158) also show that the (logarithmic) dependence in N
depends on the power law index p of the confining potential V (x) ∼ |x|p. These different behaviors of the rightmost
fermion, as described in Eqs. (157) and (158) above, are sketched in Fig. 6.

Note that besides the regime of typical fluctuations of xmax(T ) one can also study the large deviations. In the
limit of high temperature of the low temperature edge regime this was done in detail in [72]. In addition, one can
also study the counting statistics of the number of fermions in a given interval J , or the PDF of the spacing between
nearest neighbor fermions near the edge at finite temperature. As a consequence of the determinantal structure of all
correlations in the large N limit, these observables are given in terms of Fredholm determinants by exactly the same
formula as (39) and (42) replacing the kernel KJ there by the finite T edge kernel (134). The detailed analysis of
such FD is left for future investigations.

Here we add a few interesting remarks. First one can extend the property shown in Eq. (54) to finite temperature,
assuming that again the equivalence canonical-grand canonical goes through at large N (the property is exact in the
grand-canonical ensemble). It can be written everywhere (bulk and edge) but let us display it here near the edge.

Defining the rescaled positions of the fermions near the edge ai =
xi−xedge

wN
and taking the N →∞ limit, keeping ai’s

fixed 〈 ∞∏
i=1

f(ai)

〉
T

= Det(I − Lf,b) , Lf,b(r, r
′) = (1− f(r))Kedge

b (r, r′) , (160)

where Kedge
b (r, r′) is given in Eq. (134). In Eq. (160), the average is performed at finite temperature T and the

function f(x) is arbitrary, provided the right hand side exists. Next, since one can rewrite the CDF of the position of
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the rightmost fermion in (137) more explicitly in terms of the Airy kernel as

Qb(s) := Det(I − PsKedge
b Ps) = Det(I − K̄b,s) (161)

K̄b,s(u, u
′) = KAi(u, u

′)σs,b(u) , σs,b(u) = 1/(1 + e−b(u−s)) (162)

we immediately obtain (with PJ(x) denoting the indicator function of the interval J)〈 ∞∏
i=0

P(−∞,s](ai)

〉
T

= Qb(s) =

〈 ∞∏
i=0

(1− σs,b(ai))
〉
T=0

=

〈 ∞∏
i=0

1

1 + eb(ai−s)

〉
T=0

(163)

A similar product appeared in a recent paper by Borodin and Gorin [75].

VI. THE d-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR AT ZERO TEMPERATURE

We now consider the model for non-interacting fermions in a harmonic potential in arbitrary dimension d, as
defined in Section I B. Here we focus on T = 0, the finite T case is studied in the next Section. To study this more
general problem it is convenient to use a method based on the one-body Euclidean propagator that we describe in
Section VI A. This will lead to results both in the bulk (Section VI B), as well as at the edge (Section VI C) of the
d-dimensional Fermi gas. In particular, this provides a useful alternative (also in d = 1) to the method relying on the
Plancherel-Rotach asymptotic formulas for Hermite polynomials.

A. Representation of the T = 0 kernel using the one-body Euclidean propagator in arbitrary d

1. General framework: kernel and propagator

We start by considering the zero temperature kernel for N non-interacting spin-less fermions with an arbitrary
one-body Hamiltonian Ĥ, as defined in (1). As discussed in Section II, the kernel corresponding to a system with
Fermi energy µ is then defined by

Kµ(x,y) =
∑
k

θ(µ− εk)ψ∗k(x)ψk(y), (164)

where θ(z) is the Heaviside step function and the energy eigenvalues εk are labeled by d quantum numbers denoted
by k ∈ Zd. We now compute

G(x,y; t) =
t

~

∫ ∞
0

dµ exp

(
− tµ

~

)
Kµ(x,y)

=
∑
k

ψ∗k(x)ψk(y) exp

(
−εkt

~

)
(165)

and immediately see that G(x,y; t) is in fact the one body Euclidean propagator associated to the one body Hamil-

tonian Ĥ. By definition, it obeys the imaginary time Schrödinger equation

−~∂G(x,y; t)

∂t
= ĤG(x,y; t), (166)

where Ĥ = Ĥ(y, ~i∇y) is the quantum Hamiltonian defined in Eq. (1) acting on the variable y (in our convention).
From the completeness of the basis of the eigenfunctions, it satisfies the initial condition

G(x,y; 0) = δd(x− y). (167)

If the propagator G is known as a function of t, then the kernel can be obtained via the Bromwich inversion formula
for Laplace transforms as

Kµ(x,y) =

∫
Γ

dt

2πit
exp

(
µt

~

)
G(x,y; t) , (168)
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where Γ indicates the Bromwich integration contour in the complex plane.
For the isotropic d-dimensional harmonic oscillator, which we focus on here, the Euclidean propagator is known

exactly at all times, and is given by [76]

G(x,y; t) =

(
α2

2π sinh (ω t)

)d/2
exp

[
− α2

2 sinh (ω t)

(
(x2 + y2) cosh (ω t)− 2x · y

)]
(169)

where α =
√
mω/~. The Bromwich integral in Eq. (168) is in general difficult to compute explicitly. However, for a

system with a large number of fermions, the Fermi energy µ will be large and so we can assume that the integral is
dominated by small values of t. The validity of the approach will be made more precise below.

2. Short-time expansion of the propagator and of the kernel

As we will make clear later, to obtain all of our results, we will need the short time expansion of the propagator up
to O(t3). For this purpose it is useful to write the propagator G(x,y; t) given in Eq. (169) in the following form

G(x,y; t) =

(
α2

2π sinh (ω t)

)d/2
exp

[
− α2

2 sinh (ω t)

(
(x− y)2 + (x2 + y2)(cosh(ω t)− 1)

)]
, (170)

which gives at coinciding points with r = |x|

G(x,x; t) =

(
α2

2π sinh (ω t)

) d
2

exp

[
− tanh

(
ω t

2

)
α2r2

]
. (171)

Expanding the formula (170) to O(t3) gives

G(x,y; t) '
( m

2π~t

)d/2
exp

(
− m

2π~t
(x− y)2 − mω2t

12~
[
3(x2 + y2)− (x− y)2

]
−dω

2t2

12
+
mω4t3

720~
[
15(x2 + y2)− 7(x− y)2

])
. (172)

In particular at coinciding points y = x with r = |x| and using α =
√
mω/~, one obtains to O(t3)

G(x,x; t) '
[
α2

2πωt

] d
2

exp

(
−α

2r2ωt

2
− dω2t2

12
+
α2r2ω3t3

24

)
. (173)

Substituting the expression (173) into Eq. (168) then yields the short time expansion to order O(t3) of the kernel

Kµ(x,y) '
[
α2

ω

] d
2
∫

Γ

dt

(2πt)1+ d
2 i

exp

(
− m

2π~t
(x− y)2 +

t

~
(µ− mω2

12

[
3(x2 + y2)− (x− y)2

]
)

−dω
2t2

12
+
mω4t3

720~
[
15(x2 + y2)− 7(x− y)2

])
. (174)

At coinciding points the kernel expanded to O(t3) becomes

Kµ(x,x) ≈
[
α2

ω

] d
2
∫

Γ

dt

(2πt)1+ d
2 i

exp

(
t

~
[µ− mω2r2

2
]− dω2t2

12
+
α2r2ω3t3

24

)
. (175)

The latter two formula will be used extensively below.

B. Results in the bulk

1. The bulk density profile

We start by analyzing the kernel at coinciding points, i.e. x = y, to obtain the density ρN (x) = (1/N)Kµ(x,x) for
large N (equivalently for large µ as we assume now and verify a posteriori). Our starting point is Eq. (175) where
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we see that the effective energy scale entering the Laplace transform is not simply µ but

ε(r) = µ−mω2r2/2 = µ

(
1− r2

r2
edge

)
, (176)

which is the difference between the Fermi energy and the classical potential energy at the radial coordinate r. We
have defined

redge =
√

2µ/mω2 , (177)

the radius at which ε(r) vanishes. We will see below that redge is also the edge where the bulk density vanishes. When
ε(r) is large, which is the case for large µ and away from the edge, the integral in Eq. (175) can be approximated
by the term of O(t) in the exponential, and is dominated by times of order t ∼ ~/ε(r). The corrections to this
approximation coming from the O(t2) and O(t3), are respectively

d

12

(
~ω
ε(r)

)2

+
α2r2

24

(
~ω
ε(r)

)3

. (178)

Hence the first one is unimportant when

ε(r)� ~ω, ⇐⇒ |r − redge| � (redgeα)−1/α. (179)

Similarly the cubic terms can be seen to be unimportant when

α2r2

24

(
~ω
ε(r)

)3

� 1 ⇐⇒ |r − redge| � (redgeα)−
1
3 /α . (180)

We will see below that redge is large for large N . In that case, sufficiently away from the edge, Eq. (180) is satisfied
and this automatically ensures that Eq. (179) is also satisfied. Hence, keeping only this leading term to describe the
bulk density, we can use the standard identity∫

Γ

dt

2πi

1

td/2+1
exp(zt) =

zd/2

Γ(1 + d
2 )
θ(z) (181)

to write

Kµ(x,x) ≈ 1

Γ(1 + d
2 )

[ m

2π~2

] d
2

(
µ− mω2r2

2

) d
2

θ

(
µ− mω2r2

2

)
(182)

=
1

2dπ
d
2 Γ(1 + d

2 )
α2d

(
r2
edge − r2

) d
2 θ (redge − r) , (183)

where θ is the Heaviside step function. Consequently the bulk density, as a function of r = |x| is given by

ρN (r) =
1

2dNπ
d
2 Γ(1 + d

2 )
α2d

(
r2
edge − r2

) d
2 θ (redge − r) . (184)

Hence, as anticipated above, the bulk density vanishes at the radius r = redge given in Eq. (177). It should also be
noticed that the expression given here for the density is the one obtained by the local density approximation (LDA)
[4].

The value of the chemical potential µ corresponding to a fixed value of N , the number of fermions, can be evaluated
from the normalization condition

∫
ddx ρN (x) = 1 which yields

Sd r
d
edge

Γ(1 + d
2 )
µ
d
2

( m

2π~2

) d
2

∫ 1

0

du ud−1(1− u2)
d
2 = N, (185)

where Sd = 2π
d
2 /Γ(d/2) is the surface unit area of a unit sphere in d dimensions. Using∫ 1

0

du ud−1(1− u2)
d
2 =

1

2
B

(
d

2
,
d

2
+ 1

)
, (186)
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where B(p, q) denotes the beta function, as well as Eqs. (177) and (185), we obtain the Fermi level and the value of
the edge radius as a function of N

µ = ~ω[NΓ(d+ 1)]
1
d , redge =

2
1
2 [Γ(d+ 1)]

1
2d

α
N

1
2d , (187)

as anticipated in Eq. (6). Finally, this leads to the final result for the normalized density as a function of N

ρN (x) =
1

2dN
1
2π

d
2 Γ(1 + d

2 )

(mω
~

) d
2

(
2Γ(d+ 1)

1
d − mω

~N 1
d

r2

) d
2

. (188)

Using the explicit dependence of µ and thus redge on N from (187) in (180), we see that this formula for the bulk

density is valid in the regime redge − r � N−
1
6d /α. Below we will see how to obtain both the density and the kernel

in the edge regime where redge − r ∼ N−
1
6d /α.

