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Shortcut to adiabaticity in various quantum systems has attracted much attention with the wide
applications in quantum information processing and quantum control. In this paper, we concentrate
on stimulated Raman shortcut-to-adiabatic passage in quantum three-level systems. To implement
counter-diabatic driving but without additional coupling, we first reduce the quantum three-level
systems to effective two-level problems at large intermediate-level detuning, or on resonance, apply
counter-diabatic driving along with the unitary transformation, and eventually modify the pump and
Stokes pulses for achieving fast and high-fidelity population transfer. The required laser intensity
and stability against parameter variation are further discussed, to demonstrate the advantage of
shortcuts to adiabaticity.

PACS numbers: 32.80.Xx, 32.80.Qk, 33.80.Be

I. INTRODUCTION

Coherent manipulation of internal state in various
quantum systems plays a significant role in atomic and
molecular physics with the applications in metrology, in-
terferometry, quantum computing, quantum information
processing and control of chemical interaction, see review
[1–5]. Quite often, one of the most important goals is to
achieve state preparation or transfer with high fidelity.
So adiabatic approaches such as rapid adiabatic passage
(RAP), stimulated Raman adiabatic passage (STIRAP)
and their variants [3–5] have been proposed and widely
applied in different quantum two-level or three-level sys-
tems. These adiabatic protocols are robust against the
fluctuations of control parameters, as compared to the
resonant pulses. However, though recently robustness
of adiabatic processes has been proven in some specific
schemes with two and three-level systems [6, 7], it is any-
way preferable and safer to reduce the time required for
the state manipulation, when dissipation and decoher-
ence effects are wondered. Therefore, in order to achieve
fast and high-fidelity quantum state control, the optimal
control theory [8–11] and composite pulses [12–14] have
been proposed, by reducing the time consumption and
diabatic loss or minimizing systematic errors.
Alternatively, several works on “shortcut to adiabatic-

ity” (STA), including counter-diabatic, inverse engineer-
ing, and fast-forward approaches, have been recently de-
voted to mimicking adiabatic population transfers but
within a short time [15–28]. Among them, the counter-
diabatic driving [15] (equivalent to transitionless quan-
tum algorithm [16]) provides a powerful method to de-
sign complementary interaction appropriately, so that
diabatic transition can be suppressed and the system
evolves exactly following the adiabatic reference. Such
shortcut protocol has been experimentally demonstrated
in (effective) two-level quantum systems, e.g. accelerated
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FIG. 1. Λ-type three-level system for STIRAP, where the
Rabi frequencies Ωp,s present the pump and Stokes pulses, ∆
and ∆s are the detunings.

optical lattice [29] and spin of a single NV center in dia-
mond [30]. In the three-level atomic systems, additional
coupling between initial and target levels can be imple-
mented by a magnetic dipole transition [17, 31], which
might be problematic in practice. In other systems, it
might be even unfeasible. The way out is to apply the
unitary transformation for cancelling the additional cou-
pling but keeping the same dynamics [26, 32, 33], or the
(generalized) inverse engineer for pulse shapes [21, 28].
However, in many cases the examples of three-level sys-
tem on one-photon resonance have been worked out for
simplicity.
In this paper, we shall concentrate on the construc-

tion and implementation of stimulated Raman shortcut-
to-adiabatic passage (STIRSAP) in quantum three-level
systems, see Fig. 1. Particularly, large intermediate-
level detuning or one-photon resonance are assumed here,
since STIRAP in these cases can be reduced to effec-
tive two-level problems [34]. This allows us to utilize the
counter-diabatic technique along with unitary transfor-
mation proposed in two-level systems [32], thus imple-
menting STIRSAP without additional coupling by only
modifying pump and Stokes pulses. In detail, in the case
of large detuning, we first reduce the quantum three-level
system to an effective two-level system by using “adia-
batic elimination”, apply counter-diabatic driving along
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with the unitary transformation, and finally design pump
and Stokes pulses. For the sake of completeness, the
counter-diabatic driving in one-photon resonance case
and the connection with other shortcut methods is stud-
ied. At last, the stability with respect to the parameter
fluctuation is also discussed, showing the advantage of
STA. STIRSAP proposed here can be demonstrated in
recent experiments for speeding up SITRAP with cold
atom [35] and solid-state spin systems [36].

