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We propose schemes of controlled-Z and controlled-NOT gates with ultracold neutral atoms based
on deterministic phase accumulation during double adiabatic passage of the Stark-tuned Förster res-
onance of Rydberg states. The effect of deterministic phase accumulation during double adiabatic
passage in a two-level quantum system has been analyzed in detail. Adiabatic rapid passage us-
ing nonlinearly chirped pulses with rectangle intensity profile has been discussed. Nonlinear time
dependence of the energy detuning from the Förster resonance is used to achieve a high fidelity of
population transfer between Rydberg states. Fidelity of two-qubit gates has been studied with an
example of the 90S + 96S → 90P + 95P Stark-tuned Förster resonance in Cs Rydberg atoms.

PACS numbers: 32.80.Ee, 03.67.Lx, 34.10.+x, 32.80.Rm

I. INTRODUCTION

Two-qubit quantum gates are the key element of a
quantum computer. In general, any quantum algorithm
can be implemented using a two-qubit controlled-NOT
(CNOT) gate and single-qubit rotations [1]. Another ex-
ample is a controlled-Z (CZ) gate which can be used for
universal quantum computation as well as CNOT gate.
Experimental implementation of high-fidelity two-qubit
gates is a challenging task. A two-qubit gate error be-
low 10−3 has been demonstrated recently for single-ion
qubits [2, 3]. Scaling trapped ion qubits to very large
quantum registers remains, however, an unsolved chal-
lenge. From this point of view, ultracold neutral atoms
can be more promising candidates for implementation
of a scalable quantum computer [4–8]. Arrays of optical
dipole traps can be used as quantum registers of arbitrary
dimensions [9], and the interaction of the atom qubits to
perform two-qubit gates can be controlled by their tem-
porary excitation to Rydberg states, which have large
dipole moments and experience strong long-range inter-
actions [4, 5, 10, 11]. For example, the effect of Rydberg
excitation blockade [11] has been successfully applied in
the experiment to implement a CNOT gate for ultracold
neutral atoms with the fidelity above 0.73 [12]. At the
same time, high-fidelity two-qubit gates with Rydberg
atoms have not been demonstrated yet.
Another approach besides Rydberg blockade to build-

ing a two-qubit gate is based on controlled phase shifts of
collective states of two qubits due to interaction between
Rydberg atoms [4, 10]. The interaction strength should
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be adjusted to provide a certain phase shift (for exam-
ple π), during the interaction time. This can be easily
done with Stark-tuned Förster resonances that provide
fast and flexible control by manipulating the energies of
Rydberg levels with an electric field [13–22]. The Ry-
dberg levels are adjusted in such a way that one Ryd-
berg level lies midway between two other Rydberg states
of the opposite parity. Then a resonant energy transfer
between Rydberg atoms initially excited to the middle
state becomes possible via resonant dipole-dipole inter-
action. Stark-tuned Förster resonances for two Rydberg
atoms were first reported in Ref. [23]. The rf-assisted
Stark-tuned Förster resonances have been demonstrated
in Refs. [24–27].

If two Rydberg atoms are frozen in space, dipole-dipole
interaction at a Förster resonance induces the Rabi-like
coherent population oscillations between collective states
of these atoms [28]. Such oscillations have been demon-
strated recently for two Rb Rydberg atoms in two optical
dipole traps [29, 30]. The frequency of these collective
oscillations is sensitive to variations of the interaction
energy due to fluctuations of the spatial position of the
atoms within the optical dipole traps. For example, a
10% variation of the distance between the trapped atoms
results in a 25% variation of the interaction energy due
to the 1/R3 dependence of the energy of dipole-dipole
interaction on distance R between the atoms. This can
substantially increase the phase gate error. In this paper
we propose to overcome this difficulty by using a double
adiabatic rapid passage across Stark-tuned Förster res-
onances with a deterministic phase accumulation. This
technique is closely related to Stark-chirped rapid adia-
batic passage, which is based on a laser-induced Stark
shift [31, 32].