As an example we consider the simple harmonic oscillator in two dimensions. We have numerically computed the
density ρN (x) for N = 28 (corresponding to a full Fermi level) free fermions in a two dimensional harmonic trap for

α =
√
mω/~ = 1, by directly summing the modulus squared of the first 28 wave functions. Shown in Fig. 7 is the

comparison of the numerical summation with the bulk asymptotic formula Eq. (188).
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FIG. 7. (Color online) Plot of the bulk density (solid line) ρ28(r) for 28 fermions in an isotropic harmonic potential in two
dimensions compared with the asymptotic formula for the bulk density Eq. (188), (the region below the asymptotic result is
shown via the shaded region).

2. The kernel in the bulk

In order to compute the bulk kernel for the isotropic simple harmonic oscillator, we extend our analysis for the bulk
density, and thus we keep only terms up to order O(t) in Eq. (174) which gives

Kµ(x,y) ≈
( m

2π~

) d
2

∫
Γ

dt

2πi

1

t
d
2 +1

exp

(
µt

~
− m(x− y)2

2~t
− mω2(x2 + y2 + x · y)t

6~

)
. (189)

To proceed one can use the following integral representation of the standard Bessel function of the first kind of index
ν, denoted by Jν(x) [77], ∫

Γ

dt

2πi

1

td/2+1
exp(zt− a

t
) =

(z
a

)d/4
J d

2

(
2
√
a z
)
. (190)

We use this identity to evaluate the representation of the kernel in Eq. (189) to obtain

Kµ(x,y) ≈
(
α2

2π

) d
2

(
3r2

edge − x2 − y2 − x · y
3(x− y)2

) d
4

J d
2

(
α2

√
3
|x− y|

√
3r2

edge − x2 − y2 − x · y
)
, (191)
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where we recall that µ = 1
2mω

2r2
edge. Now if we consider two points x′ and y′ both close to a point x in the bulk we

find that the kernel has the scaling form

Kµ(x + x′,x + y′) ≈ `(x)−dKbulk
d (|x′ − y′|/`(x)) (192)

where

`(x) = [NρN (x)γd]
−1/d , γd = Sd/d = πd/2[Γ(d/2 + 1)] (193)

is the local typical separation between fermions in the bulk. The explicit formula for the scaling function in Eq. (192)
is given by

Kbulk
d (x) =

Jd/2(2x)

(πx)d/2
, (194)

which has a well defined limit at the origin with Kbulk
d (0) = 1/γd. In d = 1, using J1/2(z) =

√
2/(πz) sin z, we recover

the standard sine-kernel Kbulk(x) = sin(2x)
πx of RMT. The domain of validity of the bulk analysis carried out above

can be determined by examining the corrections coming from the quadratic and cubic corrections in t, as was done
above for the study of the density. The result for the bulk kernel in Eq. (189) is found to be valid when both x and
y are in the bulk, away from the edge redge.

The result for the kernel (194) for relative distances of order the typical particle separation can also be obtained
from the LDA [4, 78]. Indeed we remark here that the Fourier transform of this kernel is Fermi-step function, this
can be seen using the formula: ∫

|k|<kF

ddk

(2π)d
eik·x =

(
kF

2π|x|

)d/2
Jd/2(kF |x|). (195)

In the expression in Eq. (195) the local Fermi momentum must be chosen as kF = kF (x) = 2/`(x) = 2(NρN (x)γd)
1/d.

This value is exactly consistent with the one obtained by the counting of states for a uniform system of density ρN (x),

by setting N ρN (x) =
∫
|k|<kF

ddk
(2π)d

= kdF /(4π)d/2Γ(1 + d/2). Thus, to describe correlations on scale `(x) in the bulk,

one can approximate locally the system by free fermions without any external potential, but at a fixed density ρN (x),
assumed to be slowly varying on that scale. Our method thus gives a rigorous derivation of the results, within the
bulk, obtained from the heuristic LDA.

C. Results at the edge

1. The density near the edge

We have seen how the density and kernel in the bulk region can be obtained via a leading order short-time expansion
of the propagator for the simple harmonic oscillator in Section (VI B). However this expansion becomes insufficient
when the inequalities in Eqs. (179) and (180) are violated: this occurs near the edge where the density vanishes. As
demonstrated below, the description of the edge regime requires one to expand the propagator to higher orders in t
as in Eq. (173).

We start by investigating the density near r = redge =
√

2µ/mω2, for finite but large N by setting

r = |x| = redge + z wN , wN = bdN
−φ, (196)

where the distance from the edge is parametrized by the scaled dimensionless distance z, while the edge exponent φ

is to be determined a posteriori. For convenience we introduced the factor bd = [Γ(1 + d)]
− 1

6d /(α
√

2) which has the
dimension of a length.

To calculate the kernel in this edge region, we need to use the expansion of the kernel Kµ(x,x) up to O(t3), as given
in Eq. (175). Substituting (196) into (175), we see that the two terms of O(t) cancel each other inside the argument
of the exponential, leaving only three terms

Kµ(x,x) ≈
(
α2

2πω

)d/2 ∫
Γ

d t

2πi

1

td/2+1
exp

[
−
√

2µ

m
α2 z bdN

−φt− d

12
ω2 t2 +

µω2

12~
t3

]
. (197)
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We now determine the exponent φ by comparing the magnitude of the three terms inside the exponential and using
µ ∼ N1/d. We obtain, in the order that they appear

T1 ∼ z
√
µN−φt ∼ zN 1

2d−φt , T2 ∼ t2 , T3 ∼ µt3 ∼ N
1
d t3 . (198)

Since the first term must be of order O(1), this implies that t ∼ Nφ− 1
2d . We then have only two possibilities a priori.

The first one is to choose φ = 1/(2d) that keeps T2 ∼ O(1), but then T3 ∼ N1/d and diverges as N → ∞, which is
inconsistent. Hence, in order to make the term T3 = O(1), we must choose

φ =
1

6d
=⇒ t ∼ N− 1

3d , (199)

which is consistent with the assumption of an expansion in small t. It is easy to check in Eq. (171) that with this
scaling exponent the terms of order higher than O(t3) vanish as N → ∞. Note that this result can be understood
qualitatively by arguing that there should be of order one particle in the typical fluctuation region, i.e. in a box of
linear size wN around the edge, which leads to(

wN
redge

)d−1 ∫ redge

redge−wN
ρN (r)rd−1dr ∼ 1

N
(200)

which in turn implies wN ∼ N−1/(6d), using the formula (188) for the density ρN (r) = ρN (|x|). Hence, rescaling
t = N−1/(3d)/(ω[Γ(d+ 1)]1/(3d)) τ , we obtain our main result for the density

NρN (x) = Kµ(x,x) =
1

wdN
Fd

(
r − redge

wN

)
(201)

where we have defined the width of the edge regime in d-dimension

wN = bdN
− 1

6d =
1

α
√

2
[Γ(1 + d)N ]

− 1
6d (202)

and the scaling function Fd(z) is given by

Fd(z) = (4π)−d/2
∫

Γ

dτ

2πi

1

τd/2+1
e−τ z+τ

3/12 . (203)

The expression Eq. (203) can be rewritten in the following way. First we make use of the identity

1

τd/2+1
=

1

Γ(d/2 + 1)

∫ ∞
0

e−τx xd/2 dx (204)

in Eq. (203) to obtain

Fd(z) =
1

Γ(d/2 + 1) (4π)d/2

∫ ∞
0

dxxd/2
∫

Γ

dτ

2πi
e−τ(x+z)+τ3/12 . (205)

Rescaling τ → 22/3τ and using the integral representation of the Airy function

Ai(z) =

∫
Γ

dτ

2πi
e−τz+τ

3/3 (206)

then gives, after a further rescaling x→ 2−2/3x, in the integral expression for Fd(z) in Eq. (205) then yields

Fd(z) =
1

Γ(d2 + 1)2
4d
3 π

d
2

∫ ∞
0

du u
d
2 Ai(u+ 22/3 z) . (207)

General properties of the density scaling function in d = 1, 2, 3. This scaling function satisfies some general properties
in any d. For instance differentiating Eq. (207) w.r.t. z once and using integration by part one finds the recursion
formula

dFd(z)

dz
= − 1

4π
Fd−2(z) , (208)
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FIG. 8. (Color online) Plot of the scaling functions Fd(z) in Eq. (207) for d = 1, 2, 3 (top to bottom) for the density near the
edge. The oscillatory structure of the scaling function becomes less pronounced as the dimension d increases.

which allows to obtain Fd(z) = 1
4π

∫ +∞
z

Fd−2(z) from the knowledge of Fd−2(z). In addition it is easy to see that
Fd(z) satisfies a third-order differential equation

d3Fd(z)

dz3
− 4 z

dFd(z)

dz
+ 2 dFd(z) = 0 (209)

which must be complemented by appropriate boundary conditions (see below).
Explicit forms of the density scaling function in d = 1, 2, 3. In d = 1, the above integral can be performed exactly.

We start with the identity [79] ∫ ∞
0

Ai(z + u)
du√
u

= 22/3πAi2
( z

22/3

)
≡ I(z) (210)

and differentiate it twice with respect to z. Using the Airy differential equation Ai′′(z) = zAi(z), one obtains∫ ∞
0

du
√
uAi(z + u) = I ′′(z)− zI(z) = π21/3

([
Ai′
( z

22/3

)]2
− z

22/3
Ai2

( z

22/3

))
. (211)

It then follows from Eq. (207), upon setting d = 1, that

F1(z) = Ai′2(z)− zAi2(z) , (212)

thus recovering the result obtained in Section III A [see Eq. (31)], which coincides with the well known RMT result
[48, 49]. One obtains similar quadratic forms in Ai(z) and Ai′(z) with polynomial coefficients in z in any odd space
dimension by repeated application of the Airy operator (∂2

z − z) on I(z). For instance in d = 3:

F3(z) =
1

12π
(2z2Ai(z)2 −Ai(z)Ai′(z)− 2zAi′(z)2) . (213)

In d = 2 one can use the Airy equation and find

F2(z) =
1

2
8
3π

(−Ai′(2
2
3 z)− 2

2
3 zAi1(2

2
3 z)) (214)

where Ai1(z) =
∫∞
z
dxAi(x).

Asymptotic behavior of Fd(z). Here we give the asymptotic behavior of the scaling functions Fd(z), the full form
of which are plotted in Fig. 8 for d = 1, 2, 3. We first consider the z → +∞ limit. In this limit the Airy function has
the leading asymptotic behavior [79]

Ai(z) ∼ 1

2
√
π
z−1/4 exp

(
−2

3
z3/2

)
. (215)
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Substituting this asymptotic behavior in Eq. (207), expanding for large z, one gets to leading order

Fd(z) ≈ (8π)−
d+1
2 z−

d+3
4 exp

(
−4

3
z3/2

)
as z →∞ . (216)

For the other side z → −∞, it is more convenient to use the representation in Eq. (203). We set z = −|z| and scale
τ |z| = t. This makes the order τ3 term to be |z|−3 t3/12 which can then be dropped for large |z|. The resulting
Bromwich contour integral can be easily evaluated to give the leading asymptotic behavior

Fd(z) ≈
(4π)−

d
2

Γ(d/2 + 1)
|z| d2 as z → −∞ . (217)

One can show that when z → −∞, i.e., when r � redge, the asymptotic behavior in Eq. (217) matches smoothly
with the bulk density given in Eq. (183). This can be seen by noting that one can write redge = 1/(2w3

Nα
4) and then

writing r = redge − |z|wN in Eq. (183), which then becomes

wdNρ(redge − |z|wN ) ≈ |z| d2
(4π)

d
2 Γ(1 + d

2 )
, (218)

which coincides with the behavior in Eq. (217).

