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In this paper we derive basic properties of the Green’s function matrix elements stemming from
the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon-
strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s
function in the ω-representation can be expressed through connected diagrams only. Similar prop-
erties are also shared by the first order ω-derivative of the retarded part of the CC Green’s function.
Moreover, first order ω-derivative of the CC Green’s function can be evaluated analytically. This
result can be generalized to any order of ω-derivatives. Through the Dyson equation, derivatives
of the corresponding CC self-energy operator can be evaluated analytically. In analogyto the CC
Green’s function, the corresponding CC self-energy operator can be represented by connected terms.
Our analysis can be easily generalized to the advanced part of the CC Green’s function.

I. INTRODUCTION

Coupled cluster methods[1–7] has evolved into a
method of choice in studies of various aspects of chem-
ical problems including ground-state potential energy
surfaces,[8] excited states,[7] molecular properties,[9]
multi-reference and strongly correlated systems.[10–13]
Significant progress has also been achieved in the devel-
opment of reduced scaling CC methods employing lo-
cal character of ground-state correlation effects.[14–17]
The key factor that contributes to the success of the
CC formulations is its efficiency in capturing various
types of correlation effects that enables a development
of hierarchical classes of CC approximations. This has
been illustrated on numerous studies with ground-state
CC formulations, multi-reference CC methods, linear re-
sponse CC formalisms, and excited-state Equation-of-
Motion CC formalisms (EOMCC) (see Ref.[7]).

More recently, CC formalisms began to permeate
various embedding methods (fragment molecular or-
bitals approach,[18, 19] effective fragment potential
method,[20] CC/MM methods,[21, 22] polarizable em-
bedding formulations,[23] WFT-in-DFT[24, 25]) offering
a detailed description of correlation effects in studies of
chemical transformations in solutions, reactions in ac-
tive centers of proteins, and localized electronic states
in solids to mention only few applications. An impor-
tant progress in the development of reliable embedding
schemes is associated with the utilization of the Green’s
function formalism.[26–57] Recently, a considerate in-
terest has been attracted by the possibility of utilizing
highly-correlated methodologies to describe local Green’s
function or corresponding self-energies in dynamical-
mean field theories (DMFT).[58–64] Several highly cor-
related methods have been employed to account for
many-body correlation effects in self-energy calculations
for impurity regions.[57, 63] This effort also includes
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CC Green’s function formulation utilizing sum-over-state
approach.[65] In our earlier works,[66, 67] which follow
the formalism introduced by Nooijen and Snijders,[68–70]
(see also Ref.[71]) we demonstrated that the CC Green’s
function with singles and doubles (GFCCSD) can be eval-
uated analytically. This algorithm makes GFCCSD ap-
proach applicable to any energy regime and is extend-
able to the whole complex plane. We have also explored
possibility of reducing computational effort associated
with the need of solving Ns (Ns stands for the number
of spinorbitals) linear equations for ionization-potential
EOMCC (IP-EOMCC)[72] type operators Xp(ω) and
Ns linear equations for electron-affinity EOMCC (EA-
EOMCC)[73] type operators Yq(ω). The resulting block
approximation (B-GFCCSD), which requires Xp(ω) and
Yq(ω) operators calculated for active spinborbitals only,
was shown to significantly reduce numerical overhead
of the full GFCCSD approach while preserving its pole
structure.

In this paper we would like to further extend the anal-
ysis of the CC Green’s function. We will entirely focus
on the IP or retarded part of the CC Green’s function
(the present analysis can easily be extended to the EA or
advanced part of CC Green’s function) and prove several
properties stemming from the exponential parametriza-
tion of the ground-state wave functions. These properties
include:

• connected character of the CC Green’s function
matrix elements originating from the connected
form of the equations for intermediates Xp(ω) and
Yq(ω),

• connected character of the first order ω-derivative
of CC Green’s function matrix originating from
exponential parametrization of the (1 + Λ) de-
excitation operator,

• connected character of higher-order ω-derivatives
of CC Green’s function matrix.

By employing Dyson equations we will also show that the
above properties can be extended to the corresponding



2

self-energy operator. We will also discuss the possibility
of exponential parametrization of the retarded GFCC.

II. COUPLED CLUSTER GREEN’S FUNCTION
APPROACH

In this section, we will give the basic tenets of the
CC Green’s function formalism introduced by Nooijen et
al.[68–70]. The CC Green’s function formalism hinges
upon the CC bi-variational formalism[74–76] utilizing

different parametrizations of the bra (〈Ψ(N)
0 |) and ket

(|Ψ(N)
0 〉) ground-state wave functions of a N-electron sys-

tem,

〈Ψ(N)
0 | = 〈Φ|(1 + Λ)e−T , (1)

|Ψ(N)
0 〉 = eT |Φ〉 . (2)

In the exact formulation, the T and Λ operators are rep-
resented as sums of their many-body components (Tn and
Λn)

T =

N∑
n=1

Tn , (3)

Λ =

N∑
n=1

Λn , (4)

where again N stands for the total number of correlated
electrons in the system of interest. The Tn and Λn oper-
ators can be given by the following expressions

Tn =
1

(n!)2

∑
i1,...,in;
a1,...,an

ti1...ina1...ana
†
a1 . . . a

†
anain . . . ai1 (5)

Λn =
1

(n!)2

∑
i1,...,in;
a1,...,an

λa1...ani1...in
a†i1 . . . a

†
in
aan . . . aa1 , (6)

where ti1...ina1...an and λa1...ani1...in
are antisymmetric amplitudes

determining T and Λ operators. The indices i, j, k, . . .
(i1, i2, . . .) and a, b, c, . . . (a1, a2, . . .) correspond to occu-
pied and unoccupied spinorbitals in the reference func-
tion |Φ〉 respectively. The ap (a†p) operator is the annihi-
lation (creation) operator for electron in the p-th state.

