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Einstein-Podolsky-Rosen (EPR) steering allows Alice to remotely prepare a state in some specific
bases for Bob through her choice of measurements. The temporal analogue of EPR steering, tem-
poral steering, also reveals the steerability of a single system between different times. Focusing on
a four-dimensional system, here we investigate the dynamics of the temporal steering measures, the
temporal steering robustness, using 5 mutually unbiased bases. As an example of an application,
we use these measures to examine the temporal correlations in a radical pair model of magneto-
reception. We find that, due to interactions with a static nuclear spin, the radical pair model exhibits
strong non-Markovianity.

PACS numbers: 03.65.Ud, 42.50.Dv, 03.65.Yz, 73.23.-b

I. INTRODUCTION

Quantum steering [1–4] is an intriguing phenomenon
wherein one party can remotely steer the quantum state
of another party through their choice of measurements.
Remarkably, there exists a hierarchy relation between
steering, Bell nonlocality, and entanglement. That is,
states which are Bell nonlocal are also steerable, and all
steerable states are entangled, but not vice versa [3, 5].
Numerous applications of steering have been considered,
such as the connection to one-side device independent
quantum key distribution [6, 7], a geometrical represen-
tation of steering [8], the correspondence to measure-
ment incompatibility [9–11], steering beyond quantum
theory [12], multipartite steering [13–15], etc. In addi-
tion, there have been many efforts at quantifying steer-
ing [7, 16–20]. In addition, many experiments exhibiting
the reality of steering have also been performed [14, 21–
23].
A range of different types of quantum correlations

also appear when measuring a single system at differ-
ent times. For example, the Leggett-Garg (LG) inequal-
ity [24, 25], a temporal analogue of Bell’s inequality,
based on the assumption of macroscopic realism, relies on
combining two-time correlation functions [26, 27]. Simi-
lary, other types of temporal correlations have been pro-
posed and investigated, including quantum entanglement
in time, temporal nonlocality, and bounding temporal
quantum correlations [28–31]. Motivated by the cor-
respondence between Bell’s nonlocality and the LG in-
equality, a temporal analogue of steering was proposed
by Chen et al. [32–34]. Focusing on a single system
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transmitted from Alice to Bob, temporal steering demon-
strates Alice’s influence on Bob via her choice of mea-
surements. Temporal steering is related to quantum key
distribution [32–35], measurement incompatibility [36],
and quantum non-Markovianity [33]. The first experi-
ment showing temporal steering has also recently been
reported by Bartkiewicz et al. [37].

Although some works concerning temporal steering
have been proposed, research on temporal steering in
higher dimensions is still lacking. Here, we introduce a
new quantifier, temporal steering robustness, in analogy
to spatial steering robustness [17]. Then, we move on
to considering the temporal steering robustness of four
dimensional systems. As examples, we first consider two
coupled qubits, and construct its temporal assemblage
using five mutually unbiased bases (MUBs) [38]. Sec-
ond, we consider the radical-pair model, a “toy model”
used to describe the sensitivity of certain chemical reac-
tions to magnetic fields, and which is one of the candidate
models for the origin of avian magnetoreception. Finally,
we investigate the non-Markovianity of the dynamics of
electrons in the radical pair model, as revealed by non-
monotonic temporal steering.

II. TEMPORAL STEERING AND HOW TO

QUANTIFY IT

A. Formulation of temporal steering

First, let us briefly review the concept of temporal
steering. Alice performs a measurement, which can
be described by a set of positive-operator valued mea-
sures (POVMs) {Ea|x}, with measurement choice x on
an initial state ρ0 at time t = 0. After the measure-
ment, she obtains an outcome a and a post-measurement
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state σ̂a|x(t = 0) = Ma|xρ0M
†
a|x/p(a|x), where p(a|x) =

tr(Ma|xρ0M
†
a|x), with M †

a|xMa|x = Ea|x. After that Alice

sends the state σ̂a|x(t = 0) to Bob through a quantum
channel Λ, in which a unitary evolution or environment-
induced noise may take place. After the transmission,
Bob receives the assemblage σ̂a|x(t) = Λ[σ̂a|x(t = 0)] at
time t.
To verify whether Alice’s choice of measurement in-

fluences Bob’s received state, Bob checks whether the
assemblage σa|x(t) := p(a|x)σa|x(t) can be written in a
hidden-state form:

σa|x(t) = σT,US
a|x =

∑

λ

P (λ) P (a|x, λ) σλ. (1)

If it is the case, Bob would think that the probability
distribution P (λ) can be reconstructed from Alice’s mea-
surement setting x and the outcome a. In addition, he
would also think that the states he receives are predeter-
mined by σλ during each round of the experiment, and
not actually influenced by Alice’s measurement choice.
Thus all Alice has to do is use her knowledge of the
probability distribution λ and P (a|x, λ) to construct her
measurement results. What Bob receives is the statistical
average of the state of Eq. (1). Conversely, if it is not the
case that his assemblage can be written in a hidden-state
form, he convinces himself that the state he receives is
actually influenced by Alice’s choice of measurement.
In Ref. [17], Piani and Watrous introduced a quan-

tifier of steering — steering robustness, the minimum
noise needed to destroy the steerability of the assemblage.
Here, we show that there also exists a temporal analogue
of steering robustness — temporal steering robustness
(TSR), that can serve as a quantifier of temporal steer-
ing.
Similar to the steering robustness, the temporal steer-

ing robustness is defined as the minimum noise needed
to destroy the temporal steerability of the temporal as-
semblage:

TSR := min t ≥ 0

subject to

{

σT
a|x + t τa|x

1 + t

}

a,x

temporal unsteerable,

{τa|x}a,x : an assemblage.
(2)

Following the procedure in Ref. [17], the condition (2) can
also be written as an semidefinite programming (SDP)
optimization problem:

TSR = min tr
∑

λ

σλ − 1

subject to
∑

λ

Dλ(a|x)σλ ≥ σa|x ∀ a, x

σλ ≥ 0 ∀ λ,

(3)

where σλ = (1 + t)σT,US
a|x and Dλ(a|x) = δa,λ(x) [16, 33]

is the deterministic value of the single-party conditional

probability distributions P (a|x, λ). In the following sec-
tion, we will use the temporal steering robustness to re-
alize the temporal correlation in higher-order system for
some specific quantum channel.

III. TEMPORAL STEERING IN SYSTEMS

WITH DIMENSION d = 4

A. Two qubits coherently coupled with each other

In this section, we examine the dynamics of the tem-
poral steerability of a system composed of two qubits
coherently coupled with each other, given by the inter-
action Hamiltonian H = g(σ+

1 σ
−
2 + σ−

1 σ
+
2 ), where g is

the coupling strength between the two qubits, and σ+
i

and σ−
i are the raising and lowering operators of the ith

qubit, respectively. In addition, each qubit is subject to
a Markovian decay process. The evolution of the entire
system is expressed by the master equation with Lind-
blad form [39]

ρ̇ =
1

i~
[H, ρ] +

2
∑

i=1

γ

2
(2σ−

i ρσ
+
i − σ+

i σ
−
i ρ− ρσ+

i σ
−
i ), (4)

where γ is the decay rate. Mathematically, we can
treat the two qubits as a single four-dimensional sys-
tem, i.e., |gg〉 ≡ |1〉, |ge〉 ≡ |2〉, |eg〉 ≡ |3〉, and
|ee〉 ≡ |4〉, for which the maximum number of MUBs
measurement is five. The set of 5 MUBs is denoted by
Ma|x = |φa|x〉〈φa|x| [40], as detailed in Appendix A.
We assume that the initial state of the two-qubit sys-

tem is the maximally-mixed state ρ(0) = 11/4, where
11 is the identity matrix. The post-measurement state
σa|x(t) = Ma|xρ(0)Ma|x/p(a|x) can be obtained straight-
forwardly. Figure 1 shows the dynamics of the tempo-
ral steering robustness with two measurement settings
(n = 2 and choosing the measurement settings x = 1, 2)
with different decay rates γ. In Fig. 2, we compare the
dynamics of temporal steering robustness for different
numbers of measurement settings (n = 2 to n = 5, and
choosing the measurement setting x = 1, ..., n for each
curve). We can see that the temporal steering robust-
ness increases when the number of measurement settings
increases, as expected from the original definition of the
temporal steering robustness in Eq. (3).