2. Kernel near the edge

In order to analyze the full kernelKµ(x,y) near the edge, we introduce the following scaled dimensionless coordinates
near a point redge on the circle of radius redge as

x = redge + wN a , y = redge + wN b (219)

where wN is given in (202) and

redge =
√

2µ/(mω2) ' [Γ(d+ 1)]1/(2d)N1/(2d)
√

2/α . (220)

Following the analysis for the edge density in the previous section, we insert (219) into the expansion of Kµ(x,y)
up to order O(t3) given in (174). We note that if one takes |a|, |b| = O(1), the diffusion part in (174) scales as

m

2π~t
(x− y)2 ∼ w2

N

t
∼ N−1/(3d)

t
= O(1) , (221)

where we have used Eq. (199). And the analysis for the other terms is similar to the one performed for the density,
since one has

x2 + y2 = 2 r2
edge(1 + wN (an + bn)) +O(w2

N ) (222)

(x− y)2 = w2
N (a− b)2 � x2 + y2 (223)

where an = a · redge/redge and bn = b · redge/redge are the projections of a and b in the radial direction. Putting all
together gives

Kµ(x,y) ≈ 1

CdwdN

∫
Γ

dτ

2πi

1

τ
d
2 +1

e
− (a−b)2

28/3τ
− (an+bn)τ

21/3
+ τ3

3 , (224)

with Cd = (2
4
3
√
π)d and where we have rescaled t = N−1/(3d)/(ω[Γ(d + 1)]1/(3d)) τ , followed by τ → 22/3τ as in the

previous section.
One can make a further simplification of Eq. (224) by using the integral representation of the diffusive propagator

e−
(a−b)2

4D τ

(4πD τ)
d
2

=

∫
ddq

(2π)d
e−D q2τ−iq·(a−b) . (225)

We choose D = 22/3 and use this in Eq. (224). This gives our final result for the scaling behavior of the edge kernel,

Kµ(x,y) ≈ 1

wdN
Kedge
d

(
x− redge

wN
,
y − redge

wN

)
, (226)
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where the scaling function is given explicitly by

Kedge
d (a,b) =

∫
ddq

(2π)d
e−iq·(a−b)Ai1

(
2

2
3 q2 +

an + bn
21/3

)
, (227)

while the function Ai1(z) is given by

Ai1(z) =

∫
Γ

dτ

2πi

1

τ
e−zτ+τ3/3 =

∫ ∞
z

Ai(u) du . (228)

This edge kernel is a novel result and generalizes the standard Airy kernel in d = 1 to higher dimensions. Indeed,
putting d = 1 in Eq. (227) we get

Kedge(a, b) =

∫ ∞
−∞

dq

2π
eiq(a−b)

∫ ∞
22/3q2+2−1/3(a+b)

Ai(z) dz . (229)

Making a shift z = 22/3q2 + 2−1/3(a+ b) + u gives

Kedge(a, b) =

∫ ∞
−∞

dq

2π
eiq(a−b)

∫ ∞
0

Ai(u+ 22/3q2 + 2−1/3(a+ b)) du . (230)

We next use a non-trivial identity involving Airy functions [79]∫ ∞
−∞

dq

2π
e−iq (v−v′) Ai(22/3q2 + 2−1/3(v + v′)) = 2−

2
3 Ai(v)Ai(v′) . (231)

Choosing v = a+ 2−2/3u and v′ = b+ 2−2/3u, substituting this identity in Eq. (230) and rescaling u→ 2−2/3u gives

Kedge(a, b) =

∫ ∞
0

duAi(a+ u) Ai(b+ u) . (232)

Since Ai(z) satisfies the differential equation Ai′′(z) − zAi(z) = 0 we replace Ai(z) by Ai′′(z)/z in Eq. (232). Next
we use the identity

1

(u+ a)(u+ b)
=

1

b− a

[
1

u+ a
− 1

u+ b

]
(233)

and integrate by parts. This then reduces Eq. (232) to the standard Airy kernel form

Kedge(a, b) = KAiry(a, b) = (Ai(a) Ai′(b)−Ai′(a) Ai(b))/(a− b) . (234)

VII. GENERAL d-DIMENSIONAL SOFT POTENTIALS AT FINITE T AND UNIVERSALITY

In this section we finally consider the most general case of arbitrary d and finite T . In addition we show that
the results obtained for the harmonic oscillator in the previous sections can be extended to a very broad class of
smooth confining potentials. We start by generalizing the method based on the Euclidean propagator, introduced in
the previous section, to finite temperature (Section VII A). To study the large N limit, we only need the small time
expansion of the propagator, which is obtained for a general potential in Section VII B. Using this expansion, we
obtain results in the bulk in Section VII C and at the edge of the Fermi gas in Section VII D. Most of our formulas
will be valid for arbitrary confining smooth potentials V (x). For the spherically symmetric potentials, in particular
those of the type

V (x) = V (r) = V0

(
r

r0

)p
(235)

we will obtain additional explicit results. Note that this parametrization contains some arbitrariness but final results
only depend on V0/r

p
0 . For convenience we choose

V0 =
~2

2mr2
0

(236)

so that V0, r0 are respectively of the order of the single particle ground state energy and its radius. The harmonic
oscillator is recovered for p = 2, r0 = 1/α and V0 = 1

2~ω.
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A. Representation of the finite T kernel using the Euclidean propagator

To deal with finite T we need to generalize to arbitrary d the method explained in detail for d = 1 in Section
IV. There we showed that the canonical and grand canonical ensembles lead to the same results for the n-point
correlations for large N . This allows us to work here in the grand-canonical ensemble, where the method of the
one-body Euclidean propagator can also be applied.

To study the problem at finite T , one considers arbitrary excited eigenstates of the N body Hamiltonian, ĤN , with
arbitrary potential V (x) in Eq. (1). These states are labeled by a set of occupation numbers nk = 0, 1. As discussed
in section IV, to each excited state one associates a kernel given by

K(x,y; {nk}) =
∑
k

nkψ
∗
k(x)ψk(y), (237)

which generalizes the d = 1 formula (59). We recall that the εk and ψk are the eigenenergies and eigenfunctions of the
one-body Hamiltonian. Following the steps presented in Section IV we obtain the generalization of the set of formula
(91)-(95). In particular the n-point correlation functions Rn are given, in any d, by determinants constructed from
the grand-canonical kernel, as in formula (93). This kernel is obtained by performing the average over the nk in the
grand-canonical ensemble, leading to

Kµ̃(x,y) := 〈K(x,y; {nk})〉 =
∑
k

1

1 + exp (β(εk − µ̃))
ψ∗k(x)ψk(y) , (238)

where the chemical potential µ̃ is related to N and the temperature T via the relation

N =
∑
k

1

1 + exp (β(εk − µ̃))
. (239)

We recall that, as in d = 1, we reserve the notations µ and Kµ(x,y) for the zero temperature chemical potential and
kernel, respectively, while we denote µ̃ and Kµ̃(x,y) their finite temperature counterparts. We recall that, as the
temperature goes to zero, µ̃→ µ, but at finite temperature, not only the chemical potential µ̃ differs from µ, but also
the full kernel functions are different.

A useful representation of the finite temperature kernel can now be derived in terms of the Euclidean propagator
associated to the one-body Hamiltonian (1) with arbitrary V (x), defined in (166). Using the formula (164) for the
zero temperature kernel Kµ(x,y), one can rewrite

Kµ̃(x,y) =

∫ ∞
0

dµ
∂Kµ(x,y)

∂µ

1

1 + exp (β(µ− µ̃))
. (240)

Now using Eq. (168) we obtain the following representation of the finite temperature kernel

Kµ̃(x,y) =

∫ ∞
0

dµ′
1

1 + exp (β(µ′ − µ̃))

∫
Γ

dt

2π~i
exp

(
µ′t
~

)
G(x,y; t) , (241)

where we have used µ′ as a running integration variable, rather than µ, which in the remaining will always denote
the chemical potential at zero temperature.

B. Small time expansion of the propagator for generic potential

We have seen in the previous section, for the d-dimensional simple harmonic oscillator at T = 0, that in the limit of
large µ the kernel and density can be extracted from the short time behavior of the Euclidean propagator. As shown
below, this remains true even at finite temperature, in the relevant regimes studied here. This extends the short time
expansion analysis initiated in [80]. However, for the sake of completeness, we now display the result for a general
soft potential V (x), and provide an independent probabilistic derivation of this expansion in the Appendix A.

The expansion of G(x,y; t) for a soft potential is, to O(t3), given by

G(x,y; t) ∼
( m

2π~t

) d
2

exp
[
− m

2~t
(x− y)2

]
exp

[
− t
~
S1(x,y)− t2

2m
S2(x,y) +

t3

2m~
S3(x,y)

]
, (242)
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where

S1(x,y) =

∫ 1

0

du V (x + u(y − x)), (243)

S2(x,y) =

∫ 1

0

du u(1− u)∇2V (x + u(y − x)), (244)

S3(x,y) =

∫ 1

0

du

∫ 1

0

dw [min(u,w)− uw]∇V (x + u(y − x)) · ∇V (x + w(y − x))

− ~2

4m

∫ 1

0

du u2(1− u)2∇2∇2V (x + u(y − x)). (245)

With some work it can be checked that the above result agrees with the short time expansion given in Eq. (172)
when applied to the simple harmonic oscillator. We see that the occurrence of derivatives of first and higher order
in V , resulting from the expansion of the term V (x(1− u) + yu +

√
D0tBu) in Eq. (A1) – where Bu denotes the

d-dimensional Brownian bridge – requires that the potential is sufficiently smooth within the neighborhood of the
direct path between x and y. At coinciding points x = y (the case where one computes the density), one finds

S1(x,x) = V (x), (246)

S2(x,x) =
1

6
∇2V (x), (247)

S3(x,x) =
1

12
[∇V (x)]

2 − ~2

120m
∇2∇2V (x). (248)

Using these results we now analyze successively the bulk and the edge regimes.

C. Results in the bulk

1. Zero-temperature

The calculation of the bulk density and kernel follows exactly those of the simple harmonic oscillator in subsections
VI B 1 and VI B 2. Here only the term to O(t) is retained and one obtains

Kµ(x,y) = θ [µ− S1(x,y)]

(
[µ− S1(x,y)]m

2π2~2(x− y)2

) d
4

J d
2

(√
2m(x− y)2[µ− S1(x,y)]

~2

)
. (249)

Let us first discuss the normalized particle density is given by ρN (x) = Kµ(x,x)/N . Again we see that its support
S1(x,x) = V (x) < µ is finite and, using Eq. (246) is obtained as

ρN (x) =
( m

2~2π

) d
2 θ [µ− V (x)]

NΓ(1 + d
2 )

[µ− V (x)]
d
2 . (250)

From this formula, by integrating over x, one can calculate the Fermi energy (or temperature) TF = µ, from the
condition

∫
dxρN (x) = 1.