A scheme of CZ gate is shown in Fig. 1(a). Two opti-
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FIG. 1. (Color online) (a) Scheme of a CZ gate using double
adiabatic rapid passage across Stark-tuned Förster resonance.
Two atoms are excited to Rydberg states. An external electric
field shifts the energy levels of the Rydberg atoms so that the
Förster resonance is passed adiabatically two times. Then
the atoms are de-excited to ground state. The phase shift
is deterministically accumulated if both atoms are initially
prepared in state |1〉; (b) Scheme of a CNOT gate. Two
additional π/2 pulses rotate the target qubit around the y

axis in the opposite directions.

cal dipole traps with one atom in each trap are located
at a distance R between them. The two atoms are si-
multaneously excited to Rydberg state |r〉 by a π laser
pulse labeled as 1. The distance between the traps must
be sufficiently large to avoid the effect of Rydberg block-
ade [11]. A time-dependent external electric field shifts
the collective energy levels so that the Förster resonance
|rr〉 → |r′r′′〉 is passed adiabatically two times. This re-
sults in a deterministic phase shift of state |rr〉. After
the end of adiabatic passage the atoms are de-excited to
ground state by a −π laser pulse labeled as 2.
The phase shift due to Rydberg-Rydberg interaction

is accumulated only in the case when both atoms are
initially prepared in state |1〉 and then excited to Rydberg
state |r〉. If one of the atoms (or both of them) is initially
in the state |0〉, no phase shift occurs.

A scheme of CNOT gate is shown in Fig. 1(b). Two
additional π/2 pulses, labeled as 1 and 4, rotate the tar-
get qubit around the y axis in the opposite directions. A
−π laser pulse (which is a π laser pulse with a π phase
shift), acting on the control qubit in Fig. 1(a), is now re-
placed by the π pulse to avoid undesirable phase shift of
the collective state. If the control qubit is initially pre-
pared in state |0〉 and is not excited to Rydberg state,
the pulse sequence acting on the target qubit returns it
back to the initial state. The π phase shift due to the
Rydberg-Rydberg interaction results in the inversion of
the state of target qubit, if the control qubit is initially
prepared in state |1〉.
The paper is organized as follows. In Sec. III we ex-

plain the effect of deterministic phase accumulation dur-
ing double adiabatic rapid passage in a two-level quan-
tum system. In Sec. IV we discuss the features of adia-
batic rapid passage across Stark-tuned Förster resonance
for two interacting Cs Rydberg atoms with nonlinear
time dependence of the detuning from the resonance.
Fine structure and finite lifetimes of the Rydberg states
have been taken into account in our analysis.

II. PHASE ACCUMULATION DURING

ADIABATIC RAPID PASSAGE

Adiabatic rapid passage is commonly used for laser ex-
citation of molecular levels because of the independence
of transition probability on the Rabi frequency [33]. A
number of schemes for quantum logic using two-photon
stimulated Raman adiabatic passage (STIRAP) [34] and
Rydberg excitation has been developed [35, 36]. In our
previous works [37, 38] we have found that double adia-
batic rapid passage returns the system to the initial state,
but with a deterministic phase shift. This shift is equal
to π for two identical laser pulses and to zero if the sec-
ond laser pulse has the opposite sign of Rabi frequency.
This allowed us to develop schemes of quantum gates
with mesoscopic atomic ensembles, using adiabatic pas-
sage and Rydberg blockade [37, 38]. Below we explain
the effect of deterministic phase accumulation using a
theory of adiabatic rapid passage [39]. The Hamiltonian
for a two-level system with states |1〉 and |2〉, interacting
with a chirped laser pulse (laser frequency and intensity
change during the pulse), is written as

Ĥ (t) =
~

2

(

0 Ω0 (t)
Ω0 (t) 2δ (t)

)

. (1)

Here Ω0 (t) is time-dependent Rabi frequency and δ (t)
is time-dependent detuning from the resonance. In the
field interaction representation [39] the wavefunction is
written as

ψ (t) = c1 (t) e
iωt/2|1〉+ c2 (t) e

−iωt/2|2〉. (2)

Here c1 (t) and c2 (t) are probability amplitudes and ω
is laser frequency. We define the time-dependent basis
states to be |1 (t)〉 = eiωt|1〉 and |2 (t)〉 = e−iωt|2〉. In
this basis the wavefunction is rewritten as follows:

|ψ (t)〉 = c1 (t) |1 (t)〉+ c2 (t) |2 (t)〉. (3)

To diagonalize the Hamiltonian, we rotate the basis:

(

|I (t)〉
|II (t)〉

)

= T (t)

(

|1 (t)〉
|2 (t)〉

)

. (4)

Here |I (t)〉 and |II (t)〉 are semiclassical dressed
states [39] and T (t) is time-dependent unitary rotation
matrix:

T (t) =

(

cos θ (t) − sin θ (t)
sin θ (t) cos θ (t)

)