B. Temporal Steering Robustness of the Radical

Pair

The mechanism by which birds and other animals nav-
igate using the geomagnetic field is still unclear. Among
various proposals, the radical-pair model has received
considerable attention due to its ability to predict many
of the behavioral features seen in experiments and its
uniquely quantum features [41]. In addition, radical-
pair reactions are known to occur within the biologi-
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FIG. 1. (Color online) The dynamics of temporal steering ro-
bustness (two measurement settings) for two coherently cou-
pled qubits with different decay rates γ. The black-solid, blue-
dashed, and red-dotted curves represent γ = g, 4g, and 9g,
respectively. Here, t is in units of γ−1. The initial state is in
the maximally-mixed state ρ(0) = 11/4.
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FIG. 2. The dynamics of temporal steering robustness of
two qubits with different numbers of measurement settings n.
The decay rate is set as γ = g, and the initial state is in the
maximally-mixed state ρ(0) = 11/4. Here, we compare the re-
sults of four kinds of measurement settings (n = 2 to 5). For
example, when n = 3, {M

a|x} = {M
a|1,Ma|2,Ma|3}. We see

that the temporal steering robustness increases with the num-
ber of measurement settings, due to the intrinsic definition of
the measure of (temporal) steerability [16, 17, 33].

cal photo-receptor cryptochrome [42, 43], perhaps lead-
ing to a biologically detectable signal. In the traditional
“toy-model” of this process, a radical pair within or at-
tached to the cryptochrome is formed when an electron
is excited from a donor to a receptor molecule, which
thus hosts spatially-separated electrons in a spin-singlet
or triplet state. The electron pair then evolves coher-
ently between these states, under the influence of the ge-
omagnetic field and the hyperfine interactions with the

B

κκ
Bird’s eye retina

Triplet

Products

Singlet

Products

FIG. 3. (Color online) Schematic diagram of the radical-pair
model. The radical-pair mechanism for avian navigation can
explain some of the features of behavioural experiments of
European robins [41, 43, 44]. It is thought that it may occur
within certain cryptochrome proteins residing in the eye. The
simplest radical-pair toy-model is composed of two electrons
and a nucleus, coupled to one of the electrons with the hy-
perfine interaction. The singlet and triplet states of the two
electrons in the radical pair inter-convert due to a combina-
tion of the Zeeman splitting due to the geomagnetic field, and
an anisotropic nuclear hyperfine interaction. At later times,
the singlet and triplet states decay into chemical products, de-
pendent on their spin nature, which we track with the ancilla
shelving states-S and -T , respectively.

host nuclei [44, 45]. At a later time, the singlet-triplet
conversion leads to different chemical reaction products
that could lead to a biologically-detectable signal. Fig-
ure 3 depicts the basic concept of the radical-pair model.
Of course, in reality the chemical-process may be much
more complicated than this toy-model suggests, but it is
helpful to consider such a model because of its simplicity
and intuitive ability to explain some behaviorial features.
Despite this simplicity, here we find that the analysis of
higher-dimensional steering in this model reveals some
surprising and counter-intuitive features.