For explicit calculations, let us focus on the case of spherically symmetric potential of the form (235) with p > 0.
The density vanishes at the edge at r = redge such that

V (redge) = µ⇐⇒ redge = r0

(
µ

V0

)1/p

. (251)

For the harmonic oscillator in d = 1 one recovers redge =
√

2N/α using that in that case µ = N~ω. In the case of
general p, we obtain

TF = µ = ap,dV0N
2p

d(p+2) (252)

with ap,d = (4π)
p

2+p [pΓ(1 + d/2)/(SdB(1 + d/2, d/p))]2p/(d(p+2)) where Sd = 2πd/2/Γ(d/2) and B(p, q) =
∫ 1

0
up−1(1−

u)q−1du and where we used (236). Consequently one obtains that

redge ∼ N2/(d(p+2)) (253)



39

for large N .
Consider now the kernel given in Eq. (249). As in the case of the simple harmonic oscillator, we consider two generic

points x and y in the bulk (far from the edges) close to each other, with a separation of order |x−y| ∼ [NρN (x)]−1/d.
Eq. (249) then simplifies to the scaling form

Kµ(x,y) ≈ `−d(x)Kbulk
d (|x− y|/`(x)) (254)

where `(x) = [NρN (x)γd]
−1/d is the typical separation between fermions in the bulk, γd = πd/2[Γ(d/2 + 1)] and Kbulk

d
is the same scaling function, as given in Eq. (194), respectively, for the harmonic oscillator. The dependence on
the potential V (x) thus enters only through the local density ρN (x) via the scale factor `(x). However, the scaling
function associated with the bulk kernel in Eq. (194) is completely universal for all V (x).

The above result is the general form of the LDA [2], which is normally obtained from semi-classical or physical
arguments. The range of validity of this approximation can, as was the case for the simple harmonic oscillator, be
established by examining the corrections due to the quadratic and cubic terms in t in the short time expansion of the
propagator. Here we define the two point energy function

ε2(x,y) = µ− S1(x,y), (255)

the range of validity of the LDA approximation is thus given by

ε2(x,y)�
[
~2S2(x,y)

m

] 1
2

(256)

and

ε2(x,y)�
[
~2S3(x,y)

m

] 1
3

. (257)

If we consider a trapped system with a potential which grows in a polynomial fashion we see, from power counting,
that for large values of x and y, the second of the above inequalities determines the validity of the LDA.

2. Bulk statistics at finite temperature and T ∼ TF

At zero temperature there is a unique length scale associated to the quantum fluctuation in the confining potential,
denoted by r0 for the class of potentials (235) above. By contrast, at finite temperature, for a generic confining
potential, there are two natural length scales in the problem. The first one is the thermal de Broglie wave-length

λT = ~
√

2π

mT
(258)

of the free fermions. The second length is set by the temperature and the confining potential and is purely classical.
In the case of a power law spherically symmetric potential (235) it is given by

βV (rT ) = 1⇔ rT = r0

(
T

V0

)1/p

. (259)

Now let us discuss the energy scales involved. At zero temperature the natural energy scale is the Fermi energy
µ = TF defined and discussed in the previous section, where we showed that µ is large for large N , i.e. µ ∼ N2p/(d(p+2))

for the class of potentials defined in (235). Significant changes from the T = 0 properties are expected in the bulk
only when T ∼ TF . In what follows we will focus on this bulk regime and consider T ∼ TF = µ. Consequently the
fugacity which we denote as

ζ = exp(βµ̃) (260)

is also of O(1) when N is large. Introducing the variable u = βµ′ in Eq. (241) and making the change of variable
t = τβ~ we find

Kµ̃(x,y) =

∫ ∞
0

du
1

1 + ζ−1 exp (u)

∫
Γ

dτ

2πi
exp(uτ)G(x,y;β~τ) , (261)
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which at this stage is still an exact equation.
We now analyze this equation in the large N limit and the regime T ∼ TF . This means that β is small, hence the

time variable t in the above propagator G(x,y; t = β~τ) is also small. Hence we can use the short time expansion of
the Euclidean propagator, as was done for the harmonic oscillator case. As discussed, there to describe the bulk, one
only needs to keep the first term of order O(t) and one obtains

Kµ̃(x,y) =

∫ ∞
0

du
1

1 + ζ−1 exp (u)

∫
Γ

dτ

2πi

(
m

2πτβ~2

) d
2

exp

[
−π
τ

(x− y)2

λ2
T

+ τu− τβS1(x,y))

]
(262)

where λT is given in (258), ζ by (260) where µ̃ is fixed as a function of N by Eq. (239).
To obtain the density, we start by considering the kernel at coinciding points

Kµ̃(x,x) =

∫ ∞
0

du
1

1 + ζ−1 exp (u)

∫
Γ

dτ

2πi

(
m

2πτβ~2

) d
2

exp(τu− τβV (x)). (263)

The appropriate bulk scaling is thus to choose x such that βV (x) ∼ O(1). Performing the explicit integral over the
Bromwich contour using (181) we obtain

Kµ̃(x,x) =

(
m

2πβ~2

) d
2
∫ ∞

0

du
1

1 + ζ−1 exp (u)

θ (u− βV (x)) (u− βV (x)))
d
2−1

Γ(d2 )
. (264)

This can then be rewritten, shifting the integral over u, and leads to our main result for the density

ρN (x) =
1

N
Kµ̃(x,x) =

1

NΓ(d2 )λdT

∫ ∞
0

dq
q
d
2−1

1 + ζ−1 exp (q + βV (x))
= − 1

NλdT
Lid/2(−ζe−βV (x)) (265)

where λT is the thermal wavelength of the free fermions given in (258) and Lin(x) =
∑∞
k=1 x

k/kn is the polylogarithm
function.

Let us provide an explicit example in the case of the power-law potentials (235). We define the scaling variables,
which generalize the 1d result given in Eqs. (99) and (100)

y =

(
TF
T

)d
, z = r/rT , (266)

where TF is given in Eq. (252) and rT is the classical thermal confining length introduced in Eq. (259). The explicit
calculation predicts that the density is given by eliminating the fugacity ζ in the following pair of equations

ρN (x) = − B2
√
yN

2
p+2

Li d
2
(−ζe−zp) (267)

1 = − B1

y
p+2
2p

Li d
2 + d

p
(−ζ) (268)

where B2 = (4π)−d/2r−d0 a
d/2
p,d , ap,d is given below Eq. (252) and B1 = Γ(1 + d/2 + d/p). Using the identity∫ +∞

0

dr raLib(−ζe−r
p

) =
1

p
Γ

(
a+ 1

p

)
Li 1+a+bp

p
(−ζ) , (269)

we can check that the Eq. (268) is the normalization condition
∫
ddxρN (x) = 1 of the density given by Eq. (267).

Setting p = 2 in the above formula gives the result for the d-dimensional harmonic oscillator. In particular in d = 1,
using that Li1(−ζ) = − ln(1 + ζ), the implicit equation can be solved and one recovers the bulk scaling function for
the density presented in Eqs. (109) and (110) in Section V.

The above result agrees with the LDA approximation which we briefly recall here for completeness. In the LDA,
the local (unnormalized density) in position and momentum is given by the Fermi-factor

n(x,p) =
1

1 + exp (βE(x,p)− βµ̃)
(270)

where E(x,p) is given by the classical energy

E(x,p) =
p2

2m
+ V (x). (271)
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Integration over the momentum with the appropriate Planck volume normalization then gives the local density in
space as

NρN (x) = Kµ̃(x,x) =
1

hd

∫
dp

1 + exp (βE(p,x)− βµ̃)
. (272)

Carrying out the angular integration in (272) yields

ρN (x) =
2π

d
2

NΓ
(
d
2

)
hd

∫ ∞
0

dp pd−1

1 + exp (βE(p,x)− βµ̃)
. (273)

Finally making the substitution q = βp2/2m shows that the LDA approximation Eq. (273) agrees with Eq. (265).
The formula for the bulk kernel at two unequal points is obtained by analyzing Eq. (262) in the regime of separation

|x− y| ∼ λT , and of temperature such that βV (x) = O(1). In this limit, by expanding V in the integrand of (243),
we can approximate S1(x,y) by its leading term V (x), using that βλT |∇V (x)| � 1 (always valid inside the bulk in
this temperature regime, as can be checked explicitly). Replacing S1(x,y) by V (x) in (262) and using the change of
variable u− βV (x) = q and the integral representation of the Bessel function in (190), we arrive at

Kµ̃(x,y) =
1

π
d−2
4 λdT

(
λT
|x− y|

) d
2−1 ∫ ∞

0

dq
q
d−2
4

1 + ζ−1 exp (q + βV (x))
J d

2−1

(
2
√
qπ
|x− y|
λT

)
. (274)

This formula crosses over to the zero temperature kernel (194) when λT � `(x) where `(x) is the typical separation
between particles defined in (193). This can be seen by performing a change of variable q → βq, such that the Fermi
factor becomes a Heaviside step function. Thus in practice the above formula is valid in the range of separation
|x − y| ∼ min(λT , `(x)). Beyond this scale the kernel decays to zero. Note that in d = 1 and d = 3 the formula

simplifies slightly, since one has respectively J− 1
2
(x) =

√
2/πx cos(x) and J 1

2
(x) =

√
2/πx sin(x).

D. Results at the edge

In the edge region we expect the effects of fluctuations to be larger than in the bulk. To study the bulk we had
to scale the temperature as T ∼ TF . By contrast, in this section, the relevant regime will involve lower temperature,
T � TF , hence everywhere the variable βµ will be considered to be large. To estimate the chemical potential µ̃ in
this range of temperature, we can thus use the Sommerfeld expansion valid for large βµ� 1 [3]

µ− µ̃ =
π2

6

1

β2

ρ̃′(µ)

ρ̃(µ)
+O

(
1

(βµ)4

)
(275)

where we denote by ρ̃(ε) =
∑

k δ(ε − εk) the density of states (in energy). Note that for the harmonic oscillator in
d = 1 the density of states is constant, and the corrections are exponentially small.

In this section we consider the kernel for a pair of points x,y both located near a point redge at the edge, at finite
temperature, in arbitrary d and for the large class of confining potential V (r) described at the beginning of Section
VII. To proceed, we set

x = redge + a′ , y = redge + b′ (276)

where |redge| = redge is defined in (251) and we assume |a′|, |b′| � redge. The goal of this section is to show that the
properly centered and scaled edge kernel becomes universal, i.e., independent of the details of the potential.