The cluster operator (T ), CC energy (E
(N)
0 ), and de-

excitation operator (Λ) are determined from the standard
CC equations that are solved in the following order

Qe−THeT |Φ〉 = 0 , (7)

E
(N)
0 = 〈Φ|e−THeT |Φ〉 , (8)

〈Φ|(1 + Λ)e−THeTQ = E
(N)
0 〈Φ|(1 + Λ)Q , (9)

where Q is the projection operator onto the subspace
spanned by Slater determinants generated by the T op-

erator when acting on the reference function |Φ〉, i.e.,

Q =

N∑
n=1

Qn =

N∑
n=1

1

(n!)2

∑
i1,...,in;
a1,...,an

|Φa1...ani1...in
〉〈Φa1...ani1...in

| ,

(10)
where excited Slater determinant |Φa1...ani1...in

〉 is defined

as a†a1 . . . a
†
anain . . . ai1 |Φ〉. Algebraically, the system of

equations defining cluster amplitudes ti1...ina1...an can be rep-
resented as

〈Φa1...ani1...in
|H̄N |Φ〉 = 0 ∀n ∈ {1, . . . , N}, (11)

∀i1, . . . , in,∀a1, . . . , an.

The Λ operator has been extensively discussed in the
literature. [77] In particular, the Λ operator is defined
by linked diagrams (in the present context, linked dia-
grams refer to the open diagrams which do not contain
disconnected closed part). In the limit of the exact the-
ory discussed in this paper, the 〈Φ|(1+Λ) is equivalent to
the exponential ansatz based on the de-excitation cluster
operator S, i.e.,

〈Φ|(1 + Λ) = 〈Φ|eS . (12)

Since the equations for the S operator,

〈Φ| ¯̄HQ = 〈Φ|eSH̄e−SQ = 〈Φ|(eSH̄)CQ = 0 (13)

obtained upon the substitution of expansion (12) into
the left CC equations for Λ operator, are explicitly con-
nected, the de-excitation cluster operator S is also con-
nected. In analogy to Eq.(11), the explicitly projected
form of Eq.(13) takes the form:

〈Φ| ¯̄H|Φa1...ani1...in
〉 = 0 ∀n ∈ {1, . . . , N}, (14)

∀i1, . . . , in,∀a1, . . . , an.

The H̄ and ¯̄H operators are the so-called similarity trans-
formed Hamiltonians,

H̄ = e−THeT , (15)
¯̄H = eSe−THeT e−S = eSH̄e−S . (16)

The above representation of the 1 + Λ operator will
greatly facilitate the discussion of diagrams contributing
to the CC Green’s function matrix. Although the above
exponential expansion bear the resemblance to the ex-
tended CC (ECC) formulations by Arponen,[74] in the
present context the equations for the cluster operator T
are decoupled from the equations for the S operator.

By employing CC bi-variational approach, the corre-
sponding Green’s function can be expressed as
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Gpq(ω) = 〈Φ|(1 + Λ)e−Ta†q(ω + (H − E0)− iη)−1ape
T |Φ〉+ 〈Φ|(1 + Λ)e−Tap(ω − (H − E0) + iη)−1a†qe

T |Φ〉 .

Let’s focus on GRpq(ω), the retarded part of Gpq(ω), which
is defined as

GRpq(ω) = 〈Φ|(1 + Λ)e−Ta†q(ω+ (H −E0)− iη)−1ape
T |Φ〉
(17)

Introducing resolution of identity 1 = e−T eT and normal
product form representation of H̄, the Green’s function
can be rewritten as (for simplicity, in the follwoing part
of this paper we will omit the complex factor iη),

GRpq(ω) = 〈Φ|(1 + Λ)ā†q(ω + H̄N )−1āp|Φ〉 (18)

where the similarity transformed operators āp, ā
†
p and

H̄N are given by the equations

āp = e−Tape
T , (19)

ā†p = e−Ta†pe
T , (20)

H̄N = e−THeT − E0. (21)

Using Campbell-Baker-Hausdorff formula

e−BAeB = A+ [A,B] +
1

2
[[A,B], B] + . . . (22)

one can derive explicit forms of the similarity transformed
creation and annihilation operators āp an ā†p as

āp = ap + [ap, T ] (23)

ā†p = a†p + [a†p, T ]. (24)

A connected nature of cluster amplitudes defining clus-
ter operator T in conjunction with connected character of
the operator that is transformed (A operator in Eq.(22))
leads to the connected character of nested commutator
expansion. In particular, expansion for H̄N (Eq.(21))
contains connected diagrams only (it is also easy to ver-
ify that due to the pairwise character of the inter-electron
interactions it naturally terminates after terms contain-
ing fourth powers of cluster operator T . Analogously,
similarity transformed annihilation and creation opera-
tors (āp and ā†p) are also expressed in terms of connected
expressions.