. (5)

where θ (t) is a time-dependent mixing angle. The semi-
classical dressed states are the superpositions:

|I (t)〉 = cos θ (t) |1 (t)〉 − sin θ (t) |2 (t)〉
|II (t)〉 = sin θ (t) |1 (t)〉+ cos θ (t) |2 (t)〉 . (6)
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To derive the equation for the probability amplitudes of
dressed states c̃, we substitute the definition c̃ = Tc into
the Schrödinger equation for the probability amplitudes
i~ċ = Ĥc. This results in

i~ ˙̃c = TĤT
†
c̃− i~TṪ

†
c̃. (7)

The matrix TĤT
† is diagonal if the mixing angle θ (t)

obeys the following conditions:

tan [2θ (t)] = Ω0 (t) /δ (t)

sin [θ (t)] =

√

1

2

(

1− δ (t)

Ω (t)

)

cos [θ (t)] =

√

1

2

(

1 +
δ (t)

Ω (t)

)

. (8)

Here Ω (t) =
√

Ω2
0 (t) + δ (t)2. This leads to:

Ĥd = TĤT
† = ~

2

(

Ω (t) 0
0 Ω+ (t)

)

TṪ
† = iσy θ̇

. (9)

Here Ω = δ (t) − Ω (t) and Ω+ = δ (t) + Ω (t). In the

adiabatic approximation, when
∣

∣

∣
Ω̇0 (t)

∣

∣

∣
/Ω2 (t) ≪ 1 and

∣

∣

∣
δ̇ (t)

∣

∣

∣
/Ω2 (t) ≪ 1 we can neglect the term proportional

to θ̇. Then Eq. (7) is rewritten as i~ ˙̃c = Ĥdc̃. Its solution
is

c̃1 (t) = c̃1 (0) exp

[

− i
2

t
∫

0

Ω (t) dt

]

c̃2 (t) = c̃2 (0) exp

[

− i
2

t
∫

0

Ω+ (t) dt

] . (10)

Now we consider a double adiabatic sequence which
starts at t=0. The time dependence of Rabi frequency
Ω0 (t) and detuning δ (t) is illustrated in Fig. 2(a). The
system is initially in state |1 (t)〉. For initial positive de-
tuning δ (0) > 0 and Ω0 (0) = 0 we find Ω (0) = δ (0) and
therefore θ (0) = 0. From Eq. (6) the initial dressed state
is |I (t)〉 and c̃1 (0) = 1. The time-dependent probability
amplitudes are

c1 (t) = c̃1 (t) cos θ (t)
c2 (t) = −c̃1 (t) sin θ (t) . (11)

After the end of the first adiabatic passage at time T
the detuning is negative δ (T ) < 0 and Ω (T ) = −δ (T ).
Therefore the mixing angle θ (T ) = π/2, and the sys-
tem ends in state |2 (t)〉 with c2 (T ) = −c̃1 (T ) =

− exp
[

− i
2

∫ T

0
Ω (t) dt

]

.

We denote the mixing angle and the probability ampli-
tudes for the second adiabatic passage as θ′, c′1 (t), c

′
2 (t),

c̃′1 (t), c̃
′
2 (t). At the beginning of the second adiabatic

passage the detuning is positive δ (T ) > 0 and θ′ (T ) = 0.
At time t = T the system is in state |2 (t)〉. From Eq. (6)
the dressed state is now |II (t)〉. The probability ampli-
tude c2 (t) of state |2 (t)〉 is constant around t = T due to
the absence of interaction with the laser field. Therefore,
the initial probability amplitude of dressed state |II (t)〉
is c̃′2 (T ) = c2 (T ) = −c̃1 (T ). During the second adia-
batic passage the time-dependent probability amplitudes
are expressed similarly to Eq. (11):

c′1 (t) = c̃′2 (t) sin θ
′ (t)

c′2 (t) = c̃′2 (t) cos θ
′ (t)

. (12)

From Eq. (10) the probability amplitude of dressed state

|II (t)〉 is c̃′2 (t) = c̃′2 (T ) exp
[

− i
2

∫ t

T
Ω+ (t) dt

]

. After the

end of the second adiabatic passage the mixing angle is
θ′ (2T ) = π/2 and the system ends in state |1 (t)〉 with
probability amplitude

c′1 (2T ) = c̃′2 (2T ) = (13)

= − exp



− i

2

2T
∫

T

Ω+ (t) dt



 exp



− i

2

T
∫

0

Ω (t) dt



 .