II. MODEL AND HAMILTONIAN

Considering the Hamiltonian for STIRAP system
within the rotating wave approximation (RWA) [1, 5, 21]

H0 =
~

2




0 Ωp(t) 0

Ωp(t) 2∆ Ωs(t)
0 Ωs(t) 2δs



 . (1)

Here Ωp(t) and Ωs(t) are Rabi frequencies of pump and
Stokes laser fields, shown in Fig. 1, where ∆ = (E2 −
E1)/~ − ωp, ∆s = (E2 − E3)/~ − ωs, and δs = ∆ −
∆s, ωp and ωs are the laser frequencies of pump and
Stokes laser, respectively, and Ej , j = 1, 2, 3 are bare-
basis state energies. On two-photon resonance (δs = 0),
the Hamiltonian (1) reads

H0 =
~

2




0 Ωp(t) 0
Ωp(t) 2∆ Ωs(t)
0 Ωs(t) 0


 , (2)

whose instantaneous eigenstates are

|n0〉 = cos θ|1〉 − sin θ|3〉,
|n+〉 = sin θ sinϕ|1〉+ cosϕ|2〉+ cos θ sinϕ|3〉,
|n−〉 = sin θ cosϕ|1〉 − sinϕ|2〉+ cos θ cosϕ|3〉,

with eigenvalues E+(t) = ~Ωcot(ϕ/2), E0 = 0, and
E−(t) = −~Ω tan(ϕ/2). Two mixing angles are de-
fined by tan θ = Ωp(t)/Ωs(t) and tan(2ϕ) = Ω/∆(t),

with Ω = [Ω2
p(t) + Ω2

s(t)]
1/2. The wave functions of this

three-level system, c(t) = [c1(t), c2(t), c3(t)]
T , denoted

by |1〉, |2〉 and |3〉, is governed by the time-dependent
Schrödinger equation i~dc(t)/dt = H0c(t). Once these

conditions for adiabatic following, θ̇ ≪ Ω (local) and
Ωtf ≫ 1 (global), are satisfied [1, 5], the solution of
above Schrödinger equation coincides with the adiabatic
approximation, thus the population can be transferred
|1〉 to |3〉 along the “dark state” |n0〉, where tf is the
pulse duration or the so-called operation time.
In order to reproduce STIRAP but within a short time,

that is, achieve fast population transfer from |1〉 → |3〉,
one can apply the counter-diabatic driving [15] (equiva-
lent to quantum transitionless algorithm [16, 17]),

Hcd = i~
∑

|∂tn〉〈n|, (3)

to design the supplementary interaction in the form of
[17]

Hcd =
~

2




0 0 iΩa(t)
0 0 0

−iΩa(t) 0 0


 , (4)

with Ωa(t) = 2[Ω̇p(t)Ωs(t)− Ω̇s(t)Ωp(t)]/[Ω
2
p(t) + Ω2

s(t)].
The additional coupling between |1〉 and |3〉, imple-
mented by microwave dipole transition in atomic sys-
tem [31], can completely suppress the diabatic transition.
However, such coupling might be difficult or even im-
possible to implement in various systems. For instance,
the phase mismatch between laser and microwave fields
causes the infidelity [35]. Moreover, generating the grat-
ing for such coupling is doable in optical multi-mode
waveguide, but not in coupled waveguides [37]. In gen-
eral, when ∆ 6= 0 under the two-photon resonance con-
dition, the cancellation of counter-diabatic interaction
becomes more challenging by using unitary transforma-
tion, as compared to the case of one-photon resonance
(∆ = 0), since the eight Gell-Mann matrices are involved
in the dynamics of such three-level systems satisfying
SU(3) Lie algebra [38]. In what follows we shall propose
the method of implementation of counter-diabatic driv-
ing in three-level systems. Following [34], we reduce STI-
RAP to the effective two-level problems by considering
the adiabatic elimination under large detuning (∆ ≫ Ω)
or one-photon resonance (∆ = 0), which enables to im-
plement STIRSAP without additional coupling by using
the similar strategy originally proposed in two-level sys-
tems [32].
As we shall deal with two different examples with the

assumption of large detuning and one-photon resonance.
It is unavoidable to repeat some symbols, such as Hcd,
Ωa(t), θ, Heff, H̃eff, Ωeff(t), ∆eff(t), Ω̃eff(t), ∆̃eff(t), and