To evaluate the GRpq(ω) matrix elements in a numeri-
cally efficient way, a set of intermediate operators Xp(ω)
defined on Hilbert space of N − 1 particles is defined as
follows,

(ω + H̄N )Xp(ω)|Φ〉 = āp|Φ〉 , (25)

where second-quantized form of the Xp(ω) is identical
with the form of IP-EOMCC excitation operator

Xp(ω) =
∑
i

xi(ω)p ai+
∑
i<j,a

xija (ω)p a
†
aajai+ . . . . (26)

This leads to the following compact expression for the
retarded CC Green’s function matrix elements,

GRpq(ω) = 〈Φ|(1 + Λ)ā†qXp(ω)|Φ〉 . (27)

(a) (b) 

FIG. 1. Typical examples of connected (inset (a)) and dis-
connected (inset (b)) diagrams contributing to the (ω +
H̄N )Xp(ω)|Φ〉 = āp|Φ〉.

Another interesting feature is that only connected dia-
grams are involved in the above representation, which
will be shown in the next section.

III. CONNECTED DIAGRAM EXPANSION
FOR THE RETARDED PART OF COUPLED

CLUSTER GREEN’S FUNCTION

The connectedness of the CC Green’s function matrix
elements can be proven in two steps, in which we utilize
features of similarity transformed Hamiltonian H̄ stem-
ming from the form of CC equations (7) for cluster op-
erator T . First, let us decompose the H̄NXp(ω)|Φ〉 term
of Eq.(25) in the form

H̄NXp(ω)|Φ〉 = (H̄NXp(ω))C |Φ〉+ (H̄NXp(ω))DC |Φ〉 ,
(28)

where subscripts “C” and “DC” denote connected and
disconnected parts of a given operator expression, respec-
tively. Typical diagrams contributing to connected and
disconnected parts are shown in Fig.1. It can be observed
that the only disconnected terms stem from diagrams
that contain vertices corresponding to 〈Φa1...ani1...in

|H̄N |Φ〉
matrix elements of H̄N , which are equal to zero as they
represent the equations for cluster amplitudes defining
cluster operator T . Thus the left hand side of Eq.(25) is
defined by connected diagrams only. As discussed in the
previous section, the similarity transformed annihilation
operator āp is expressed in terms of connected expres-
sions. Therefore, the equation (25) is represented by the
connected diagrams only,

{(ω + H̄N )Xp(ω)}C |Φ = āp|Φ〉 , (29)

and consequently Xp(ω) operator is determined by con-
nected contributions only. Second, we will show that the
〈Φ|(1 + Λ)ā†q term (or 〈Φ|eS ā†q one when using exponen-
tial parametrization given by Eq.(12)) in the expression
for the retarded part of the Green’s function (27) is rep-
resented by linked diagrams. This is a consequence of the
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FIG. 2. An example of a connected diagram contributing to
the Gpm(ω) matrix element of CC Green’s function (p rep-
resents general spinorbital index while index m corresponds
to the occupied spinorbital index). The red box represents a
typical particle non-conserving diagram contributing to ā†m.

fact that in contrast to Λ and S operators, the ā†q opera-
tor is particles number non-conserving operator. For this
reason (and the fact that ā†q has to be fully contracted
with the S operators otherwise it would lead to a zero
contribution) it cannot be fully contracted with S oper-
ator or its products to produce disconnected closed part
of the diagram. If we additionally recall that the ā†q oper-
ator is expressed in terms of connected diagrams we can
write that

〈Φ|S . . . Sā†q = 〈Φ|[S . . . Sā†q]L , (30)

(where “L” designates linked part of a given operator
expression) and consequently

〈Φ|eS ā†q = 〈Φ|[eS ā†q]L . (31)

Combining the above observations and the fact that the
full contractions between linked and connected operators
lead to connected diagrams, one can readily notice that
the matrix element GRpq(ω) is determined by connected
diagrams only, which can be symbolically expressed as

GRpq(ω) = 〈Φ|[(1 + Λ)ā†qXp(ω)]C |Φ〉 ,
= 〈Φ|[eS ā†qXp(ω)]C |Φ〉 . (32)

This provides an alternative proof of the linked diagram
theorem for the one-body Green’s function.

IV. FIRST ORDER ω-DERIVATIVE OF THE
RETARDED CC GREEN’S FUNCTION

In the next step, we will focus on the first derivative
of GRpq(ω) matrix element with respect to ω

dGRpq(ω)

dω
= −〈Φ|(1 + Λ)ā†q(ω + H̄N )−2āp|Φ〉

= −〈Φ|(1 + Λ)ā†q(ω + H̄N )−1Xp(ω)|Φ〉(33)

FIG. 3. An example of a connected diagram contributing to
the Gpe(ω) matrix element of CC Green’s function (p rep-
resents general spinorbital index while index e corresponds
to the unoccupied spinorbital index). The red box contains
particle non-conserving operator ā†e.