The simplest radical-pair model contains two electrons
and one nuclear spin [41]. The nucleus interacts with
only one of the electrons, while the other is free. The
hyperfine interaction between the nucleus and the elec-
tron together with the Zeeman effect induce the inter-
conversion between the singlet and triplet states. For
the radical-pair model to be sensitive to the angle of the
external geomagnetic field, the hyperfine coupling tensor
must be anisotropic. The anisotropic hyperfine tensor
between the nuclear spin and electron-1 can be written
as A = diag(Ax,Ay,Az). Here, we consider two kinds of
anisotropic hyperfine tensors Ax = Ay = 0, |Az| = 105

and Ax = Ay = Az/2 with |Az| = 105 meV [41, 46, 47].
The Zeeman effect is included due to the coupling be-
tween the magnetic field and the electrons. The Hamil-
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tonian of the entire system is

H =

2
∑

i=1

γB · Si + I ·A · S1, (5)

where Si ≡ (σx,i, σy,i, σz,i) are the electron spin opera-
tors (i = 1,2) with Pauli matrices σ, I is the spin oper-
ator for the nucleus, and B is the magnetic field. Here,
γ = 1

2µBgs is the gyromagnetic ratio with µB being the
Bohr’s magneton and gs = 2 being the magnetic mo-
ment [46]. The magnetic field for the two electrons and
the nucleus can be generally described by

B = B0(cosφ sin θ, sinφ sin θ, cos θ), (6)

where B0 = 47 µT is the intensity of the Earth’s magnetic
field. Without loss of generality, an axial symmetry is
usually assumed: φ = 0 and θ ∈ [0, π/2].

In order to mimic the process that the singlet and
triplet states decay to the chemical compounds, we ad-
ditionally add two ancilla-shelving systems (called S and
T ) to the Hilbert space to keep track of the popula-
tion decay into singlet and triplet products, respectively.
These are not physical systems but just mathematically
convenient to aid in tracking the change in population.
One can also adopt other approaches, which are typically
more numerically conservative, but here it is convenient
as we wish to investigate the temporal dynamics of the
electron spin systems without loss of population, which
we can do by tracing out the ancillas. This corresponds
to post-selecting on populations which have not decayed.
Of course, if one cares about the magnitude of a signal
corresponding to the decay processes, one should inves-
tigate these populations directly.

Later, we will use a master equation with the Lind-
blad terms to describe the Markovian decay process from
the singlet state, as recorded by the ancilla-S, as well
as from the triplet state, as recorded by the ancilla-T .
The bases of every element of our system are as fol-
lows. First, the bases of the electron pair are defined
as: {|s〉, |t0〉, |t−1〉, |t+1〉}, with |s〉 and {|ti〉}i=−1,0,1 be-
ing that singlet and triplet states, respectively. Second,
| ↑〉 and | ↓〉 are the bases describing the nuclear spin
states. Finally, {|Sj〉} and {|Tj〉} (where j = 0,1) are
states of the ancilla-S and ancilla-T , respectively, with
j = 0 describing the subspace where the system has
not decayed, and j = 1 the one where it has. With
the above definitions, we can now define the projec-
tion operators as Ps,↑ = |s, ↑, S1, T0〉〈s, ↑, S0, T0|, Pt0,↑ =
|t0, ↑, S0, T1〉〈t0, ↑, S0, T0|, Pt

−1,↑ = |t−1, ↑, S0, T1〉〈t−1, ↑
, S0, T0|, and Pt+1,↑ = |t+1, ↑, S0, T1〉〈t+1, ↑, S0, T0|. The
projective operators describe the spin-selective recom-
bination into the chemical compounds (ancilla-S and
ancilla-T states). We also consider additional environ-
mental noise described by the standard Lindblad formal-
ism [41, 48]. The dynamics of the density matrix is ob-

tained by solving the following master equation

ρ̇ =
1

i~
[H, ρ] + κ

8
∑

i

[

PiρP
†
i −

1

2
(P †

i Piρ+ ρP †
i Pi)

]

+

Γ

2
∑

i=1

[

σz,iρσ
†
z,i −

1

2
(σ†

z,iσz,iρ+ ρσ†
z,iσz,i)

]