Ω̃p,s(t). So consistency is strictly guaranteed only within
each case. The detail of how this comes about will be
clarified in the context.

III. FEASIBLE SHORTCUT DESIGN

A. large detuning (∆ ≫ Ω)

At large intermediate-level detuning, ∆ ≫ Ω, level |2〉
is scarcely populated (ċ2(t) ≃ 0), and it can be adiabati-
cally eliminated to obtain the following effective two-level
Hamiltonian in the subspace of levels |1〉 and |3〉 [34]:

Heff =
~

2

(
−∆eff(t) Ωeff(t)
Ωeff(t) ∆eff(t)

)
, (5)

where the effective detuning ∆eff(t) and Rabi frequency
Ωeff(t) are

∆eff(t) =
Ω2

p(t)− Ω2
s(t)

4∆
, (6)

Ωeff(t) = −Ωp(t)Ωs(t)

2∆
. (7)
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FIG. 2. (Color online) Different Rabi frequencies for STI-
RAP (a) and STIRSAP (b), where Stokes (solid red) and
pump (dashed blue) pulses are shown. The state evolutions
of STIRAP (c) and STIRSAP (d) are also compared, where
population of levels |1〉 (dashed blue), |2〉 (dotted black), and
|3〉 (solid red) is presented. Parameters: Ω0 = 2π × 5 MHz,
∆ = 2π × 2.5 GHz, tf = 400 µs, τ = tf/10 and σ = tf/6.

Once the effective two-level Hamiltonian (5) is ob-
tained, we can calculate the counter-diabatic driving,
from the definition (3), as [17]

Hcd =
~

2

(
0 −iΩa(t)

iΩa(t) 0

)
, (8)

where Ωa(t) = [Ωeff(t)∆̇eff(t) − Ω̇eff(t)∆eff(t)]/[∆
2
eff(t) +

Ω2
eff(t)]. Assisted by the counter-diabatic term (8), the

system can be driven along the adiabatic path of ref-
erence Hamiltonian (5) within a short time. The total
Hamiltonian, H = Heff +Hcd, is constructed as

H =
~

2

(
−∆eff(t)

√
Ω2

eff(t) + Ω2
a(t)e

−iφ
√
Ω2

eff(t) + Ω2
a(t)e

iφ ∆eff(t)

)
,

(9)
where φ(t) = arctan[Ωa(t)/Ωeff(t)]. By applying the uni-
tary transformation,

U(t) =

(
e−iφ(t)/2 0

0 eiφ(t)/2

)
, (10)

we can further obtain H̃eff = U †HU − i~U †U̇ , namely,

H̃eff =
~

2

(
−∆̃eff(t) Ω̃eff(t)

Ω̃eff(t) ∆̃eff(t)

)
, (11)

with ∆̃eff(t) = ∆eff(t)+ φ̇ and Ω̃eff(t) =
√
Ω2

eff(t) + Ω2
a(t).

Obviously, the unitary transformation means the rota-
tion along z-axis, which results in the cancellation of σy

term in the Hamiltonian (9). In principle, the population
dynamics of Hamiltonian (11) is the same as the previ-
ous one (9), up to the global phase. When the boundary
condition U(0) = U(tf ) = 1 is satisfied, the initial and
final population is the same as the adiabatic reference.
Now let us go back to the three-level system and design
the modified pump and Stokes fields by comparing the
Hamiltonian (11) and (5). Like Eqs. (6) and (7), we
impose

∆̃eff(t) =
Ω̃2

p − Ω̃2
s

4∆̃
, (12)

Ω̃eff(t) = − Ω̃p(t)Ω̃s(t)