For two identical laser pulses with identical time depen-
dences of the detuning we find c′1 (2T ) = −1.
This π phase shift can be compensated if the second

laser pulse has the opposite sign of Rabi frequency Ω0 →
−Ω0 (or a π phase shift of the laser field), as shown in
Fig. 2(b). To diagonalize the Hamiltonian for the second
adiabatic passage, we modify Eq. (8):

tan [2θ (t)] = −Ω0 (t) /δ (t)

sin [θ (t)] = −
√

1

2

(

1− δ (t)

Ω (t)

)

cos [θ (t)] =

√

1

2

(

1 +
δ (t)

Ω (t)

)

. (14)

In this case after the end of the second adiabatic passage
θ′ (2T ) = −π/2 and c′1 (2T ) = 1.
To illustrate this model we have numerically cal-

culated the time dynamics of probability amplitudes
of a two-level atom interacting with two chirped
laser pulses with time-dependent Rabi frequency

Ω0j (t) = Ω0 exp
[

− (t− tj)
2
/2w2

]

and detuning δj (t) =

s1 (t− tj); where j=1,2, as shown in Fig. 2(a). The peak
Rabi frequency is Ω0/2π = 20 MHz, the chirp of de-
tuning is s1/2π = −50 MHz/µs, and the pulse width
is w = 0.12 µs. The centers of the pulses are located
at the times t1 = 0.5 µs and t2 = 1.5 µs. The condi-
tions of Fig. 2(b) are similar, but the second pulse has
the opposite sign of Rabi frequency. Figures 2(c) and
2(d) show the numerically calculated time dependence
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FIG. 2. (Color online). Scheme of deterministic phase ac-
cumulation during a double adiabatic passage in a two-level
quantum system. The phase shift is π for the left-hand panel
and zero for the right-hand panel. The dynamics of probabil-
ity amplitudes c1 (t),c2 (t), c

′

1 (t), c
′

2 (t) of states |1 (t) , 2 (t)〉
and of probability amplitudes c̃1 (t), c̃2 (t), c̃′1 (t), c̃′2 (t) of
semiclassical dressed states |I (t) , II (t)〉 is shown schemati-
cally. (a), (b) Time dependences of Rabi frequency Ω (t) and
of detuning δ (t); (c), (d) Numerically calculated time depen-
dences of the population of initial state |1 (t)〉 compared with
the calculations in the adiabatic approximation. (e), (f) Nu-
merically calculated time dependencies of the phase of initial
state |1 (t)〉 compared with calculations in the adiabatic ap-
proximation.

of probability P1 = |c1 (t)|2 to find the system in initial
state |1〉. Figures 2(e) and 2(f) show the numerically
calculated phase arg [c1 (t)] of state |1〉. The exact so-
lution of the Schrödinger equation with the Hamiltonian
from Eq. (1) is compared with the adiabatic approxima-
tion from Eqs. (10)-(14). Good agreement between the
exact solution and adiabatic approximation is observed.
Notably, the disagreement between exact and adiabatic
phase dynamics in the region where c1 (t) ≈ 0 does not
affect the subsequent behavior of the system. After dou-
ble adiabatic sequence the system returns to initial state
with phase shift π in the left-hand panel of Fig. 2 and
with zero phase shift in the right-hand panel of Fig. 2.

III. ADIABATIC PASSAGE ACROSS

STARK-TUNED FÖRSTER RESONANCE

The energy of dipole-dipole interaction of two Rydberg
atoms is determined by the interatomic distance which
cannot be changed on short timescales. Therefore we
need to consider the adiabatic rapid passage with rect-
angular shape of the time-dependent Rabi frequency. To
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FIG. 3. (Color online). Comparison between the schemes of
double adiabatic rapid passage with linearly chirped Gaussian
pulses (left-hand panel), and with rectangular shape of time-
dependent Rabi frequency and nonlinear time dependence of
detuning from the resonance (right-hand panel). (a),(b) Time
dependence of Rabi frequency Ω (t); (c),(d) Time dependence
of detuning from the resonance δ (t); (e),(f) Time dependence
of the population of state |1〉; (g),(h) Time dependence of the
phase of state |1〉.

achieve high fidelity of the population transfer, we use
a nonlinear time dependence of the detuning from the
resonance:

δk (t) = s1 (t− tk) + s2 (t− tk)
5
. (15)