In analogy to the Xp(ω) operator, let us introduce oper-
ator Zq(ω)

Zq(ω) = Zq,1(ω) + Zq,2(ω) + . . .

=
∑
i

zi(ω)q a
†
i +

∑
i<j,a

zaij(ω)p a
†
ia
†
jaa + . . . .

(34)

which is defined as a solution of the linear equation

〈Φ|(1 + Λ)ā†q = 〈Φ|Zq(ω)(ω + H̄N ), (35)

and which leads to a very simple form of the derivative
(33)

dGRpq(ω)

dω
= −〈Φ|Zq(ω)Xp(ω)|Φ〉 (36)

By invoking similar arguments as those we used in prov-
ing connectedness of Xp operators, we can easily show
that:

1. the right hand side of Eq. (35) is expressed in terms
of linked diagrams,

2. left hand side contains linked terms only.

Consequently, Zq(ω) operators are also determined by
linked terms only. This can be easily proven using the
induction with respect to the iteration number in the case
Eq. (35) is solved iteratively. A direct consequence of the
linked character of the Zq(ω) is that the first derivatives
of the CC Green’s function matrix elements contain con-
nected diagrams only.

Our next step will involve decomposition of Zq(ω) op-
erators into the following form

〈Φ|Zq(ω) = 〈Φ|(1 + Λ)Wq(ω) (37)
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where Wq(ω) operators are represented in the same way
as Zq(ω),

Wq(ω) = Wq,1(ω) +Wq,2(ω) + . . .

=
∑
i

wi(ω)q a
†
i +

∑
i<j,a

waij(ω)q a
†
ia
†
jaa + . . . .

(38)

Eq. (37) can be used to establish a one-to-one corre-
spondence between many-body components Zq,i(ω) and
Wq,i(ω) of Zq(ω) and Wq(ω) operators, respectively,

Zq,1(ω) = Wq,1(ω) , (39)

Zq,2(ω) = Wq,2(ω) + Λ1Wq,1(ω) , (40)

Zq,3(ω) = Wq,3(ω) + Λ1Wq,2(ω) + Λ2W1,q(ω) , (41)

. . .

In the next section we will prove that Wq(ω) operators
are connected quantities.

In analogy to Eq. (25), poles of Wq(ω) operators ob-
tained from the equation

〈Φ|(1 + Λ)ā†q = 〈Φ|(1 + Λ)Wq(ω)(ω + H̄N ) (42)

correspond to the EOMCC ionization potentials. For
these ω values, amplitudes defining Wq(ω) operators (η =
0) assume singular values.

All results discussed so far are valid for general spinor-
bital index q belonging both to occupied (q ∈ O) and un-
occupied/virtual (q ∈ V ) spinorbitals. In the next step,
we will focus on the explicit algebraic form of the Zq(ω)
or Wq(ω) operators for q indices belonging to occupied
and unoccupied spinorbitals.

A. Zq(ω) and Wq(ω) operators for q corresponding
to occupied spinorbital (q = i)

In this case the Wi(ω) operator can be formally de-
composed as

Wi(ω) =
∑
j

mR
ji(ω)ā†j + γRi (ω) , (43)

which leads to a natural decomposition of Wi(ω) into
lowest-order contributions and higher-terms included in
the γRi (ω) term. There are several ways of defining this
decomposition, here we will follow the easiest one stem-
ming from the decomposition of Wi,1(ω) (see Eq. (34))

where the a†j operators can be expressed in terms of ā†j
operators (see Eq. (24)) according to the formula

a†j = āj
† − [a†j , T ] . (44)

Using the above formula, the Wi,1(ω) operator can be
expressed as

Wi,1(ω) =
∑
j

wj(ω)i(ā
†
j − [a†j , T ]) , (45)

which upon substituting into the Wi(ω) operator leads to
the following definition of mR

ji(ω) and γRi (ω) quantities

mR
ji(ω) = wj(ω)i , (46)

γRi (ω) = −
∑
j

wj(ω)i[a
†
j , T ] +

N∑
n=2

Wi,n(ω) . (47)

It can easily be shown that the lowest-order contributions
to Wi(ω) are captured by the mR

ji(ω) (see sections V and
VII). The final forms of the Zi(ω) and Wi(ω) operator
can be represented as

〈Φ|Zi(ω) = 〈Φ|(1 + Λ)Wi(ω)

= 〈Φ|(1 + Λ)

∑
j

mR
ji(ω)ā†j + γRi (ω)

 . (48)

B. Zq(ω) and Wq(ω) operators for q corresponding
to virtual spinorbital (q = a)

For the q ∈ V we will also represent Za(ω) and Wa(ω)
operators in forms given by Eqs. (34) and (38). However,
in the contrast to the q ∈ O case, the ā†a operator cannot
be naturally extracted from the expansion for Wa(ω).
Therefore, the Wa(ω) is represented only by the ”γRa ”
term, which in analogy to the previous case (q ∈ O)
includes higher order contributions,

Wa(ω) =
∑
n=1

Wa,n(ω) = γRa (ω) , (49)

where

γRa (ω) =
∑
n=1

Wa,n(ω) . (50)