Substituting (276) in Eqs. (243)-(245) and expanding the terms S1, S2 and S3, in a gradient expansion, we obtain

S1 = V (redge) +
1

2
∇V (redge) · (a′ + b′) + . . . (277)

S2 =
1

6
∇2V (redge) +

1

12
∇[∇2V (redge)] · (a′ + b′) + . . . (278)

S3 =
1

12
[∇V (redge)]

2 − ~2

120m
∇2∇2V (redge) + . . . (279)

Note that for potentials increasing as V (r) ∼ rp for large r, each derivative brings an additional factor 1/redge in the
expansion, hence it is not necessary to keep higher order terms, at least for the potentials of this class.
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Let us start with Eq. (241) and substitute in it the short time expansion (245). We will justify a posteriori under
what conditions the short time expansion can be stopped at order O(t3). We make a change of variable β(µ′−µ̃) = −bu
in Eq. (241), where for convenience we have introduced a dimensionless parameter b whose value will be chosen later.
Setting x and y both close to redge, as in (276), and using (277)-(279) we obtain

Kµ̃(x,y) ' b

β

∫ ∞
−∞

du

1 + exp(−bu)

∫
Γ

dt

2π~i

( m

2π~t

) d
2

× exp
[
− m

2~t
(a′ − b′)

2
]

exp

[
−ubt
β~
− t

2~
|∇V (redge)|(a′n + b′n) +

t3

24m~
|∇V (redge)|2

]
, (280)

where the upper bound µ̃β/b has been replaced by +∞ since we are studying the limit of large µ̃ (large N). In
deriving this equation we have kept both terms of S1, but neglected S2 and the second term in S3 in Eqs. (277)-(279),
which will be justified later. Here a′n = a′ · redge/redge and b′n = b′ · redge/redge are projections of a′ and b′ in the
radial direction as in Section VI C. The term linear in time, t

~ (µ̃ − V (redge)) = t
~ (µ̃ − µ) ∼ t

~β2µ has been set to

zero, using that µ̃ is very close to µ in this temperature regime as discussed above (we also assume that t is small, as
justified below).

Following the analysis of the harmonic oscillator at zero temperature, we then introduce the scaled dimensionless
vectors a and b defined via a′ = wN a and b′ = wN b, where the width wN has the dimension of length, and is
determined as follows. We impose that both the second (of order O(t)) and third term (of order O(t3)) in (280) are
of order unity. This determines both wN and the typical time scale tN as

wN =
|∇V (redge)|−1/3~ 2

3

(2m)
1
3

, tN = |∇V (redge)|−2/3(8m~)
1
3 (281)

where the amplitudes have been chosen for later convenience. With this choice it is clear that the diffusion term,
m
2~t (a′ − b′)2 ∼ w2

N/tN ∼ O(1) is also of order unity. Finally, for the term containing temperature to be also of O(1)
and for the parameter b to be also of order unity, we must scale the temperature as a function of N as follows

β =
btN

2
2
3 ~

=
b(2m)

1
3

~ 2
3 |∇V (redge)| 23

. (282)

Specializing to the harmonic oscillator V (r) = 1
2mω

2r2, we obtain

β =
b(2m)

1
3

~ 2
3 (mω2redge)2/3

=
b

~ω
1

(Γ(1 + d)N)1/(3d)
. (283)

In particular in d = 1,

β =
b

~ωN1/3
(284)

in agreement with the result of Section V B [see Eq. (122)]. In addition, the above formula (281) for the parameter
wN when applied to the harmonic oscillator yields back the expression in Eq. (202) in any d. Note that for more
general potentials V (r) ∼ rp one finds from (282) that β ∼ b/Tedge where the temperature scale which controls the
thermal fluctuations at the edge is

Tedge ∼ N
4(p−1)
3d(p+2) (285)

which generalizes the scale Tedge ∼ N1/3 for p = 2 and d = 1.
Defining τ = t/tN we can now rewrite

Kµ̃(x,y) ' 1

CdwdN

∫ ∞
−∞

du

exp(−bu) + 1

∫
Γ

dτ

2πi

1

τ
d
2

exp

(
− (a− b)2

2
8
3 τ

− τ(
an + bn + 2u

2
1
3

) +
τ3

3

)
, (286)

where Cd = πd/22(4d−2)/3. Using the integral representation of the diffusive propagator in Eq. (225) and the one
of the Airy function in Eq. (206) we obtain the following scaling form for the edge kernel at finite temperature in
arbitrary dimension d for two points near the edge

Kµ̃(x,y) ' 1

wdN
Kedge
d,b

(
x− redge

wN
,
y − redge

wN

)
(287)
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where we recall that wN = |∇V (redge)|− 1
3 ~ 2

3 (2m)−
1
3 , and the scaling function is given by

Kedge
d,b (a,b) = 2

2
3

∫ ∞
−∞

du

exp(−bu) + 1

∫
dq

(2π)d
e−iq·(a−b)Ai

(
2

2
3 q2 +

an + bn + 2u

21/3

)
, (288)

which depends on a single dimensionless parameter b = ~ 2
3 |∇V (redge)| 23 (2m)−

1
3 /T and the dimension of space d. Note

that this result is independent of the precise shape of the potential (within the broad class to be discussed below) and
is thus universal. The dependence on the potential enters only in the width parameter wN , and the dimensionless
inverse temperature b.

This representation can be expressed in an alternative form. We first split q = qt + qnn where n = redge/redge

is the direction normal to the edge, and we similarly split a = at + ann and b = bt + bnn. We then carry out the
integral over qn using the identity (231). We obtain the following alternative result for the scaling function of the
edge kernel at finite temperature in space dimension d as

Kedge
d,b (a,b) =

∫ ∞
−∞

du

exp(−bu) + 1

∫
dqt

(2π)d−1
e−iqt·(at−bt)Ai

(
an + q2

t + u
)

Ai
(
bn + q2

t + u
)
, (289)

=

∫
dqt

(2π)d−1
e−iqt·(at−bt)Kedge

b (an + q2
t , bn + q2

t ) (290)

where Kedge
b is precisely the scaled edge kernel at finite temperature in d = 1, given in Eq. (134).

Average edge density at finite temperature. The edge density is obtained simply by setting a = b in Eq. (290). This
leads to

NρN (x) =
1

wdN
F edge
d,b

(
r − redge

wN

)
(291)

where the scaling function in dimension d can be obtained in terms of the one in d = 1 as

F edge
d,b (z) =

∫
dqt

(2π)d−1
F edge

1,b (z + q2
t ) (292)

where the scaling function in d = 1 is given in Eq. (126), which we recall here for convenience

F edge
1,b (s) =

∫ +∞

−∞
du

Ai(s+ u)2

1 + e−bu
. (293)

Note that for d = 1 there is no integration over qt to perform and (292) reduces to an identity. For d > 1 one can
perform an angular integration to obtain

F edge
d,b (z) =

22−dπ
1−d
2

Γ(d−1
2 )

∫ +∞

0

dq qd−2 F edge
1,b (z + q2) . (294)

Zero temperature limit. In the limit T → 0, i.e. b→ +∞, the Fermi factor converges to a Heaviside step function

1

exp(−bu) + 1
→ θ(u) (295)

and µ̃ → µ. The first representation of the finite temperature kernel in Eq. (288) then recovers exactly the kernel
obtained for the harmonic oscillator and given in (227). The second representation (289) leads to the alternative form
for the zero temperature edge kernel in terms of the Airy kernel (37) as

Kedge
d (a,b) =

∫
dqt

(2π)d
e−iqt·(at−bt)KAiry

(
an + q2

t , bn + q2
t

)
. (296)

This thus generalizes to any d the result given in Eq. (37) for d = 1, i.e. the standard Airy kernel, and coincides, in
an equivalent alternative form, with the harmonic oscillator result given in Eq. (227).

Validity of the method. We now return to the question on the range of validity of this universal edge kernel at finite
temperature. In the derivation we essentially made two approximations: (i) a short time expansion keeping terms
only up to order O(t3), (ii) a gradient expansion of the potential, assuming that higher order terms are subdominant
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for large N . To examine the validity of these two points, let us first focus on the potentials of the form V (r) ∼ rp

(with p > 0). In this case we know from (253) that redge ∼ N
2

d(p+2) . It follows from (281), since |∇V | ∼ rp−1
edge, that

wN ∼ N−
2
3d (p−1)/(p+2) , tN ∼ w2

N . (297)

Furthermore one can check that for p > 0 all the neglected terms are indeed subdominant for large N (see Appendix A).

For instance the leading term O(t2), from Eq. (278), scales as ∼ t2

m∇2V ∼ t2Nr
p−2
edge ∼ N−2/(3d) which is negligible

compared to the main O(1) terms at large N . Similarly it is easy to check that the neglected second term in S3

in Eq. (245) is indeed small since ~2∇4V
m|∇V |2 ∼ r−p−2

edge ∼ N−2/d. Finally the gradient expansion is controlled by the

parameter wN/redge ∼ N−2(p+4)/(3d(p+2)) which is small for all fixed p at large N . Our conclusion is thus that all
spherically symmetric polynomial potentials with leading degree p > 0 do satisfy the validity criteria for our universal
results at the edge.

We expect that the class of such potentials is actually much broader. The precise conditions are analyzed in the
Appendix A. However there are well identified cases where this universality breaks down, for instance for wall type
potentials. One example is a box with an infinite hard wall. Another example is the potential V (r) = 1

r2 +r2 potential.
At zero temperature the latter is known to be related to Wishart matrices, which have different edge properties (close
the origin) than the GUE ensemble. In this case the limiting kernel is the so-called Bessel kernel [36, 81].

In the case of the potential V (r) ∼ rp with 0 < p < 1, some additional peculiarities arise. First one finds,
from the above estimates, that the typical width of the edge region, wN , increases with increasing N . In addition,
the temperature scale Tedge defined in (285) decreases with increasing N which is consistent with the fact that the
potential is rather shallow so even a small temperature is sufficient to excite the system. Nevertheless, as discussed
in the Appendix A, the conditions for the universality class of the p = 2 case studied in this paper, seem to still hold,
at least at a perturbative level. To assess more precisely the validity of this statement for 0 < p < 1 would require
further studies.

VIII. DISCUSSION AND OPEN PROBLEMS

A. Bosonization in the bulk and interactions: beyond the Sine kernel

In the bulk of the Fermi gas, the density NρN (x) varies very slowly compared to the typical spacing between
fermions and other, more standard, methods can be applied. As discussed in the text, see around formula (195), the
universal sine-kernel correlations (in d = 1) and its high dimensional generalizations can also be derived using the
LDA method.

In d = 1 another tool can be applied: the bosonization technique. We will briefly recall here the results which can
be obtained from this method. One motivation is that it also allows to treat the case of interacting fermions, hence to
address, to some extent, the question of universality in presence of interactions. Furthermore, although well-known
in the condensed matter community, these results do not seem widely known to mathematicians working on random
matrices.

The bosonization method allows one to represent fermions in d = 1 with uniform local density ρ(x) := NρN (x) ≈
ρ0, as some ”exponentials” of two conjugated bosonic fields, described by a quadratic Hamiltonian (see e.g. [82]
for a pedagogical introduction). This representation is exact for free fermions with a linear dispersion relation.
For more general dispersion relations, and for interacting fermions, it remains an accurate effective description in
the hydrodynamic limit, i.e., on spatial scales (x − x′)ρ0 � 1: this is the so called Luttinger liquid (LL). The
effective quadratic Hamiltonian is parametrized by the (renormalized) Luttinger parameter K, which contains all the
information about the large scales. The special value K = 1 corresponds to non-interacting fermions, while attraction
leads to K > 1 and repulsion to K < 1. Using these methods it was shown [82, 83] that the correlation function of
the density at T = 0 is given by [84]

〈ρ(x)ρ(0)〉0 ' ρ2
0

(
1− 2K

(2πρ0x)2
+

+∞∑
m=1

Am(ρ0x)−2Km2

cos(2πmρ0x)
)
, (298)

while the correlation function of the fermionic field (which is the analogue of the kernel) is

〈Ψ†(x)Ψ(0)〉0 ' ρ0

+∞∑
m=0

Cm(ρ0x)−
1

2K−2K(m+ 1
2 )2 sin

(
2π

(
m+

1

2

)
ρ0x

)
. (299)
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These formulae (298) and (299) are valid for ρ0x & 1. Here A1 in (298) and C0 in (299) represent the leading
behaviors at large ρ0x, while the terms Am, m ≥ 2 and Cm, m ≥ 1 represent the contributions of higher harmonics
(often neglected in LL studies).