Here the exact resonance occurs at the times tk with
k=1,2. The detuning is slowly varied across the reso-
nance and is rapidly increased before and after the res-
onance, which is close to the approach of high-fidelity
laser driving [40]. Figure 3 illustrates the difference be-
tween the conventional scheme of adiabatic rapid pas-
sage, which uses chirped Gaussian pulses with linear
time dependence of detuning (left-hand panel), and the
scheme of adiabatic rapid passage with rectangular shape
of the time-dependent Rabi frequency and nonlinear time
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dependence of detuning (right-hand panel). The pa-
rameters of the pulses for the left-hand panel of Fig. 3

are Ω0k (t) = Ω0 exp
[

− (t− tk)
2 /2w2

]

with Ω0/2π =

2 MHz, w = 0.12 µs, and δk (t) = s1 (t− tk) with s1 =
−10 MHz/µs. For the right-hand panel of Fig. 3 Rabi fre-
quency is constant Ω0k (t) /2π = 2.1 MHz, and the detun-
ing is described by Eq. (15) with s1/2π = −10 MHz/µs,
and s2/2π = −2600 MHz/µs5. The centers of the pulses
are located at times t1 = 0.45 µs and t2 = 1.35 µs. The
population error for the final state of the system is found
to be below 3 × 10−5 in both cases. The phase shift is
equal to π in both cases.
Stark-tuned Förster resonance required for the imple-

mentation of the proposed scheme must meet the follow-
ing criteria: (i) the lifetimes of Rydberg states must be
sufficiently long to avoid the decay of coherence during
the gate operation due to spontaneous and blackbody
radiation (BBR) induced transitions; (ii) initial Förster
energy defect must be sufficiently large to allow for rapid
turning off the interaction between atoms at the begin-
ning and the end of the adiabatic passage; (iii) selected
interaction channel must be well isolated from the other
channels to avoid break-up or dephasing of the adiabatic
population transfer.
In our previous work [41] we have studied the structure

of the Förster resonances |nS, n′S〉 → |nP, (n′ − 1)P 〉
in Rb and Cs Rydberg atoms. The energy defect for
Cs |nS, (n+ 6)S〉 → |nP, (n+ 5)P 〉 Förster resonance
in a zero electric field is shown in Fig. 4(a) for the
range of principal quantum numbers 80 < n < 130.
We have selected the |90S1/2, 96S1/2〉 → |90P1/2, 95P1/2〉
Stark-tuned Förster resonance for the further numeri-
cal simulations. This resonance has the energy defect
δ0/2π = 75.6 MHz in a zero electric field. In contrast to
the resonances involving |nP3/2〉 states, this resonance
has no Stark splitting in the electric field.

The Stark diagram for Cs Rydberg states with |mj | =
1/2 is shown in Fig. 4(b). The dc electric field is aligned
along the z axis. The 90S state is selected as zero energy
level. We have calculated the radial matrix elements us-
ing the quasiclassical approximation [42] and the method
of quantum defects [43–45]. The Stark shift for nS and
nP Rydberg states is close to quadratic and is approxi-
mated as

δ (E) = −1

2
αE2. (16)

The polarizabilities α, listed in Table I, have been found
from the numeric approximation of the Stark energy shift
for the electric field E < 50 mV/cm. The exact Förster
resonance |90S1/2, 96S1/2〉 → |90P1/2, 95P1/2〉 occurs in
the electric field E = 29.75 mV/cm.
The operator of dipole interaction between atoms A

and B with interatomic separation R along the z axis is
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FIG. 4. (Color online) (a) Energy defect of the Förster reso-
nance |nS, (n+ 6)S〉 → |nP, (n+ 5)P 〉 in Cs Rydberg atoms;
(b) Stark diagram for Cs Rydberg states with |mj | = 1/2.
The 90S state is selected as zero energy level; (c) Scheme of
possible transitions for various channels of the |90S, 96S〉 →
|90P, 95P 〉 Förster resonance in Cs. The nS states with
mj = 1/2 are initially excited.

Vdd =
e2

4πε0R3
(a · b− 3azbz) . (17)

Here a is a vectorial position of the electron in atom A
and b is a vectorial position of the electron in atom B [46].
For the states |γa〉 = |90S〉, |γb〉 = |96S〉, |γα〉 = |90P 〉
and |γβ〉 = |95P 〉 the matrix elements for the dipole-
dipole interaction operator are written as [41]



6

TABLE I. Calculated polarizabilities of Cs Rydberg states

State |mj | α
[

MHz
(V/cm)2

]

|90S1/2〉 1/2 3505

|96S1/2〉 1/2 5529

|90P1/2〉 1/2 72511

|90P3/2〉 1/2 103738

|90P3/2〉 3/2 87196

|95P1/2〉 1/2 107380

|95P3/2〉 1/2 153574

|95P3/2〉 3/2 129118

M
mα,mβ

ma,mb
=
C3,k

R3
Qk (18)

Qk = −
√
6

1
∑

q=−1

C20
1q1−qC

jαmα

jama1q
C

jβmβ

jbmb1−q.