,

(7)
where σz,i are the Lindblad operators of the two elec-
trons. Here, we assume that all the singlet and triplet re-
combination operators have the same decay rate κ = 104

s−1, and Γ = 103 s−1 is the rate of decoherence of each
electron. The value κ = 104 s−1 is chosen as it is the
one thought to explain certain experimental results in
which a small oscillating magnetic field can disrupt the
European Robins’ ability to navigate [41, 49, 50]. An
implication of these results is that the decoherence time
of the radial-pair model could of the order of 100 µs or
more [41].
Previous works [41, 47, 51] have looked at the be-

haviour of the entanglement between the free electron
and the electron coupled with the nucleus. Here, we are
primarily interested in the temporal quantum correla-
tions of the two-electron system at different times. Also,
we assume that the initial state of the entire system (the
two electrons, the nuclear spin, and the ancillas S and T)
is ρ(t = 0−) = 1

8 × 11 ⊗ |S0〉〈S0| ⊗ |T0〉〈T0|, where
1
8 × 11

is the maximally-mixed state of the two electrons and
nuclear spin [51]. The five MUBs measurements are per-
formed on the two-qubit system at time t = 0, producing
the temporal state assemblage σa|x(t), and the dynamics
of the temporal steering robustness can then be obtained.
In Figs. 4 and 5, we plot the dynamics of the temporal
steering robustness with two (n = 2 and choosing the
measurement setting x = 1 and 2) and three (n = 3 and
choosing the measurement setting x = 1,2 and 3) mea-
surement settings, respectively. Here, we can see that the
dynamics of the temporal steering robustness is clearly
dependent on the orientation θ. While it is hard to state
a strong connection between such temporal quantum cor-
relations and the functionality of the avian compass, in
the next section we will argue that these results imply a
counter-intuitive appearance of non-Markovianity in this
model, easy to miss without looking at a quantity like
the temporal steering robustness.

C. The non-Markovianity of the Radical Pair

In Ref. [33], it was shown that the temporal steerable
weight is non-increasing under completely positive and
trace-preserving maps, hence it can be used to define a
practical measure of non-Markovianity. Compare Eq. 3
with the SDP formulation of temporal steerable weight
in Ref. [33]; it is easy to show that temporal steering ro-
bustness can also reveal non-Markovian dynamics. The
wavy curves in Figs. 4 and 5 indicate the appearance of
non-Markovianity in the radical-pair model. At first this
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FIG. 4. (Color online) The dynamics of temporal steering ro-
bustness (two measurement settings, M

a|1 and M
a|2) of the

radical-pair model. The red, black and blue solid curves rep-
resent the results of the angle θ = 0, θ = π/4 and θ = π/2,
between the magnetic field and the radical-pair, respectively.
In (a), we set the anisotropic tensor: Ax = Ay = 0, Az = |105|
meV [41, 46, 47]. The times when the signals vanish, for the
red, black, and blue solid curves curves are 56 µs, 53 µs, and
50 µs , respectively. In (b), we set the anisotropic tensor:
Ax = Ay = Az/2 with |Az| = 105 meV. The times when the
signals vanish, for the red, black and blue solid curves are
45 µs, 41 µs, and 20 µs, respectively. The dynamics of the
temporal steering robustness obviously depends on the an-
gle θ between the magnetic field and the radical-pair in this
simplest model.

may seem counter-intuitive, as the equation of motion is
in a Markovian Lindblad form, and, when the hyperfine
interaction tensor is A = diag(0, 0,Az), the nuclear spin
polarization remains unchanged during the spin dynam-
ics [52]. However, because the initial state is assumed
to be maximially mixed, the electrons effectively expe-
rience a mixture of two different evolutions, depending
on the nuclear spin state, leading to the observed non-
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FIG. 5. (Color online) The dynamics of temporal steering ro-
bustness (three measurement settings, M

a|1, Ma|2 and M
a|3)

of the radical-pair model. The red, black and blue solid curves
show the results for the angles θ = 0, θ = π/4 and θ = π/2,
between the magnetic field and the radical-pair, respectively.
The difference between Fig. 4 and Fig. 5 is the number of the
measurement settings nx. In (a), the times when the signals
vanish, for the red, black and blue solid curves are 75 µs, 71
µs, and 69 µs, respectively. In (b), the times when the signals
vanish, for the red, black and blue solid curves are 62 µs, 57
µs, and 34 µs, respectively.