For non-interacting fermions, K = 1, C0 = 1 and all Cm = 0 for m ≥ 1, and the expression in (299) becomes exact.
It is precisely the sine kernel sin(πρ0x)/x = `(x)−1Kbulk(x/`(x)) with `(x) = 2/(πρ0) and Kbulk(y) = sin(2y)/πy,
proved in this paper to further hold for fermions in a trap (in the bulk), using the mapping to RMT. In presence of
interactions we see that the correlation function of the fermionic field in (299) in the ground state now decays at large
x as

〈Ψ†(x)Ψ(0)〉0 ∼ sin(πρ0x)/xη , η =
1

2
(K +K−1) (300)

with a non-universal prefactor. The exponent η is thus always larger than for non-interacting fermions, and its precise
value depends on the Luttinger parameter K, hence on the strength of the interactions.

Unfortunately, the standard bosonization methods fail near the edge where kF = πρ0 vanishes. We have found in
this paper that for non-interacting fermions in a trap, the correlation function of the fermion field is described by the
Airy kernel. Deriving that result using bosonization techniques seems at present out of reach. Nevertheless, it may be
possible, at least qualitatively, to recover the leading asymptotics of the left tail of that kernel, i.e. the limit where both
points enter into the bulk. Indeed, in the non-interacting case, we observe that by changing πρ0x →

∫ xedge

x
dykF (y)

and inserting kF (y) ∼ √xedge − y in (299), we obtain the Airy function asymptotics at large negative arguments.
Note that since the edge regime is diluted, it is possible that the effect of (at least short-range) interactions is less
important than in the bulk, and the edge universality is more robust. This however remains to be studied in detail.

B. Connection to the KPZ equation

In a recent paper [11] we have unveiled a remarkable connection between the problem of non-interacting fermions in
a one-dimensional trap at finite temperature and the continuum 1d Kardar-Parisi-Zhang (KPZ) growth equation at
finite time, with the so-called droplet initial condition (also called curved geometry). The KPZ equation [85] describes
the stochastic time evolution of the height field h(x, t) of an interface, at point x ∈ R and time t

∂th(x, t) = ν∂2
xh(x, t) +

λ0

2
(∂xh(x, t))2 +

√
Dη(x, t) , (301)

where ν > 0 is the coefficient of diffusive relaxation, λ0 > 0 is the strength of the non-linearity and η(x, t) is a centered
Gaussian white noise with correlator 〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′). From now on we express height and time
in the natural units [86]

t∗ = 2(2ν)5/(D2λ4
0) , x∗ = (2ν)3/(Dλ2

0) , h∗ = 2ν/λ0 . (302)

Here we start from the “narrow wedge” initial condition, h(x, 0) = −w|x|+ ln(w/2), with w � 1, which gives rise

to a curved (or droplet) mean profile 〈h(x, t)〉 = 〈h(0, t)〉 − x2

4t as time evolves. Equivalently to (301) the Cole-Hopf

transformed field Z(x, t) = eh(x,t) satisfies the stochastic heat equation (with multiplicative noise)

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2η(x, t)Z(x, t) , (303)

with initial condition Z(x, t = 0) = δ(x). The continuum KPZ equation [87] is usually defined by the equation (303)

with the Ito convention, implying that the first moment 〈Z(x, t)〉 = Z0(x, t) where Z0(x, t) := 1√
4πt

e−x
2/(4t) is the

free diffusion propagator [89]. This is the definition we use here. In the natural units defined above, one can define
the scaled height at position x = 0

h̃(0, t) =
h(0, t) + t

12

t1/3
. (304)

The exact results of Refs. [28–31] can then be expressed as follows. Let us define the time-dependent generating
function

gt(s) = 〈exp(−et1/3(h̃(0,t)−s))〉 (305)

of the rescaled height at x = 0. It is expressed for all time t > 0 as a Fredholm determinant:

gt(s) = det(I − PsKKPZ
t Ps) (306)

KKPZ
t (x, y) =

∫ ∞
−∞

Ai(z + x)Ai(z + y)

e−t1/3z + 1
dz , (307)
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where Ps is the projector on the interval [s,+∞). We can now compare the finite time kernel for KPZ, KKPZ
t in

Eq. (307) with the finite temperature kernel Kedge
b for the fermions at the edge, given in Eq. (134), and see that they

are identical provided one identifies

b :=
~ωN1/3

T
≡ t1/3 , (308)

i.e., large time in KPZ corresponds to zero temperature of the fermions, and high temperature for the fermions to
small time in KPZ [in original KPZ units the r.h.s. should be replaced by (t/t∗)1/3]. The correspondence appears
more direct if one introduces an additional random variable γ, independent from h(0, t) and distributed according to

the Gumbel distribution P (γ) = e−γ−e
−γ

. Using that 〈θ(x − γ)〉γ = e−e
−x

we can rewrite the generating function
(305) and obtain the identity in law

lim
N→+∞, fixed b

ξ :=
xmax(T )− xedge

wN
≡in law

h(0, t) + t
12 + γ

t1/3
(309)

where the random variables on the left and right hand sides have identical PDF. On the left hand side the limit of
large N is taken at fixed b, and the identity in law then holds for arbitrary t and b related by (308). In the limit of
large time (respectively low T ) the Gumbel variable can be ignored in the r.h.s. and one recovers that both the scaled

variable ξ =
xmax(T )−xedge

wN
, and the scaled height h̃(0, t) tend to the Tracy-Widom GUE distribution [of CDF F2(s)

given in Eq. (48)].
In the limit of small time one can use the small t expansion obtained in [29]. Using the formulae (11) and (12)

therein (and below the formula for the skewness) with the correspondence ln z → h(0, t) − lnZ0(0, t) + t/12 and
λ3 = t/4 = b3/4 one first obtains the first three cumulants for the KPZ height field h(0, t) at small t. From this, using
(309), together with the cumulants of the Gumbel distribution 〈γn〉cγ = (n− 1)!ζ(n) for n ≥ 2 and 〈γ〉γ = γE , as well
as the independence of the two random variables, we obtain the high temperature expansion of the cumulants of the
variable ξ, i.e. the scaled position of the rightmost fermion. The corresponding formula are displayed in Section V C 2.

It is interesting to note that the relation (309) between random variables can be ”inverted” to express the PDF of
the KPZ field. Indeed one can also write [28, 29, 31]

h̃(0, t) = u− γ′

t1/3
(310)

where γ′ is (yet another) Gumbel random variable, and u is a random variable, independent of γ′ and of time-dependent
PDF pt(u) obtained as

pt(u) = Det[I − Pu(Bt −AiAi†)Pu]−Det[I − PuBtPu] (311)

Bt(r, r
′) = P.V.

∫ +∞

−∞
dv

Ai(r + v)Ai(r′ + v)

1− e−t1/3v (312)

in terms of the kernel Bt and of the projector AiAi†(r, r′) = Ai(r)Ai(r′) and where P.V. denotes the Cauchy principal
value. The large time expansion, i.e., the corrections around the TW distribution (or low temperature expansion for
the fermions) is studied in Appendix B by using equivalently (306) or (311).

Our results establish a precise connection between free fermions at finite temperature and the KPZ equation (301)
at finite time t. At this stage this connection exists only for the droplet initial condition of KPZ and also for the one-
point distribution of h(0, t) (the one-point distribution of h(x, t) being identical up to a shift by its average −x2/(4t)).
Let us mention two other examples where fermions appear in the context of models in the KPZ universality class. One
is the polynuclear growth model, also related to a zero temperature model of directed paths [91, 92]. This problem is
related to fermions on a 1d lattice in a linear potential, with a time-dependent slope. A second example was studied
recently in a model of semi-discrete directed polymers [93]. It is at present unclear whether the connection between
fermions and the KPZ equation hides a deeper correspondence, e.g. extending to many point correlations or different
initial conditions.

C. Conclusion

In this paper, we have developed a unified framework to study the statistical mechanics of N non-interacting
fermions trapped by a confining potential, in any dimension d and at any finite temperature T . The trapping
potential gives rise to an edge, i.e., a distance from the center of the trap above which the average density vanishes.
Consequently, when N is large, there are two distinct scaling regimes in the local correlations: the “bulk regime”, i.e.,
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near the center of the trap where the density of fermions varies smoothly, and the “edge regime”, i.e., close to the
edge where the density is vanishing and where the (quantum and thermal) fluctuations are thus large. In the “bulk
regime”, our method recovers and puts on firmer basis the results of the standard Local Density (or Thomas-Fermi)
Approximation (LDA) [4, 9]. On the other hand, at the edge, where the LDA fails, we have obtained a detailed
description of the correlations. Indeed, we have shown that, even at finite temperature T > 0, the system, in the limit
of a large number of fermions, is a determinantal point process characterized by a kernel which depends on both the
dimension d and the temperature T [see Eq. (296)], which generalizes the Airy kernel (37), which is a fundamental
object in RMT. Remarkably, we have shown, using a path integral representation of this kernel, that is universal,
i.e., independent of the details of the trapping potential, for a wide class of spherically symmetric potentials V (|x|)
which behaves at large distance as V (|x|) ∼ |x|p, with p > 0. In the special case d = 1, we have studied in detail the
cumulative distribution function of the position of the rightmost fermion xmax(T ) at T > 0 and we have shown that
this CDF in Eq. (137) (i) generalizes the well known Tracy-Widom distribution, which describes the fluctuations of
xmax(T = 0) and (ii) displays a remarkable connection with the (1+1)-dimensional Kardar-Parisi-Zhang equation in a
droplet geometry (309). Furthermore, in the case of a harmonic potential in any d we have shown that all our results
also hold in momentum space [in particular the Tracy-Widom distributions describes the fluctuations of the largest
momentum (56)]. It is an open question, how the latter property extends to non-harmonic traps.