2∆̃
, (13)

and calculate inversely the modified fields as

Ω̃p(t) =

√
2∆̃(

√
∆̃2

eff(t) + Ω̃2
eff(t) + ∆̃eff(t)), (14)

Ω̃s(t) =

√
2∆̃(

√
∆̃2

eff(t) + Ω̃2
eff(t)− ∆̃eff(t)). (15)

In order to guarantee that the problem of a two-level
system with counter-diabatic term can be transformed
back to a three-level system with modified Stokes and

pumping pulses, we should have ∆̃ ≫ Ω̃p,s(t). Here it is

reasonable to assume ∆̃ = ∆, since the original detuning
∆ is the order of GHz, but the (modified) Rabi frequency
is the order of MHz, see the parameters in Fig. 2. Sub-
stituting the expressions of Ω̃eff(t) and ∆̃eff(t) into Eqs.
(14) and (15), we finally obtain new designed laser fields
to drive the state following the dynamics of effective two-
level Hamiltonian (11), thus implementing STIRSAP at
large intermediate-level detuning.
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FIG. 3. (Color online) Operation time tf versus the peak
value of Rabi frequency Ωmax for STIRSAP (solid red) and
STIRAP (dashed blue) when the fidelity is above 99%. Pa-
rameters are the same as those in Fig. 2.

To illustrate how shortcut protocol works for STIRAP,
we assume the original pump and Stokes pulses, see Fig.
2 (a), as an adiabatic reference,

Ωp(t) = Ω0 exp

[
− (t− tf/2− τ)2

σ2

]
, (16)

Ωs(t) = Ω0 exp

[
− (t− tf/2 + τ)2

σ2

]
, (17)

with full width at half maximum (FWHM) σ, separation
time between the two pulses τ , and the amplitude Ω0.
We set the detuning ∆ = 2π × 2.5 GHz to guarantee
large detuning, ∆ ≫ Ω0, for the validity of “adiabatic
elimination”. In this case, the operation time required for
adiabatic process should be larger than resonant π pulse,
tf ≫ tπ = 2π∆/Ω2

0. Under the parameters: Ω0 = 2π × 5
MHz, tf = 400 µs (tπ = 100 µs), τ = tf/10 and σ = tf/6,
the dynamics of original Hamiltonian (2) with pump and
Stokes pulses, see Eqs. (16) and (17), is not adiabatic at
all, and population is not completely transferred from |1〉
to |3〉, see Fig. 2 (c). By using modified pulses predicted
from Eqs. (14) and (15), the perfect population transfer
can be achieved within a short time, as shown in Figs.
2 (b) and (d). The shapes of modified pump and Stokes
pulse are smooth enough to generate in the experiment
with cold atoms [35], though they are slightly different
from original Gaussian ones.
Importantly, we have to point out the energy cost for

the acceleration of STIRAP. By comparing the pulses in
STIRAP and STIRSAP, we see that the peak value of
modified Rabi frequencies is larger than original ones.
It is reasonable that more laser intensity is required to
shorten the operation time, and the relation between en-
ergy (laser intensity) and operation time, in general, sat-
isfies Ωmax ∝ 1/tf . To quantify it, we plot the operation
time versus maximum value of laser intensity Ωmax in
Fig. 3. Given the fidelity above 99.99%, the maximum
laser intensity required for shortcuts is less than that for
STIRAP. In other words, when an allowed laser intensity
is fixed, the operation time for STIRSAP is less than that
for conventional STIRAP. For example, if the maximum

value of laser intensity is Ωmax = 2π× 10 MHz, the time
required for STIRSAP is tf = 145 µs, which is about 4.3
times faster than the original STIRAP, tf = 620 µs.