Here Qk is the angular factor (see Table II) which is only
nonzero for ma +mb = mα +mβ, and the dipole-dipole
interaction energy C3,k coefficient is expressed as

C3,k(a, b, α, β) = q2
〈γα||ra||γa〉〈γβ ||rb||γb〉
√

(2jα + 1)(2jβ + 1)
, (19)

with q2 = e2/4πǫ0, e is the electronic charge, ǫ0 is the
permittivity of free space, and 〈γα||ra||γa〉 is a reduced
matrix element in the fine structure basis:

〈γα| |r| |γa〉 = (−1)
lα+la

2
+ja

√

max (lα, la)× (20)

×√
2jα + 1

√
2ja + 1

{

la 1/2 ja
jα 1 lα

}

r.

Here r is the radial matrix element.
In our numerical simulations we considered the Förster

resonances |90S, 96S〉 → |nP, n′P 〉 and the subse-
quent transitions |nP, n′P 〉 → |mS,m′S〉, |nP, n′P 〉 →
|mD,m′D〉, |nP, n′P 〉 → |mD,m′S〉, |nP, n′P 〉 →
|mS,m′D〉 with Förster energy defect ∆0 less than 1 GHz
and principal quantum numbers 88 < n, n′,m,m′ < 98.
We have identified 116 resonances, taking into account
fine structure and Stark sublevels of the Rydberg states.
Examples of such resonances are given in Table II.
We have found that only channels 1-4 from Table II

are responsible for the time dynamics of the initial col-
lective state |90S1/2,ma = 1/2; 96S1/2,mb = 1/2〉. This
corresponds to eight most important Förster interac-
tion channels |γama, γbmb〉 → |γαmα, γβ mβ〉 for dif-
ferent Stark sublevels, which are listed in Table III and
shown in Fig. 4(c). In particular, the Förster resonance
|90P1/2, 95P1/2〉 → |88D3/2, 95D3/2〉 with the detuning

288.9 MHz in zero electric field has the effect below 10−4

TABLE II. Examples of Förster resonance channels |γa, γb〉 →
|γα, γβ〉 with Förster energy defect ∆0 and Förster interaction
energy C3,k.

|γa〉 |γb〉 |γα〉 |γβ〉 ∆0 (MHz) C3,k

(MHzµm3)

1 90S1/2 96S1/2 90P1/2 95P1/2 75.610 -154968

2 90S1/2 96S1/2 90P1/2 95P3/2 356.525 162160

3 90S1/2 96S1/2 90P3/2 95P1/2 408.152 149112

4 90S1/2 96S1/2 90P3/2 95P3/2 689.067 -156032

5 90S1/2 96S1/2 95P1/2 90P1/2 75.610 -26

6 90P1/2 95P1/2 88S1/2 97D3/2 -644.278 -240

7 90P1/2 95P1/2 88D3/2 95D3/2 288.906 11043

TABLE III. Förster resonance channels |γa ma, γb mb〉 →
|γα mα, γβ mβ〉 and their angular factors. Here ma = mb =
1/2.

|γa〉 |γb〉 |γα〉 |γβ〉 mα mβ Qk

1 90S1/2 96S1/2 90P1/2 95P1/2 1/2 1/2 −2/3

2 90S1/2 96S1/2 90P1/2 95P3/2 1/2 1/2 −2
√
2/3

3 90S1/2 96S1/2 90P1/2 95P3/2 −1/2 3/2 −
√
2/3

4 90S1/2 96S1/2 90P3/2 95P1/2 1/2 1/2 −2
√
2/3

5 90S1/2 96S1/2 90P3/2 95P1/2 3/2 −1/2 −
√
2/3

6 90S1/2 96S1/2 90P3/2 95P3/2 1/2 1/2 −4/3

7 90S1/2 96S1/2 90P3/2 95P3/2 −1/2 3/2 −1/
√
3

8 90S1/2 96S1/2 90P3/2 95P3/2 3/2 −1/2 −1/
√
3

on the calculated probability to find the atomic system
in the state |90S1/2; 96S1/2〉 and its phase after the end
of the adiabatic passage. Therefore in our simulations of
the CNOT gate this channel and other transitions to D
and S states were not taken into account.
The time dependence of the electric field required

to form the nonlinearly shaped detuning δk (t) =

s1 (t− tk) + s2 (t− tk)
5

of the |90S1/2, 96S1/2〉 →
|90P1/2, 95P1/2〉 Förster resonance with s1/2π =

−10 MHz/µs and s2/2π = −2600 MHz/µs5, t1 = 450 ns
and t2 = 1350 ns is shown in Fig. 5(a). The time depen-
dent Förster energy defects for most important channels
from Table III are shown in Fig. 5(b). The off-resonant
excitation of various Förster channels, partial overlap-
ping of the resonances, and the finite lifetimes of Ryd-
berg states are the most important limiting factors for
quantum gate performance.