Therefore, we believe that the results presented here open the way for interesting bridges between the techniques
of many-body physics and of random matrix theory. We hope that our results will stimulate further works at this
interface. In addition, one of the main outcome of our paper is a precise set of predictions for systems of non-interacting
cold fermions at finite temperature. It would be exciting if our theoretical predictions could be verified in cold atom
experiments, for example using the state of the art quantum microscopes [6–8], or more conventional time of flight
experiments.
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Appendix A: General short time expansion of the imaginary time Schrödinger propagator

Here we derive, using probabilistic methods, the general short time expansion for the imaginary time propagator
of a one-body Hamiltonian with an arbitrary soft potential. The semi-classical expansion of the path integral for the
quantum mechanical propagator, an expansion in ~, has been extensively studied in the literature [94]. However the
short-time expansion has received less attention [80]. As shown in the text, and detailed again in the next Appendix,
this expansion allows the calculation of the kernel of trapped non-interacting fermions in the bulk and at the edge.
We first show the following formula for the propagator:

Proposition: The solution of the imaginary time Schrödinger equation in Eq. (166) can be written, for an arbitrary
potential V (x), as

G(x,y; t) =
( m

2π~t

) d
2

exp
(
− m

2t~
(x− y)2

)〈
exp

(
− t
~

∫ 1

0

du V (x(1− u) + yu+
√
D0tBu)

)〉
B

, (A1)

where D0 = ~/m is the diffusion coefficient and Bu = {Biu}di=1 is a d-dimensional Brownian bridge on the interval
[0, 1], i.e. a Gaussian process with mean zero and correlation function

〈BiuBju′〉B = δij g(u, u′) , g(u, u′) = min(u, u′)− uu′ (A2)

hence with B0 = B1 = 0.

Proof. To show this we use the Feynman-Kac formula [95] to express the propagator as a path integral

G(x,y; t) =

∫
X(0)=x

d[X]δ(Xt − y) exp

(
−1

~

∫ t

0

ds

[
1

2
m

(
dXs

ds

)2

+ V (Xs)

])
, (A3)

over all paths staring at x at time t = 0, with a delta function weight so that only paths which end at y at time t
contribute. We now make a shift of variables in the path integral

Xs = x
(t− s)
t

+ y
s

t
+ Zs, (A4)

under which the expression for the propagator becomes

G(x,y; t) = exp
(
− m

2t~
(x− y)2

)〈
exp

[
−1

~

∫ t

0

dsV

(
x

(t− s)
t

+ y
s

t
+ Zt

)]〉
Z

×Nt (A5)

whereNt =
∫
Z(0)=0

d[Z]δ [Zt] exp
(
−m

2~
∫ t

0
ds
(
dZs
ds

)2)
is a normalization. In simplifying the kinetic energy contribution

we have used that only paths where Zt = 0 contribute to the path integral, and we denote by 〈. . .〉Z an average with
respect to the normalized measure on the paths Z given by

P (Z) =
1

Nt
δ [Zt] exp

(
−m

2~

∫ t

0

ds

(
dZs
ds

)2
)
. (A6)

To evaluate the normalization Nt we apply the Feynman-Kac formula again and see that the solution is given by the

solution of the d-dimensional (free) diffusion equation, with a delta function initial condition. This givesNt =
(
m

2π~t
) d

2 .
The process Z with the measure given in Eq. (A6) is in fact a d-dimensional Brownian bridge, a Gaussian process
with zero mean and temporal correlation function

〈ZisZjs′〉Z = δijD0

(
min(s, s′)− ss′

t

)
. (A7)

To show this, we compute the generating functional

g[λ] :=

〈
exp

(
−i
∫ t

0

λ(s) · Zs
)〉

Z

=

〈
δ(Wt)(exp

(
−i
∫ t

0
λ(s) ·Ws

)〉
W

〈δ(Wt)〉W
(A8)
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where 〈. . .〉W denotes an average with respect to an unconstrained Brownian motion with correlation function

〈WisWjs′〉W = D0 min(s, s′) . (A9)

In the second equality in (A8) we enforced Wt = 0 by inserting a delta function. The averaging over W can be

carried out by using a Fourier representation of the delta function δ(Wt) =
∫

dq
(2π)d

exp(−iq ·Wt). Inserting this

representation, both in the denominator and in numerator of Eq. (A8), allows the Gaussian averaging to be carried
out yielding

g[λ] =

∫
dq

(2π)d
exp

(
−D0

2

∫ t
0

∫ t
0
dsds′ min(s, s′)λ(s) · λ(s′)− D0t

2 q2 −
∫ t

0
ds D0sq · λ(s)

)
∫

dq
(2π)d

exp
(
−D0t

2 q2
) . (A10)

Now carrying out the integral over q in both the numerator and denominator gives

g[λ] = exp

(
−D0

2

[∫ t

0

∫ t

0

dsds′ min(s, s′)λ(s) · λ(s′)− 1

t

(∫ t

0

ds sλ(s)

)2
])

. (A11)

From this expression for the generating functional of the Gaussian process we immediately see that the temporal
correlation function is given by Eq. (A7). Making now the change of variables s = ut and use Brownian scaling leads
to the proof of the Proposition in (A1).

The representation of the propagator in Eq. (A1) identifies explicitly the occurrence of the variable t. Let us now
derive the small t expansion up to O(t3), and recover Eq. (242). To this purpose it is sufficient to Taylor expand the
integral in the exponential on the right hand side of Eq. (A1) to O(t3), giving∫ 1

0

du V
(
x(1− u) + yu+

√
D0tBu)

)
= A0 + t

1
2A1 + tA2 +A3t

3
2 +A4t

2 + o(t2) . (A12)

The various terms are explicitly given by (using the Einstein summation convention)

A0 =
1

~

∫ 1

0

du V (X(u)) , Ap =
D
p/2
0

p!~

∫ 1

0

du ∇i1 · · · ∇ipV (X(u))Bi1u · · ·Bipu , X(u) = x + u(y − x) (A13)

where X(u) denotes the straight line path between x and y for u ∈ [0, 1]. The resulting expansion can then be
averaged using the cumulant expansion which, keeping only terms of O(t3), gives,〈

exp

(
− t
~

∫ 1

0

du V (x(1− u) + yu+
√
D0tBu)

)〉
B

=

≈ exp

(
−tA0 − 〈t

3
2A1 + t2A2 + t

5
2A3 + t3A4〉B +

1

2
t3[〈A2

1〉B − 〈A1〉2B]

)
(A14)

where we have used the fact that A0 does not depend on B. Now we note that odd moments of B are zero so
〈A1〉B = 〈A3〉B = 0 and consequently we have〈

exp

(
− t
~

∫ 1

0

du V (x(1− u) + yu+
√
D0tBu)

)〉
B

≈ exp

(
−tA0 − t2〈A2〉B + t3[

1

2
〈A2

1〉B − 〈A4〉B]

)
. (A15)

Explicit computation of the moments then leads to the result given in Eq. (242). It is interesting to note that
the short time expansion as formulated here is an expansion about the, constant velocity, direct straight-line path
between x and y (in contrast to the semi-classical expansion in powers of ~ for the real time path integral, which is
given about classical paths obeying Newton’s equation).

An alternative derivation using diagrammatic techniques. To address the calculation of the kernel in a more sys-
tematic way, we now develop a diagrammatic method. Let us consider the formula (168) for the kernel (for simplicity
at T = 0) and use the expression of the propagator in (A1). Let us further set d = 1 and work in the natural units
where m = ~ = 1, for simplicity. The generalization to higher dimension is straightforward. One has

Kµ(x, y) =

∫
Γ

dt

(2πt)3/2i
exp

(
− (x− y)2

2t
+ µt− S(x, y; t)

)
, S(x, y; t) = − ln

〈
e−t

∫ 1
0
du V (x(1−u)+yu+

√
tBu)

〉
B
.

(A16)
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Making a standard cumulant expansion of (A16) and Wick contractions for the Gaussian Brownian bridge, one can
calculate term by term using an elegant diagrammatic expansion, as shown below. Let us denote the vertex at position
u, and the Brownian bridge correlator g(u, u′) = 〈BuBu′〉B respectively by

= −t V (x(1− u) + yu) , = t g(u, u′) . (A17)

Then the function −S(x, y; t) is the sum of all connected diagrams

−S = (t) + (t2) + (t3) + · · ·+ (t3) + (t4) (A18)

+ (t5) + · · ·+ (t5) + (t6) + · · ·

The first family of diagrams is O(V ), the second O(V 2), the third O(V 3) and so on. The power of t is indicated next
to the graph in parenthesis, the rule being, from (A17), that each vertex and each propagator brings a power of t.
There is one distinct index ui per vertex, each line emerging from a vertex leads to a derivative acting on the vertex,
and all the ui’s are integrated at the end, each in [0, 1]. For instance (omitting the combinatorial factor)

=

∫ 1

0

du1

∫ 1

0

du2g(u1, u2)V ′(x(1− u1) + yu1)V ′(x(1− u2) + yu2) . (A19)

Till now, all terms in this systematic expansion in powers of t have been written exactly, and are valid for arbitrary
potentials (sufficiently differentiable, although some extensions are possible). At this stage it is so general that it is
not clear what is the true expansion parameter of the above series (A18), in other words, for the series to be under
control, t must be small compared to what? The answer to that question will depend on the class of physical situations
studied.

Now we assume a soft potential and discuss the gradient expansion near the edge. By definition of the edge,
µ = V (xe) and here, for compactness we denote xe = xedge. We set x = xe + wNa, y = xe + wNb where a, b are
assumed to be of order O(1) in the large N limit. Hence X(u) = x(1 − u) + yu = xe + wN (a(1 − u) + bu) and the
scale factor wN is to be fixed later. For instance (A19) becomes

= c00V
′(xe)

2 + 2c12V
′(xe)V

′′(xe)wN +O(w2
N ) (A20)

cpq =

∫ 1

0

du1

∫ 1

0

g(u1, u2)(a(1− u1) + bu1)p(a(1− u2) + bu2)q . (A21)

We can now enumerate the various terms, and keep the leading and sub-leading ones in each family. In the exponential

in (A16), we have (a− b)2w
2
N

2t − S, where the terms in S are [after cancellation of µ and V (xe)] (without showing the
combinatorial factors)

V ′(xe)wN t+ V ′′(xe)w
2
N t+ · · · , V ′′(xe) t

2 + · · · (A22)

V ′(xe)
2t3 + V ′(xe)V

′′(xe)wN t
3 + · · · , V ′′(xe)

2t4 + V ′′(xe)V
′′′(xe)wN t

4 + · · ·

V ′(xe)
2V ′′(xe)t

5 + V ′′(xe)
3wN t

5 + · · · , V ′′(xe)
3t6 + V ′′(xe)

2V ′′′(xe)wN t
6 + · · · .

To classify the possible behaviors we start with the diffusion term (a − b)2w
2
N

2t . Assume that the exponent (a −
b)2w

2
N

2t − S is dominated by some typical value of t (called tN in the text). There are three possibilities: (i) the

diffusion term blows up, i.e., tN � w2
N (ii) it vanishes, i.e., tN � w2

N or (iii) it is of order unity tN ∼ w2
N . The cases

(i) and (ii) being more exotic, we now consider the case (iii).
Now let us first discuss the standard class (leading to the Airy kernel). It is such that the first term in (A22), using

tN ∼ w2
N , is V ′(xe)wN tN ∼ V ′(xe)w3

N = O(1) which means wN ∼ |V ′(xe)|−1/3, as found in the text. Interestingly
the first term of the first diagram in the second line of (A22), V ′(xe)2t3N = [V ′(xe)w3

N ]2 = O(1) is also of order unity,
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and that leads to the Airy kernel (37), if we can neglect all other terms. Let us examine now the conditions for
neglecting all the other terms.