Markovianity.

In order to acquire more insights into this non-
Markovianity, we simplify the model by neglecting the
decay rate (i.e., Γ = κ = 0) and consider the coher-
ent dynamics of the two electrons and nuclear spin. As-
suming that the initial state is a direct product state
between the electron singlet state and the nuclear spin
state ρnu(0) = a| ↑〉〈↑ | + (1 − a)| ↓〉〈↓ |. The total
density matrix at a later time can be expressed as

ρ(t) = aρ1e1,e2(t)⊗| ↑〉〈↑ |+(1−a)ρ2e1,e2(t)⊗| ↓〉〈↓ |, (8)
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FIG. 6. (Color online) The time evolution of the (a) negativity
and (b) temporal steering robustness for two electrons of our
simplified radical-pair model (i.e., Γ = κ = 0). The initial
state is a direct product state between the electron singlet
state and the nuclear spin state ρnu(0) = a |↑〉〈↑| +(1 −
a) |↓〉〈↓|, with the relative weight a = 0 (green-solid), a =
0.25 (blue-dashed), a = 0.4 (red-dotted), a = 0.5 (black-
solid), and a = 1 (black-dotted), respectively. When a =
0.25, 0.4, and 0.5, the oscillating curves indicate the non-
Markovian nature of the dynamics. In particular, for a = 0.5,
the nuclear spin possesses the largest Shannon entropy and
results in the largest oscillation magnitudes in both panels.
Consequently, the dynamics of the two electrons shows the
strongest non-Markovianity. On the other hand, as a = 0, 1,
the two electron state evolves unitarily. Hence, the negativity
and temporal steering robustness are constant in time.

where

ρ1e1,e2(t) = exp[iAzσ
1
z t]|s〉〈s| exp[−iAzσ

1
z t] and

ρ2e1,e2(t) = exp[−iAzσ
1
z t]|s〉〈s| exp[iAzσ

1
z t],

(9)

describe the dynamic evolutions of the two electrons un-
der the influence of the magnetic fields locally-induced
by the nuclear spinors [52].
To reveal the non-Markovian nature of the dynamics of

the two electrons, we first notice that the state of the two

FIG. 7. (Color online) Schematic illustration revealing the
analogy of our radical-pair model to a controlled-NOT gate.
The nuclear spin and two electrons play a role analogous to
the control qubit and target qubit, respectively. The nuclear
spin state decides the unitary operator U = exp[iznuAzσ

1
z t]

exerting on electron 1, where znu = ±1 is the eigenvalue of
σz. When a gradually approaches 0.5, the nuclear spin (C
qubit) becomes more uncertain and possesses higher Shannon
entropy. Therefore, the non-Markovianity of the two electrons
is stronger.

electrons can be expressed as ρe1,e2 = Trnuρ(t). Inspired
by the RHP non-Markovianity measure [53], in Fig. 6,
we show the entanglement of the two electrons quanti-
fied by the negativity [54]. When a = 0 or 1, the nuclear
spin is a pure state in | ↑〉 or | ↓〉, respectively, and the
two electron state evolves unitarily. As the nuclear spin
becomes a mixed state (a = 0.25, 0.4, and 0.5), the two
electron state is in the form of a convex combination of
ρ1e1,e2(t) and ρ2e1,e2(t). Consequently, the time evolution
of the entanglement between the two electrons shows os-
cillations. Therefore, the nuclear spin plays the role of
a non-Markovian environment. However, if we consider
the entanglement of the nuclear spin and one of the elec-
trons alone, by tracing out the other electron, there is,
of course, no entanglement between the nuclear spin and
the electron [55].