Finally, Za(ω) and Wa(ω) operators take the form

〈Φ|Za(ω) = 〈Φ|(1 + Λ)Wa(ω) = 〈Φ|(1 + Λ)γRa (ω) . (51)

V. PERTURBATIVE ANALYSIS OF Xp(ω) AND
Wq(ω) INTERMEDIATES

In the following analysis we will assume that canonical
Hartree-Fock (HF)orbitals are employed, which signifi-
cantly simplifies the analysis of low-order contributions
to Xp(ω) and Wq(ω) operators. In the HF molecular
basis the normal-ordered form of electronic Hamiltonian
can be expressed as the sum of one-particle part and two-
particle part, HN = FN + VN with FN =

∑
r εrN [a†rar],

VN = 1
4

∑
p,q,r,s v

rs
pqN [a†ua

†
vasar] with vrspq are antisym-

metrized 2-electron integrals, and N [. . .] designating nor-
mal ordered form of a given second-quantized expression.
Its similarity-transformed counterpart can then be parti-
tioned into two groups of diagrams
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H̄N = e−THNe
T = e−T (FN + VN )eT

= FN + [FN , T ] + [[FN , T ], T ] + VN + [VN , T ] +
1

2
[[VN , T ], T ] +

1

6
[[[VN , T ], T ], T ] +

1

24
[[[[VN , T ], T ], T ], T ]

= (FN,CC + VN,CC + [FN , T ]CC + [[FN , T ], T ]CC + [VN , T ]CC +
1

2
[[VN , T ], T ]CC + · · · )I

+ (FN,d + [FN , T ]d + VN,d + [VN , T ]d +
1

2
[[VN , T ], T ]d + · · · )II. (52)

where, all terms in part I contribute to the CC equations
and show no de-excitation lines, while in part II we col-
lect all terms containing at least one de-excitation line
(these terms will be denoted by subscript d). Note that
only part II will survive if CC equations are satisfied.
Then we can expand H̄N in perturbative series,

H̄N = H̄
(0)
N + H̄

(1)
N + H̄

(2)
N + · · · , (53)

where

H̄
(0)
N = FN,d, (54)

H̄
(1)
N = [FN , T

(1)]d + VN,d, (55)

H̄
(2)
N = [VN , T

(1)]d, (56)

· · ·

For canonical orbitals, the H̄
(1)
N is represented only by

the VN,d term. In the following, we will put our empha-
size on analytical expressions for the 0-th and 1st orders
contributions to Xp(ω) and Wp(ω) operators.

A. Algebraic expressions for X
(0)
p (ω) and X

(1)
p (ω)

operators

To calculate X
(0)
p (ω) and X

(1)
p (ω) we will refer to 0-th

and 1st orders of Eq. (25). We will consider two distinct
cases: (1) p belongs to occupied spinorbitals and (2) p is
virtual spinorbital index.

1. X
(0)
p (ω) and X

(1)
p (ω) operators for p corresponding to
occupied spinrobital

In this case, ap and T operators commute ([ap, T ] = 0),
and āp|Φ〉 becomes ap|Φ〉. This term contributes to the
0-th order equation, which becomes

(ω + FN,d)X(0)
p (ω)|Φ〉 = ap|Φ〉 . (57)

The only non-vanishing contribution to X
(0)
p (ω) (p ∈

O) corresponds to the single excitations (X
(0)
p (ω) =∑

m x
m,(0)(ω)p am|Φ〉) with corresponding amplitudes

defined as

xm,(0)(ω)p =
δpm

ω − εm
. (58)

X
(1)
p (ω) operator can be obtained by collecting 1-st

order contributions in Eq. (25),

VN,dX
(0)
p (ω)|Φ〉 = −(ω + FN,d)X(1)

p (ω)|Φ〉 , (59)

which leads to the X
(1)
p (ω) operator containing only

two body terms (X
(1)
p (ω) =

∑
i<j,a x

ij,(1)
a (ω)p a

†
aajai|Φ〉)

where two-body amplitudes are given by the formula

xij,(1)
a (ω)p =

vijpa
(ω − εp)(ω + εa − εj − εi)

. (60)

2. X
(0)
p (ω) and X

(1)
p (ω) operators for p corresponding to
virtual spinrobital

In this case, the free term on the right hand side of Eq.
(25) is given by the expression, āp|Φ〉 = [ap, T ]C |Φ〉 =
(apT )C |Φ〉, where the lowest (first) order contribution

stems from the term apT
(1)|Φ〉 = (apT

(1)
2 )C |Φ〉 with

T
(1)
2 =

∑
i<j,a<b t

ij (1)
ab a†aa

†
bajai and t

ij (1)
ab =

vijab

εi+εj−εa−εb .

Therefore, in contrast to previous subsection, we have

X
(0)
p (ω) = 0.

The first order term satisfying the equation

(ω + FN,d)X(1)
p (ω)|Φ〉 = (apT

(1)
2 )C |Φ〉 , (61)

is given by the formula

xij,(1)
a (ω)p =

vijpa
(ω + εa − εi − εj)(εi + εj − εa − εp)

(62)

for i < j and p ∈ V .