The time dependence of the population [Fig. 5(c)] and
phase [Fig. 5(d)] of the collective |90S1/2, 96S1/2〉 state
for two interacting Rydberg atoms located at distance
R=25 µm along the z axis was calculated taking into
account all 116 interaction channels (examples are given
in Table II and Table III). The off-resonant interaction
channels lead to the undesirable phase shift, which is
clearly seen in Fig. 5(d). This shift can be partly com-
pensated by adjusting the shape of the electric-field pulse,
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FIG. 5. (Color online) (a) Time dependence of the
electric field for Stark tuning of the |90S1/2, 96S1/2〉 →
|90P1/2, 95P1/2〉 Förster resonance; (b) Time dependence of
the energy defects of the interaction channels listed in Ta-
ble I for the |90S, 96S〉 → |90P, 95P 〉 Förster resonance; (c)
Time dependence of the population of the collective state
|90S1/2, 96S1/2〉; (d) Time dependence of phase of the col-
lective state |90S1/2, 95S1/2〉.

for example, by changing the time position of the second
resonance to t2 = 1350.6 ns. This value is sensitive to
the accuracy of the calculated polarizability of Rydberg
states.
With this correction we have calculated the time

dependence of population and phase of the collective
|90S1/2, 96S1/2〉 state for slightly different interatomic
distances R=24 µm (left-hand panel in Fig. 6), R=25 µm
(central panel in Fig. 6) and R=26 µm [right-hand panel
in Fig. 6(b)]. Our calculations have shown that this vari-
ation of the interatomic distance leads to small phase
changes at the end of the adiabatic passage, thus evi-
dencing that our method to perform two-qubit quantum
gates is insensitive to the atom position uncertainty.

To estimate the fidelity of our schemes for two-qubit
gates in realistic experimental conditions we have nu-
merically calculated the truth table of a CNOT gate
[Fig. 1] using a master equation for the density matrix
and taking into account finite lifetimes of the Rydberg
levels. We have also taken into account the phase shifts
of the |90S1/2〉 and |96S1/2〉 Rydberg states in the time-
dependent electric field by correcting the phase of the
laser pulse 3 at Fig. 1(b) individually for control and tar-
get qubit.
We have solved the master equation

ρ̇ (t) = − i

~

[

Ĥ, ρ (t)
]

+ L̂ [ρ (t)] (21)

with

L̂[ρ] = L̂(a)[ρ] + L̂(b)[ρ]. (22)

R=24 µm R=25 µm R=26 µm

0.994

outputinput

0.99

input output

(h) (i)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

(b)(a) (c)

(d)

P
h

a
s
e

P
o

p
u

la
ti
o

n

(e) (f)

time (µs)time (µs)time (µs)

0.993
(g)

input output

FIG. 6. (Color online) Double adiabatic passage of the Stark-
tuned Förster resonance for different interatomic distances R
with error correction.(a),(b),(c) Time dependences of popu-
lation of the collective state |90S1/2, 96S1/2〉 calculated for
R=24, 25 and 26 µm, respectively; (d),(e),(f) Time depen-
dences of phase of the collective state |90S1/2, 96S1/2〉 calcu-
lated for d=24, 25 and 26 µm, respectively; (g),(h),(i) Calcu-
lated truth tables of a CNOT gate for R=24, 25 and 26 µm,
respectively. The overlap with the ideal truth table is shown
above each plot.

The Liouvillian superoperator accounts for depopulation
of the levels involved in the gate operation due to sponta-
neous and blackbody driven transitions to other Rydberg
levels |r〉 and to low lying states. The superoperator also
includes terms that repopulate the levels used for the
gate, since blackbody driven transitions work in both di-
rections between pairs of Rydberg states. For simplic-
ity we have only included the terms that depopulate the
Rydberg gate levels. This approximation slightly overes-
timates the gate errors thereby providing a conservative
estimate of the gate fidelity. High n Rydberg states de-
cay to both neighboring Rydberg states and low lying
states, with approximately equal rates in these two de-
cay paths [47]. Since both types of decay take the atom
out of the computational subspace with high probability
we have simply described the decay as being solely due
to transitions to neighboring Rydberg states by setting