B. one-photon resonance (∆ ≡ 0)

On one-photon resonance, ∆ = 0, the three-level sys-
tem is similarly reduced to the following effective two-
level system [34],

Heff =
~

2

(
−∆eff(t) Ωeff(t)
Ωeff(t) ∆eff(t)

)
, (18)

with effective Rabi frequency and detuing, Ωeff(t) =
Ωp(t)/2 and ∆eff(t) = −Ωs(t)/2. Noting that the Hamil-
tonian (2) on resonance (∆ = 0) has the same form as the
optical Bloch equations for such effective two-level sys-
tem (in units ~ = 1) [39, 40]. The probability amplitudes
cj(t) of the three-level system with Hamiltonian (2) are
related to the corresponding two-level amplitudes bj(t)
by c1(t) = |b1(t)|2− |b2(t)|2, c2(t) = 2iIm[b∗1(t)b2(t)], and
c3(t) = −2Re[b∗1(t)b2(t)], where j denotes the number of
states. Again, the total Hamiltonian is H = Heff +Hcd,
where the counter-diabatic term is calculated as [17]

Hcd =
~

2

(
0 −iΩa(t)

iΩa(t) 0

)
. (19)

with Ωa(t) = [Ω̇p(t)Ωs(t) − Ω̇s(t)Ωp(t)]/[Ω
2
p(t) + Ω2

s(t)].
After z-axis rotation by using unitary transformation
(10), we can obtain

H̃eff =
~

2

(
−∆̃eff(t) Ω̃eff(t)

Ω̃eff(t) ∆̃eff(t)

)
, (20)

with the new definition, ∆̃eff(t) = ∆eff(t) + φ̇, Ω̃eff(t) =
[Ω2

eff(t) + Ω2
a(t)]

1/2, and φ(t) = arctan[2Ωa(t)/Ωp(t)].
Supposing the two-level problem can be transformed
back to three-level problem, we can impose Ω̃eff(t) =

Ω̃p(t)/2 and ∆̃eff(t) = −Ω̃s(t)/2, and the modified pump
and Stokes Rabi frequency can be inversely calculated as

Ω̃p(t) =
√
Ω2

p(t) + 4Ω2
a(t), (21)

Ω̃s(t) = Ωs(t)− 2φ̇(t). (22)

Figs. 4 (a) and (b) show the new designed pump and
Stokes pulses, as compared to the original ones. The
evolution of state in Figs. 4 (c) and (d) demonstrates
that by using STIRSAP the population transfer can be
achieved with fidelity 1, while the previous STIRAP does
not work perfectly. The parameters are Ω0 = 2π × 5
MHz, tf = 1 µs, τ = tf/8 and σ = tf/6. The operation
time used here is very short, and not much larger than
tπ =

√
2π/Ω0 ≃ 0.14 µs for resonant π pulse. So the

influence of spontaneous emission might be negligible,
though the level |2〉 is populated.
Fig. 5 shows that the final population transfer is sen-

sitive to the variation of separation time τ , described by
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FIG. 4. (Color online) Different Rabi frequencies for STI-
RAP (a) and STIRSAP (b), where Stokes (solid red) and
pump (dashed blue) pulses are shown. The state evolutions
of STIRAP (c) and STIRSAP (d) are also compared, where
population of levels |1〉 (dashed blue), |2〉 (dotted black), and
|3〉 (solid red) is presented. Parameters: Ω0 = 2π × 5 MHz,
tf = 1 µs, τ = tf/8 and σ = tf/6.

(1+ δ)τ . When decreasing τ , the fidelity becomes worse.
However, in the case of large detuning, the fidelity is ro-
bust against the fluctuation of severation time τ [35]. As
a matter of fact, it is relevant to the mapping between
two and three-level problems. When the total Hamil-
tonian H = Heff + Hcd for the effective two-level sys-
tem is transformed back to the three-level problem, the

FIG. 5. (Color online) Fidelity (solid blue) versus the varia-
tion of separation time (1 + δ)τ . Inset: Dependence of phase
φ (solid red) versus δ for further explanation. Parameters are
the same of those in Fig. 4.