B. Algebraic expressions for W
(0)
q (ω) and W

(1)
q (ω)

operators

Following similar procedure, the perturbative expan-

sions for the W
(ω)
q operators can be extracted from the

equation
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〈Φ|(1 + Λ(1) + Λ(2) + · · · )(a†q +
[
a†q, T

]
C

) =

〈Φ|(1 + Λ(1) + Λ(2) + · · · )×
(
W (0)
q (ω) +W (1)

q (ω) +W (2)
q (ω) + · · ·

)
(ω + FN,d + VN,d + [VN , T ]d + · · · ) , (63)

where Λ(i) represents i-th order contribution to the Λ
operator.

1. W
(0)
q (ω) and W

(1)
q (ω) operators for q corresponding to
occupied spinorbital

In analogy to the Xp(ω) analysis, the 0-th order contri-

bution W
(0)
q (ω) is determined by one-body contributions

only, i.e., W
(0)
q (ω) =

∑
a,i<j w

(0)
m (ω)qa

†
m where ampli-

tudes w
(0)
m (ω)q are expressed as

w(0)
m (ω)q =

δqm
ω − εm

(64)

and is identical with the 0-th order estimate of the Xp(ω)
operator (see Eq. (58)).

The W
(1)
q (ω) depends on (a) the 1st order of the free

term 〈Φ[a†q, T ], which is 〈Φ|[a†q, T (1)]C = 〈Φ|[a†q, T
(1)
2 ]C =

0, and (b) the 1st order term in the Λ operator, which can

be expressed as Λ(1) = Λ
(1)
2 =

∑
i<j,a<b λ

ab (1)
ij a†ia

†
jabaa

with λ
ab (1)
ij =

vab
ij

εi+εj−εa−εb . Then, the W
(1)
q (ω) can be

determined from the 1st order representation of Eq. (63)

〈Φ|Λ(1)
2 a†q = 〈Φ|

(
Λ

(1)
2 W (0)

q (ω)(ω + FN,d) +W (1)
q (ω)(ω + FN,d) +W (0)

q (ω)VN,d

)
. (65)

It is interesting to observe that all non-zero three-
body contributions stemming from the linked but dis-

connected 〈Φ|Λ(1)
2 a†q, 〈Φ|(Λ

(1)
2 W

(0)
q (ω)(ω + FN,d), and

〈Φ|W (0)
q (ω)VN,d cancel each other. The cancellation of

linked terms bears resemblance to the order-by-order can-
cellation of disconnected diagrams in the perturbative ex-
pansion of the correlation energy that eventually leads to
the linked cluster theorem.[78, 79]

The only non-zero contribution to W
(1)
q (ω)

corresponds to double excitations W
(1)
q (ω) =∑

i<j,a w
a,(1)
ij (ω)q a

†
ia
†
jaa, where

w
a,(1)
ij (ω)q =

vqaij
(ω − εq)(ω + εa − εi − εj)

(66)

for i < j and q ∈ O.

2. W
(0)
q (ω) and W

(1)
q (ω) operators for q corresponding to
virtual spinorbital

In analogy to Xq(ω) operators, the 0-th order contri-
bution vanishes. The first order terms originate from the
equation

〈Φ|Λ(1)
2 a†q = 〈Φ|W (1)

q (ω)(ω + FN,d), (67)

which results in doubles excitations W
(1)
q (ω) =∑

i<j,a w
a,(1)
ij (ω)q a

†
ia
†
jaa, where

w
a,(1)
ij (ω)q =

vqaij
(εi + εj − εq − εa)(ω + εa − εi − εj)

(68)

for i < j and q ∈ V .
Summarizing, we observed that in the lowest orders

of perturbation theory all W
(i)
q (ω) (i = 0, 1) contribu-

tions are determined by connected diagrams. Moreover,

for W
(1)
q (ω) we observed an interesting cancellation of

disconnected (yet linked) terms appearing in the triply-
excited part of first order equations. This may suggest
that all Wq(ω) operators can be expressed in terms of
connected diagrams. We prove this conjecture in the next
section.

VI. CONNECTED FORM OF THE Wq(ω)
OPERATORS AND CONNECTED CHARACTER
OF THE FIRST-ODER ω-DERIVATIVES OF CC

GREEN’S FUNCTION

In order to prove connected character of Wq(ω) oper-
ators, one should invoke Eq. (42) where 〈Φ|(1 + Λ) is
replaced by its exponential form 〈Φ|eS (this convention
will be employed in the remaining part of our discussion)

〈Φ|eS ā†q = 〈Φ|eSWq(ω)(ω + H̄N ) , (69)
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𝑖 

𝑎𝑗
† 𝑤𝑗(𝜔)𝑖= 𝑚𝑗𝑖

𝑅(𝜔) 

FIG. 4. An example of connected diagram contributing to
the wj(ω)i = mR

ij(ω) amplitude. Indices i and j correspond
to occupied spinorbitals.

and the fact that S and Wq(ω) operators commute

[S,Wq(ω)] = 0 . (70)

Multiplying both sides of Eq. (69) by e−S one can rewrite

〈Φ|eS ā†qe−S = 〈Φ|Wq(ω)(ω + eSH̄Ne
−S) (71)

where the free term on the left hand side 〈Φ|eS ā†qe−S
and the eSH̄Ne

−S operator contain connected terms only.
Moreover, the only disconnected contributions to Eq.