The diagrams of the first line (tadpoles, O(V ) diagrams) can all be written as ∼ tN (wN∂xe)
q(tN∂

2
xe)

`V (xe) with
` ≥ 0 number of loops, and q ≥ 0 the degree in the gradient expansion, with (`, q) = (0, 0) being excluded. Now we
want all these diagrams to be subdominant, excluding (`, q) = (0, 1) which is O(1). Hence it requires |V (2`+q)(xe)| �
|V ′(xe)|(2`+2+q)/3 for ` = 0, q ≥ 2 and for ` ≥ 1, q ≥ 0, which is equivalent to the set of conditions

|V (2+n)(xe)| � |V ′(xe)|(4+n)/3 , n = 0, 1, 2, ... (A23)

with n = 2`+ q − 2, the first of these conditions being

|V ′′(xe)| � |V ′(xe)|4/3 . (A24)

Similarly, the diagrams on the second line (O(V 2) diagrams) can all be written as ∼ t`+3
N (wN∂xe)

q[∂`+1
xe V (xe)]

2

with ` ≥ 0 and q ≥ 0. Now we want all to be subdominant, excluding (`, q) = (0, 0) which is O(1). Hence it requires

|∂qxe [∂`+1
xe V (xe)]

2| ∼
∣∣∣∣∣
q∑
p=0

V (`+1+p)(xe)V
(`+1+q−p)(xe)

∣∣∣∣∣� |V ′(xe)|(2`+6+q)/3|, ` = 0, q ≥ 1 and ` ≥ 1, q ≥ 0

(A25)
Remarkably, it is a simple exercise to check that if the conditions (A23) are verified, then this new set of conditions
is also verified.

It is a tedious exercise to continue this process, and check that if the conditions (A23) are verified then all conditions
for all graphs O(V k), k ≥ 1 are satisfied. As an illustration, let us point out for instance the conditions from the
leading terms of the first two diagrams O(V 3) on the next line. One finds simply (A24). Hence it means that the set
of conditions (A24) defines the exact basin of attraction of the Airy kernel edge statistics at T = 0.

At this stage we have specified very little about V (x), apart from being smooth. All we know is that

V (xe) = µ , N =

√
2

π

∫
dx
√
µ− V (x) θ(µ− V (x)) . (A26)

The only large parameter being N , this equation determines µ and xe. From there the conditions (A24) can be
checked, the width of the edge region being wN ∼ |V ′(xe)|−1/3. There are many possible cases to consider, especially
if one also considers N -dependent trap potentials. There are however two large classes, with either xe → ±∞, or
xe → x∗e as N → +∞.

For the (N -independent) power law potentials V (x) ∼ |x|p, the condition (A23) becomes

|xe|p−2−n � |xe|(p−1) 4+n
3 ⇒ 1� |xe|(p+2) 1+n

3 (A27)

The conditions are thus verified for all p > 0, since in all these cases xe → +∞. This case was studied in the text. It

also includes limiting cases such as V (x) ∝ ln |x|. Note that the width is wN ∼ x(1−p)/3
e .

The case p < 0 occurs in two situations, the first one is a (bounded from below) confining potential with a power
law tail at large |x|

V (x) '|x|→+∞ V0 − c|x|−α (A28)

with α = −p > 0. It is known that such a potential has an infinite number of bound states if α < 2 [96]. Since then
|xe| → +∞, the conditions (A27) are satisfied which indicates that it belongs to the Airy class at T = 0 with a width

scaling as wN ∼ x(1+α)/3
e � xe. In the case α > 2 there is only a finite number of bound states, which does not enter

in the class studied here (since the limit of large N then cannot be studied). The case α = 2 is marginal and deserves
a separate discussion, but there clearly the conditions (A27) fail.

The second situation with p = −α < 0 corresponds to wall potentials V (x) ∼ 1/xα near x = 0. In this case the
average density will have a left edge xe → 0+ as N → +∞ and one finds that the condition (A23) is valid only if

p < −2, i.e. α > 2. In addition the width now scales as wN ∼ x
(1+α)/3
e . Hence for α > 2 one has wN � xe, which is

completely physical, while for 2 < α < 0 one finds wN � xe which is in contradiction with the assumptions (because
of the wall). Hence both criteria are valid for α > 2, and break down for 0 < α ≤ 2.

The above analysis concerns the Airy universality at T = 0. While the class V (x) ∼ |x|p leads to the universal
finite temperature kernel studied in this paper (same as the harmonic oscillator), the class of potential of type (A28)
is much more sensitive to temperature since its spectrum has a continuum part and the fermions can unbind. Hence
we expect there a different behavior which remains to be studied. Note that for potentials V (x) ∼ |x|p with p < 1
the temperature scale Tedge defined in (285) decreases with increasing N .
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Appendix B: Large time/low temperature expansions for KPZ/fermions around the Tracy Widom
distribution

We start from the solution for droplet initial conditions recalled in the text, expressed as

Pr(ξ < s) = Pr

(
h(0, t) +

t

12
+ γ < st1/3

)
= Det[I − PsKKPZ

t Ps] , (B1)

where γ is a Gumbel variable, independent of h(0, t). In this form it describes both the fermions, via the variable ξ
defined in the text, and the KPZ height, and we recall that

KKPZ
t (r, r′) = Kedge

b=t1/3
(r, r′) =

∫ +∞

−∞
du

Ai(r + u)Ai(r′ + u)

1 + e−t1/3u
. (B2)

Using that 1
1+e−u = 1− 1

1+eu and the same manipulations as to derive the Sommerfeld expansion of the Fermi factor

(see e.g. [97]) we can rewrite

KKPZ
t (r, r′) = KAi(r, r

′)− t−1/3

∫ +∞

−∞
du

Ai(r + u
t1/3

)Ai(r′ + u
t1/3

)sgn(u)

1 + e|u|
, (B3)

which, until now, is an exact expression for all t.
Let us now perform an expansion for large t, by first expanding the kernel. Expanding in powers of the factor u

t1/3
,

and performing the integrals over u, one finds that only odd terms ∼ u1+2q survive, leading to

KKPZ
t (r, r′) = KAi(r, r

′)− t−2/3
∑
q≥0

t−
2q
3 2(1− 2−1−2q)ζ(2 + 2q)∂1+2q

s [Ai(r + s)Ai(r′ + s)]|s=0 . (B4)

Replacing t = b3, where b = N1/3~ω/T , we simultaneously obtain the low T expansion of the edge kernel for the
fermions. For instance, let us give the complete expansion for the universal scaling function of the density near the
edge

F1,b(r) = Kedge
b (r, r) = F1(r)− b−2

∑
q≥0

b−2q2(1− 2−1−2q)ζ(2 + 2q)∂1+2q
r [Ai(r)2] . (B5)

Now we would like to obtain the large t expansion of the PDF of the KPZ height, equivalently the low T expansion
of the PDF of the position of the rightmost fermion, around the Tracy-Widom distribution. For this we need to
expand the Fredholm determinant in (B1). Let us rewrite the FD as follows

Det[I − PsKKPZ
t Ps] = Det[I − P0Kt,sP0] , Kt,s(r, r

′) = KKPZ
t (r + s, r′ + s) . (B6)

Let us write the two leading corrections

Kt,s(r, r
′) = KAi,s(r, r

′)− π2

6t2/3
∂s[Ai(r + s)Ai(r′ + s)]− 7π4

360t4/3
∂3
s [Ai(r + s)Ai(r′ + s)] +O(t−2) , (B7)

where we denote KAi,s(r, r
′) = KAiry(r + s, r′ + s). Recalling that the CDF of the Tracy-Widom distribution is

F2(s) = Det[I − P0KAi,sP0], we can expand the FD to second order as

Det[I − P0Kt,sP0] = F2(s) + t−2/3π
2

3
Tr[P0(I − P0KAi,sP0)−1Ai′sAi

†
s]F2(s) +Q4(s)t−4/3 +O(t−2) , (B8)

where Ai′sAi
†
s(r, r

′) = Ai′(r+ s)Ai(r′ + s) and Q4(s) can in principle be computed. We can now use the identity (see
a derivation in Ref. [98])

F ′′2 (s) = 2F2(s)Tr[P0(I − P0KAi,sP0)−1Ai′sAi
†
s] (B9)

to simplify the expression in (B8) and obtain

Det[I − P0Kt,sP0] = F2(s) + t−2/3π
2

6
F ′′2 (s) +Q4(s)t−4/3 +O(t−2) . (B10)

Taking a derivative we thus obtain the PDF, noted pt(s) of the variable ξ for large t as

pt(s) = f2(s) + t−2/3π
2

6
f ′′2 (s) + q4(s)t−4/3 +O(t−2) , (B11)
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where f2(s) = F ′2(s) and q4(s) = Q′4(s). Let us denote mp = 〈χp〉GUE and κp = 〈χp〉cGUE the moments and cumulants
of the TW distribution for GUE, and ap the moments associated to q4(s). From (B11) we obtain

〈ξp〉 = mp + t−2/3π
2

6
p(p− 1)mp−2 + apt

−4/3 +O(t−2) . (B12)

Let us give the first three cumulants of the variable ξ for the fermions

〈ξ〉 = m1 + a1t
−4/3 , (B13)

〈ξ2〉c = κ2 +
π2

3
t−2/3 + (a2 − 2a1m1)t−4/3 , (B14)

〈ξ3〉c = 〈ξ3〉 − 3〈ξ2〉〈ξ〉+ 2〈ξ〉3 = κ3 + (a3 − 3a2m1 − 3a1m2 + 6a1)t−4/3 . (B15)

Since the cumulants are additive for uncorrelated variables one immediately obtains the large time expansion of the
cumulants for the scaled KPZ field h̃ ≡ h̃(0, t) as

〈h̃p〉c = 〈ξp〉c − γp (B16)

where the cumulants of the Gumbel distribution are γp = 〈γp〉cγ = (p− 1)!ζ(p) for p ≥ 2 and γ1 = γE . Note that for
the first three cumulants the leading correction to TW is equal to the corresponding cumulant of minus a Gumbel
variable

〈h̃p〉c = κp + (−1)pγpt
−p/3 +O(t−4/3) , p = 1, 2, 3 , (B17)

the leading correction to all higher cumulants being a priori of order O(t−4/3). This fact is actually known [40]. It
can be obtained equivalently from (310)-(311), showing that pt(u) = f2(u) +O(t−4/3). Indeed, manipulations of the
integrals similar as above allow to show that

Bt(r, r
′) = KAiry(r, r′) + t−1/3

∫ +∞

−∞
dv

sgn(v)

e|v| − 1

(
Ai
(
r +

v

t1/3

)
Ai
(
r′ +

v

t1/3

)
−Ai(r)Ai(r′)

)
(B18)

= KAiry(r, r′) + t−2/3π
2

3

(
Ai(r)Ai′(r) + Ai′(r)Ai(r)

)
+O(t−4/3) . (B19)

Now, since AiAi† is a rank one projector, one can rewrite (311) as

pt(u) =
1

2
Det[I − Pu(Bt −AiAi†)Pu]− 1

2
Det[I − Pu(Bt +AiAi†)Pu] , (B20)

and inserting (B19), it is clear that the O(t−2/3) term cancels between the two terms. Thus the (non-trivial) leading
correction to pt(u) around the TW distribution is O(t−4/3), hence the first three cumulants are corrected first by
(minus) the Gumbel variable in (310). The method that we used here, however, allows one to obtain the cumulants
for the fermion problem in a more direct manner.
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