Hamiltonian will have the direct coupling Ωa(t) between
level |1〉 and |3〉. But after applying the unitary transfor-
mation U , the population dynamics of the Hamiltonian

H̃eff is determined by b̃(t) = [b′1(t)e
iφ/2, b′2(t)e

−iφ/2]T ,
where b′j(t) is the probability amplitudes of two-level sys-
tems with Hamiltonian H = Heff + Hcd. When going
back to three-level system, we can calculate the prob-
ability amplitudes of three-level problem from c̃1(t) =
|b′1(t)|2 − |b′2(t)|2, c̃2(t) = 2iIm[b′

∗
1(t)b

′
2(t)e

−iφ], and
c̃3(t) = −2Re[b′∗1(t)b

′
2(t)e

−iφ]. This provides the popu-
lation of level |3〉,

P3(t) ≡ |c̃3(t)|2 = cos2[φ(t)]. (23)

Clearly, when φ(tf ) = 0, the full population transfer,
P3(tf ) = 1, can be achieved. This suggests the condition
that the two-level problem can be transformed back to
the three-level problem on resonant case. For example,
the phase φ(tf ) saturates to null when τ increasing, see
the inset in Fig. 5, and the final population becomes
irrelevant to the shift of separation time. In fact, the
condition, U(0) = U(tf ) = 1, guarantees that the popu-
lations at initial and final time are the same before and
after the unitary transformation [32]. So one can further
choose other functions of adiabatic reference, satisfying
φ(0) = φ(tf ) = 0, instead of Eqs. (16) and (17).
Furthermore, as we know, three-level system on one-

photon resonance satisfies intrinsic SU(2) Lie algebra,
which simplifies the shortcut design. To clarify it, we
rewrite the total Hamiltonian, H = H0 + Hcd, on reso-
nance, as

H =
1

2
[Ωp(t)λ1 +Ωs(t)λ6 − 2Ωa(t)λ5], (24)

where the Gell-Mann matrices,

λ1 =



0 1 0
1 0 0
0 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 , λ6 =



0 0 0
0 0 1
0 1 0


 ,

are introduced, and satisfy the commutation relation,
[λ1, λ5] = −iλ6, [λ5, λ6] = −iλ1, and [λ6, λ1] = −iλ5.



6

To get rid of the counter-diabatic term, we introduce the
unitary transformation U(t) = e−iφ(t)λ6 , that is,

U(t) =



1 0 0
0 cosφ(t) −i sinφ(t)
0 −i sinφ(t) cosφ(t)


 , (25)

so that the Hamiltonian, H̃ = U †HU − iU †U̇ , becomes

H̃ =
1

2
[Ω̃p(t)λ1 + Ω̃s(t)λ6 − Ω̃a(t)λ5], (26)

where the Rabi frequencies are

Ω̃p(t) = Ωp(t) cosφ(t) + 2Ωa(t) sinφ(t), (27)

Ω̃s(t) = Ωs(t)− 2φ̇(t), (28)

Ω̃a(t) = 2Ωa(t) cosφ(t)− Ωp(t) sinφ(t). (29)

Imposing Ω̃a(t) = 0 gives φ(t) = arctan[2Ωa(t)/Ωp(t)],
which exactly results in Eqs. (21) and (22). By choosing
alternative unitary transformation, U(t) = e−iφ(t)λ1 , we
have the modified pump and Stokes pulses accordingly in
the form of

Ω̃p(t) = Ωp(t)− 2φ̇(t), (30)

Ω̃s(t) =
√
Ω2

s(t) + 4Ω2
a(t). (31)

Clearly, STIRSAP is achieved with the appropriate
boundary condition U(0) = U(tf ) = 1. This argument
is consistent with the condition that the two-level prob-
lem can be transformed back to the three-level prob-
lem on resonance. Otherwise, the population can not
be exactly transferred from |1〉 to |3〉, see Fig. 5, due
to the transformation. It turns out that it is not neces-
sary to reduce the three-level system on one-photon res-
onance to the effective two-level problem, since the sys-
tem has symmetry of SU(2). As a matter of fact, we can
further choose a general unitary transformation U(t) =
exp {−i[α(t)λ1 + β(t)λ5 + γ(t)λ6]}, and have more flexi-
bility to design the optimal shortcut, similar to the pro-
posal in the literature [28]. This suggests that shortcut
methods are mathematically equivalent [18, 21], though
their physical implementation is totally different. Be-
sides, high-order iteration can be applied, in terms of
superadiabtic concept [26].