(71) (in the 〈Φ|Wq(ω)(ω+eSH̄Ne
−S) term) stem from (a)

matrix elements of eSH̄Ne
−S that correspond to Eq. (13)

and therefore numerically disappear, and (b) fully con-
tracted

(
eSH̄N

)
C

term which again is numerically equal

to zero on the basis of Eq. (7). In effect, the equations
for Wq(ω) operators are expressed in terms of connected
diagrams only and consequently all Wq(ω) amplitudes
(including mR

ji(ω) ones) contain connected terms only.
To reflect this fact symbolically, Eq. (71) can be written
as

〈Φ|(eS ā†q)C = 〈Φ|[Wq(ω)(ω + eSH̄Ne
−S)]C (72)

A straightforward order-by-order perturbative analysis
shows also that each diagram contributing to any Wq(ω)
amplitude must contain index q.

A particular case of connected Wq(ω) amplitudes refers
to wj(ω)i amplitudes (or mR

ji(ω) matrix elements, given
by Eq. (46)), where q = i. One should realize that while
in connected diagrams defining wj(ω)i amplitudes the j
index corresponds to the external index producing de-

excitation associated with the a†j operator, the i index
is associate with the internal structure of a connected
diagram as shown in Fig.(4). Similar results hold for
q ∈ V .
VII. RETARDED CC GREEN’S FUNCTION AS

A SOLUTION OF NON-HOMOGENEOUS
SYSTEM OF LINEAR ORDINARY

DIFFERENTIAL EQUATIONS

By combining Eqs. (48) and (51) with the expression
for the CC Green’s function derivatives (36) with respect
to ω one can re-express Eq. (36) in the general form as

dGRpq(ω)

dω
= −

∑
r

mR
qr(ω)〈Φ|eS ā†rXp(ω)|Φ〉 − 〈Φ|eSγRq (ω)Xp(ω)|Φ〉

= −
∑
r

mR
rq(ω)GRpr(ω)− 〈Φ|eSγRq (ω)Xp(ω)|Φ〉 , (73)

which in matrix form representation can be cast in the
form of non-homogeneous of linear ordinary differential
equations

dGR(ω)

dω
= −GR(ω)MR(ω)− ΓR(ω) (74)

where the GR(ω) matrix represents CC Green’s function
matrix and MR(ω) and ΓR(ω)

mR
rq(ω) =

{
wr(ω)q for r, q ∈ O, (75)

0 for other cases. (76)

and

ΓRpq(ω) = 〈Φ|eSγRq (ω)Xp(ω)|Φ〉 , (77)
where γRq (ω) is defined as
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γq(ω) =


−
∑
i

wi(ω)q[a
†
i , T ] +

∑
n=2

Wq,n(ω) for q ∈ O, (78)∑
n=1

Wq,n(ω) for q ∈ V . (79)

As we discussed earlier, the first term on the right hand
side of equation (74) contains lowest-order contributions
while the second expression introduces higher-order cou-
pling terms between O-O, O-V,V-O,V-V block of the 1st
order derivative of GR(ω) with respect to ω. Moreover,
all elements of the MR(ω) and ΓR(ω) matrices are rep-
resented by connected quantities.

The equation (74) represents non-homogeneous linear
system of ordinary differential equations (ODEs), which
is solved in two steps:

• First, we solve the homogeneous system of ODEs

dGR(ω)

dω
= −GR(ω)MR(ω) (80)

with the solution which can be written as

GR
h (ω) = GR

inite
−

∫ ω
0

MR(ω̄)dω̄ , (81)

where GR
init = GR(ω = 0).

• In the second step, the solution to Eq. (74) can be
represented as

GR(ω) = {1−
∫ ω

0

ΓR(ω̄)GR
h (ω̄)−1dω̄}GR

h (ω) (82)

= {1 + AR(ω)}GR
inite

CR(ω) , (83)

where

CR(ω) = −
∫ ω

0

MR(ω̄)dω̄ (84)

and

AR(ω) = −
∫ ω

0

ΓR(ω̄)GR
h (ω̄)−1dω̄ . (85)

Using perturbative analysis in previous sections we
demonstrated that mR

ji(ω) elements are dominated by 0-
th order contributions. In specific situations these matrix
elements can be evaluated in a different way. Assuming
that in the Hilbert space of N − 1 particles the H̄N op-
erator can be represented in the form of the following
spectral resolution

H̄N =
∑
p

|R(N−1)
p 〉ωp〈L(N−1)

p | , (86)

where |R(N−1)
p 〉 and 〈L(N−1)

p | are right and left eigen-
vectors of H̄N and ωp represents corresponding ioniza-
tion potential. If K-th state of N − 1 electron system

is dominated by single k-th single de-excitation (i.e., ak
operator acting onto the reference determinant |Φ〉) then

projecting Eq. (42) from the right onto |R(N−1)
K 〉 leads

to a rough estimate for the corresponding mR
ki(ω) matrix

element

mR
ki(ω) '

〈Φ|eS ā+
i |R

(N−1)
K 〉

(ω + ωK)〈Φ|eS ā+
k |R

(N−1)
K 〉

. (87)

For the diagonal mR
kk(ω) element, the above form is anal-

ogous to the 0-th order estimate given by Eq.(64) with
ωK ionization potential being replaced by the inverse of
corresponding orbital energy −εk.