It is interesting to notice that the non-Markovianity of
the convex combination of two unitary transformations,
as given by Eq. (8), can be seen as a pair of qubits coupled
with each other via a controlled-NOT (CNOT) gate [56].
As shown in Fig. 7, the nuclear spin plays a role anal-
ogous to the control qubit (C qubit), which decides the
corresponding mixture of unitary operators being exerted
on electron 1. It was shown in Ref. [56] that when a grad-
ually approaches 0.5, namely the C qubit becomes more
uncertain and possesses higher Shannon entropy, the tar-
get qubit exhibits stronger non-Markovianity. This is ex-
actly in line with our results that, as a approaching 0.5,
the oscillation magnitude in Fig. 6 becomes larger, indi-
cating stronger non-Markovianity in the dynamics of the
two electrons.
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IV. CONCLUSION

In summary, we investigate the temporal steering ro-
bustness as a mean to quantify temporal steering in high-
dimensional systems.To explore its applications, we in-
vestigate the dynamics of temporal steering robustness
in the radical-pair model. We show that the dynamics of
the temporal steering robustness is clearly dependent on
the orientation θ. We also reveal the non-Markovianity
of the radical-pair model induced by the nuclear spin.
The time evolution of the radical pair is the convex com-
bination of two unitary transformations. The different
proportions of the nuclear state decide the convex com-
bination of two unitary transformations of the radical
pair. When the nuclear spin state is up or down, the
dynamics of the system is completely positive and trace-
preserving. However, when the nuclear spin is a mixed
state, the radical pair behaves non-Markovianly. It is
interesting because the nuclear spins are in thermal equi-
librium, a completely mixed state. It suggests that non-
Markovianity not only plays a role in photosynthesis [45],
but may also have some influence in the avian compass.
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V. APPENDIX

In this appendix, we explicitly give the MUBs which
are used as the measurement operators. The MUBs are
two orthonormal bases {|b1〉, ...|bd〉} and {|c1〉, ...|cd〉} of
dimensions d, such that their complex inner-product be-
tween any basis states |bi〉 and |cj〉 can be expressed

as |〈bi|cj〉|
2 = 1/d [38]. The set of 5 MUBs is de-

noted by {Ma|x}a|x, with a = 1,2,3,4; x = 1,2,3,4,5; and
Ma|x = |φa|x〉〈φa|x| where

|φ1|1〉 = |1〉 |φ2|1〉 = |2〉

|φ3|1〉 = |3〉 |φ4|1〉 = |4〉

|φ1|2〉 =
1

2
(|1〉+ |2〉+ |3〉+ |4〉)

|φ2|2〉 =
1

2
(|1〉+ |2〉 − |3〉 − |4〉)

|φ3|2〉 =
1

2
(|1〉 − |2〉 − |3〉+ |4〉)

|φ4|2〉 =
1

2
(|1〉 − |2〉+ |3〉 − |4〉)

|φ1|3〉 =
1

2
(|1〉 − |2〉 − i|3〉 − i|4〉)

|φ2|3〉 =
1

2
(|1〉 − |2〉+ i|3〉+ i|4〉)

|φ3|3〉 =
1

2
(|1〉+ |2〉+ i|3〉 − i|4〉)

|φ4|3〉 =
1

2
(|1〉+ |2〉 − i|3〉+ |4〉)

|φ1|4〉 =
1

2
(|1〉 − i|2〉 − i|3〉 − |4〉)

|φ2|4〉 =
1

2
(|1〉 − i|2〉+ i|3〉+ |4〉)

|φ3|4〉 =
1

2
(|1〉+ i|2〉+ i|3〉 − |4〉

|φ4|4〉 =
1

2
(|1〉+ i|2〉 − i|3〉+ |4〉)

|φ1|5〉 =
1

2
(|1〉 − i|2〉 − |3〉 − i|4〉)

|φ2|5〉 =
1

2
(|1〉 − i|2〉+ |3〉+ i|4〉)

|φ3|5〉 =
1

2
(|1〉+ i|2〉 − |3〉+ i|4〉)

|φ4|5〉 =
1

2
(|1〉+ i|2〉+ |3〉 − i|4〉).

(10)
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