IV. DISCUSSION

In this section, we turn to discuss the stability of STIR-
SAP with respect to different systematic errors. Fig. 6
(a) shows that such shortcut protocol on one-photon res-
onance is more robust than the resonant π pulse (with

constant Rabi frequency Ω0 =
√
2π/tf ), when the fluctu-

ation of laser intensity is induced, described by (1+δ)Ωs,p

or (1 + δ)Ω̃s,p. On the contrary, the shortcut protocol at
large detuning is not as stable as the shortcut on one-
photon resonance and resonant π pulse, especially when

FIG. 6. (Color online) (a) Population of level |3〉 at final time,
P3(tf ), versus the variation of laser intensity, where STIRSAP
at large detuning: tf = 1000 µs (solid purple) and tf = 400 µs
(dot-dashed blue); STIRSAP on one-photon resonance: tf =
1 µs (dashed red); resonant π pulse: tf = 1 µs (dotted black).
(b) P3(tf ) versus the variation of detuning, where STIRSAP
at large detuning: tf = 400 µs (solid blue); STIRSAP on one-
photon resonance: tf = 1 µs (dashed red); resonant π pulse:
tf = 1 µs (dotted black). Other parameters are the same as
those in Figs. 2 and 4.

operation time is short, tf = 400 µs. However, the stabil-
ity is improved when tf = 1000 µs and better than other
protocols. From the point view of experiment with cold
atoms [35], STIRSAP at large detuning shows several
advantages: (i) level |2〉 is not populated, which avoids
spontaneous decay from excited state; (ii) it is not sen-
sitive to the separation time τ , as compared to the case
of one-photon resonance; (iii) resonant π pulse does not
work perfectly, due to inhomogeneity of atomic cloud
[35]. Fig. 6 (b) also demonstrates STIRSAP is more
robust against the detuning error. Particularly, at large
detuning the results are not affected by small vibration
of detuning. In addition, we should mention the original
STIRAP is accelerated, so the improvement of fidelity by
decreasing operation time is expected, in the presence of
spontaneous emission and dephasing noise (calculated by
using three-level Lindblad master equation). Of course,
the robustness also depends on the shapes of pump and
Stokes fields, and their optimization will be left for fur-
ther investigation [19].

Finally, we shall introduce two kinds of experiments,
which are ready to demonstrate our STIRSAP. The pa-
rameters through the whole paper are oriented to STI-
RAP experiment with cold atoms, where the laser-atom
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coupling scheme of the three-level are presented, and two
ground states |F = 1,mF = 0〉 = |1〉 and |F = 2,mF =
0〉 = |2〉, and one excited state 52P3/2(= |3〉) of 87Rb
are selected as a typical three-level system. One part of
the results on STIRSAP at large detuning has been ver-
ified in the current experiment [35], and definitely the
one-photon resonance case can be tested experimentally
as well. On the other hand, the shortcut protocol de-
signed by generalized inverse engineering [28] has been
utilized to control solid-state spin state in NV center [36].
This Λ-type three-level system including three spin lev-
els, |ms = 0〉, |ms = 1〉 and |ms = −1〉. Such system
is available to achieve fast spin manipulation by using
STIRSAP with the applications in quantum information
processing.

V. CONCLUSION

In summary, we have developed the method to imple-
ment STIRSAP without additional coupling by using the
counter-diabatic driving in three-level systems. Consid-
ering two cases of large detuning and one-photon reso-

nance, we can reduce the three-level system to an effec-
tive two-level problems by using “adiabatic elimination”
or SU(2) Lie algebra. Thereafter, the shapes of pump and
Stokes fields are modified to achieve the fast and high-
fidelity population transfer without additional coupling
between initial and final levels under certain conditions.
This strategy is extremely helpful when we are faced with
difficulty in the experiments. All results can be extended
to accelerate the variants of STIRAP, e.g. fractional STI-
RAP [41], or to other adiabatic passages in multi-level
systems [8]. The STIRSAP might be also interesting for
other analogous quantum three-level systems, see recent
review [42].
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