VIII. HIGHER-ORDER ω-DERIVATIVES OF CC
GREEN’S FUNCTION

The analysis of the previous chapters can be easily gen-
eralized to any order derivative of the CC Green’s func-
tion with respect to ω

d(n)GRpq(ω)

dω(n)
= (−1)n〈Φ|eS ā†q(ω + H̄N )−(n+1)āp|Φ〉 (88)

= (−1)n〈Φ|eS ā†q(ω + H̄N )−nXp(ω)|Φ〉
(89)

Introducing set of recursive intermediates {W [i]
q (ω)}ni=1

satisfying

〈Φ|eSW [i−1]
q (ω) = 〈Φ|eSW [i]

q (ω)(ω + H̄N ) (90)

one can prove by induction that all {W [i]
q (ω)}ni=1 opera-

tors are represented by connected diagrams. We have
proven this property in the previous sections for the

W
[1]
q (ω) operator (W

[1]
q (ω) = Wq(ω)), now let’s assume

that the W
[i−1]
q (ω) operator is given in terms of con-

nected diagrams. From Eq. (90), employing arguments

of Section V, it is easy to show that the W
[i]
q (ω) oper-

ator is defined by connected terms. This leads to the
conclusion that the n-th order derivative

dnGRpq(ω)

dωn
= (−1)n〈Φ|eSW [n]

q (ω)Xp(ω)|Φ〉 (91)

contains connected terms only.
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IX. CONNECTED CHARACTER OF THE CC
SELF-ENERGY OPERATOR

In the previous sections we showed that both CC
Green’s function operator as well as its ω-derivatives
can be expressed in terms of connected diagrams. Using
analogous techniques one can prove that similar results
also hold for advanced part of the CC Green’s function.

Through the Dyson equation

G(ω) = G0(ω) + G0(ω)Σ(ω)G(ω) , (92)

it immediately follows that the matrix elements of the CC
self-energy operator satisfy connected equations. This
is a consequence of the connected character of the CC
Green’s function matrix elements. Differentiating both
sides of Dyson equation with respect to ω

dG(ω)

dω
=
dG0(ω)

dω
+
dG0(ω)

dω
Σ(ω)G(ω) + G0(ω)

dΣ(ω)

dω
G(ω) + G0(ω)Σ(ω)

dG(ω)

dω
, (93)

=	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  

GCC (ω), ∂(n)GCC (ω) /∂ω (n), !

ΣCC (ω), ∂(n)ΣCC (ω) /∂ω (n), !

G	
   Σ G	
  
Dyson	
  Equa,on	
  

G0	
  G0	
  

FIG. 5. Schematic representation of the Dyson equation for
calculating CC self-energies and their derivatives.

and taking into account connected character of the CC
Green’s function and its first derivative with respect to ω

we obtain connected form of the equation for the dΣ(ω)
dω ,

which can be evaluated analytically by solving Eq. (93)

for matrix elements of dΣ(ω)
dω . This property of the CC

self-energy is especially important in calculating for ex-
ample pole strengths. By using chain rules and Eq. (91),
we can generalize the above expression to arbitrary order
of ω-derivative (see Fig.5).

X. CONCLUSIONS

In this paper, we demonstrated that the exponential
parametrization of the ground-state wave function re-
sults in several important properties of the corresponding
Green’s function. We have shown that the matrix ele-
ments of retarded CC Green’s function are described in
terms of connected diagrams only. This is a consequence
of connected nature of cluster operator, form of the
CC equations, and connected equations for the Xp(ω).
We derived this feature of the Green’s function without

invoking perturbative analysis. In a similar manner we
showed that the first-order ω-derivative of CC Green’s
function matrix can be calculated analytically, and
using similar algebraic arguments we demonstrated it
is determined by connected expressions. The latter
property is a direct consequence of the connected
character of Wq(ω) operators, which have been intro-
duced to deal with the second inverse of the (ω + H̄N )
operator (see Eqs. (35) and (37)). In analogy to the
Xp(ω) operators, the connected nature of the Wq(ω)
operators is a natural consequence of the equations that
are satisfied by cluster (T ) and cluster de-excitation
(S) operators. Similar result can be generalized to
any order of ω-derivative of the CC Green’s function.
The same conclusions are also valid for block GFCC
approximations. It is worth stressing that CC Green’s
function satisfies non-homogeneous system of linear
ordinary differential equations where all coefficients are
determined by connected expressions, which may suggest
possibility of exponential parametrization of the coupled
cluster Green’s function. Through Dyson equation,
ω-derivatives of CC self-energies can be determined
analytically as functions of ω-derivatives of CC Green’s
function. This feature enables accurate calculation of
CC Green’s function pole strengths without invoking
sum-over-state techniques.
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[12] J. Paldus, J. Č́ıžek, and M. Takahashi, Phys. Rev. A 30,
2193 (1984).

[13] M. Degroote, T. M. Henderson, J. Zhao, J. Dukelsky,
and G. E. Scuseria, Phys. Rev. B 93, 125124 (2016).
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