L̂(a,b)ρ = −1

2

∑

r

γr

[

σ̂(a,b)
rr ρ+ ρσ̂(a,b)

rr

]

where σ̂
(a,b)
mn = (a,b)|m〉〈n|(a,b) is a transition operator for

each of the atoms. The sum is taken over all Rydberg
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states |r〉 included in the simulations.
The truth tables were calculated for the same inter-

atomic distances as previously (R=24, 25 and 26 µm).
We have found that for R=25 µm the error is less than
1%, and it only slightly increases when the distance be-
tween the atoms is varied. The main source of this error
is revealed to be finite lifetimes of Rydberg atoms. In
a 300 K environment the Rydberg states used have life-
times [47] τ90S = 270 µs, τ96S = 314 µs, τ90P = 361 µs,
τ95P = 406 µs.
We have studied the phase errors by calculation of the

fidelity of the Bell states which are created by Hadamard
gate applied to a control qubit, and a subsequent CNOT
applied to a pair of qubits. The Bell states of a bipartite
quantum system are defined as following:

Φ+ =
1√
2
(|00〉+ |11〉)

Φ− =
1√
2
(|00〉 − |11〉)

Ψ+ =
1√
2
(|01〉+ |10〉)

Ψ− =
1√
2
(|01〉 − |10〉) . (23)

The density matrices of the generated Bell states after
using maximum-likelihood reconstruction are shown in
Fig. (7) for interatomic distance R = 25µm. The calcu-
lated Bell state fidelities taking into account Rydberg
lifetimes were better than 0.99. For R = 24µm and
R = 26µm the fidelities are reduced to 0.965 and 0.984,
respectively. Variation of the delay of the second reso-
nance by 100 ps also reduces the Bell fidelities to 0.97 at
R = 25µm.
Atomic qubits trapped in an optically defined array are

subject to only small position variations. For example us-
ing trap parameters from [12, 48] and assuming an atom
temperature of T = 10 µK gives an in-plane position
standard deviation of δx ∼ 0.1 µm and an out of plane
variation of δz ∼ 1.5 µm. This implies a variation around
the 25 µm nominal separation of ±0.15 µm. Comparing
with Fig. 6 we anticipate less than 0.001 variation in gate
fidelity for these conditions. Our calculations therefore
show that the proposed gate protocol is insensitive to
realistic experimental variations in the atom position.

IV. SUMMARY

We investigated the adiabatic passage across a Förster
resonance which can be considered as an alternative to
the Rydberg blockade for implementation of two-qubit
quantum gates with Rydberg atoms.
The gate fidelity has been found to be limited mainly

by finite lifetimes of Rydberg states and dephasing due
to off-resonant excitation of various Förster interaction
channels. We have shown, however, that only the lim-
ited number of channels affects the population dynamics

(a) Φ
+

(b) Φ
−

(c) Ψ
+

Ψ
−(d)

FIG. 7. (Color online) The reconstructed density matrices of
the (a) Φ+, (b) Φ−, (c) Ψ+ and (d) Ψ− Bell states.

of the initially excited collective state. The decay of Ryd-
berg population during the gate gives the radiative decay
error of approximately 10−2 which is close to the calcu-
lated gate error in Fig. 6(h) and Fig 7. Reducing this
error requires shorter gate times and larger separation
from the neighboring Förster resonances which can be
observed only for the lower states with shorter lifetimes
[see Fig. 4(a)]. Although quantum gates based on Ryd-
berg blockade in theory could provide the errors below
10−4 [49], such fidelity has not yet been demonstrated
experimentally.

In contrast to the Rydberg-blockade gates, our ap-
proach does not require strong interaction between Ryd-
berg atoms and can be potentially advantageous for im-
plementing gates at large interatomic spacings. Although
a 10−4 gate error is widely considered to be necessary for
scalable quantum computation with a realistic overhead
in terms of the number of physical qubits the availability
of long range gates with lower fidelity can be a useful
feature of a large scale architecture. In order to move
quantum information between qubits with large physical
separation one can execute a string of swap gates using
high fidelity local operations. The alternative is to use a
lower fidelity gate that operates at long range to create
Bell pairs with moderate fidelity, followed by entangle-
ment purification with local operations [50], and telepor-
tation [51]. The gate protocol analyzed here provides
CNOT truth table fidelity of > 0.99 and creates maxi-
mally entangled Bell pairs with fidelity > 0.986. With a
qubit spacing of ∼ 4 µm in a 2D array [12] the R = 25 µm
range gate we analyze here would enable entanglement of
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arbitrary pairs in a block of 25 qubits suitable for encod-
ing medium sized logical qubits.
The Förster resonances in time-varying electric field

have been recently studied experimentally [27]. It has
been shown that even for moderate interaction strengths
it is possible to observe them on a short timescale of
100 ns.
This work was supported by the Russian Science Foun-
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birsk State University and Russian Academy of Sciences.
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