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We develop a new fermionic path-integral formalism to analyze the phase diagram of open nonequi-
librium systems. The formalism is applied to analyze an ensemble of two-level atoms interacting
with a single-mode optical cavity, described by the Dicke model. While this model is often used
as the paradigmatic example of a phase transition in driven-dissipative systems, earlier theoretical
studies were limited to the special case when the total spin of the atomic ensemble is conserved.
This assumption is not justified in most experimental realizations. Our new approach allows us to
analyze the problem in a more general case, including the experimentally relevant case of dissipative
processes that act on each atom individually and do not conserve the total spin. We obtain a gen-
eral expression for the position of the transition, which contains as special cases the two previously
known regimes: i) non-equilibrium systems with losses and conserved spin and ii) closed systems in
thermal equilibrium and with the Gibbs ensemble averaging over the values of the total spin. We
perform a detailed study of different types of baths and point out the possibility of a surprising
non-monotonous dependence of the transition on the baths’ parameters.

Introduction Understanding phase transitions in
open quantum systems is a challenging problem at the in-
terface of quantum optics, condensed matter, and atomic
physics. In contrast to equilibrium phase transitions,
which have been well understood using powerful theo-
retical tools such as renormalization group approaches
and conformal field theories, we still lack reliable theo-
retical tools for analyzing non-equilibrium open systems.
This makes it particularly important to analyze systems
with known experimental realizations that allow direct
comparison between theoretical predictions and experi-
mental measurements. Two important examples of such
systems are the directed percolation and the driven dissi-
pative Dicke model, which have been respectively realized
in liquid crystals [1, 2] and quantum optics[3–9]. In the
case of the Dicke model, theoretical approaches that have
been developed so far rely on the existence of an integral
of motion, the total angular momentum, which signifi-
cantly reduces the complexity of the problem[10–16]. In
contrast, actual experiments involve dissipative processes
that do not respect this conservation law, such as dis-
sipative baths coupled to each individual atom. Their
description requires more advanced theoretical tools.

The effects of single-atom baths on the Dicke model
were first considered in Refs. [17,18], using approximate
methods based on effective bosonic field theories. These
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FIG. 1: Dissipative processes considered in the present study.
Previous studies mostly focused on the cavity decay, which
conserves the total spin.

approaches map the two-level systems to continuous vari-
ables and are valid only if all the atoms are strongly po-
larized in a given direction[18]. In this paper we instead
employ an exact mapping to a fermionic path-integral
representation, which allows us to obtain an exact expres-
sion for the location of the Dicke transition. In the limit
of a large number of atoms we recast our result in terms
of single-atom correlation functions, which can be com-
puted using standard master equations. The present ap-
proach reproduces the known position of the equilibrium
phase transition and additionally allows us to system-
atically describe single-atom dephasing and decay (see
Fig. 1). As we will show, these processes renormalize
the position of the Dicke transition and in some cases
completely destroy it.
Model The Dicke model describes the interaction of

N two-level atoms (or spins), σzj = ±1/2, with a single
bosonic degree of freedom, a,

H = ω0a
†a+ ωz

∑
j=1,N

σzj +
2g√
N

N∑
j=1

σxj (a+ a†) . (1)

Here ω0 and ωz are respectively the detuning of the cavity
and of the atoms, g is the atom-cavity coupling, [a, a†] =
1, [σxj , σ

y
j ] = iσzj . For simplicity we assumed that all the

atoms are identical, although the present approach can
be immediately generalized to the inhomogeneous case.

The Hamiltonian (1) commutes with the total spin op-

erator S = (Sx)2 + (Sy)2 + (Sz)2, where Sα =
∑N
j=1 σ

α
j .

Thanks to this symmetry it is possible to decouple the
2N spin states into block-diagonal Dicke manifolds with
a well defined total spin S <∼ N/2. This analysis re-
veals that the equilibrium Dicke model presents a contin-
uous phase transition between a normal and a superradi-
ant phases, both at zero and finite temperatures [10–16].
The Dicke transition signals the spontaneous symmetry



2

breaking of a descrete Z2 symmetry (σx → −σx and
a→ −a) and belongs to the mean-field universality class
[17, 19, 20].

Following the theoretical proposal of Refs.[21–23],
the Dicke transition was recently realized in driven-
dissipative quantum optical systems[3–9]. The theoreti-
cal description of this transition[24–28] considered the ef-
fect of the cavity decay κ, modeled as a Markovian bath
coupled to the cavity field a. This dissipative channel
conserves the total spin and can be described through
a semiclassic Holstein-Primakoff[15, 29] approximation
in which the total-spin operators are substituted by the
bosonic operators b and b†, according to Sz → −N/2+b†b

and Sx →
√
N(b+ b†). This analysis leads to the critical

coupling

gc =
1

2

√
ωz
ω2

0 + κ2

ω0
. (2)

For κ→ 0, Eq. (2) recovers the known equilibrium result.
This semiclassical approach relies on the conservation of
the total spin and cannot be generalized to the case of
single-atom dissipative processes.

Majorana fermions To describe the atomic dephas-
ing and decay we employ a fermionic path integral ap-
proach that allows us to expand the Dicke model in a
1/N series and resum all the leading terms [53]. We
specifically consider the Majorana-fermion representa-

tion of spin-1/2 systems[30–32],[54], σzj = f†j fj−1/2, and

σ+
j = ηjfj . Here fj are Dirac fermions whose occupied

(unoccupied) states correspond to spin-up (spin-down)
states of the j-th atom and ηj are Majorana fermion sat-

isfying η†j = ηj and η2
j = 1. The role of these latter

operators is essentially to map the commutation rela-
tions of the spins to the anticommutation relations of
the fermions. Note that our analysis is only valid as long
as the atoms can be effectively described as two-level sys-
tems (spin-1/2). Thus, for example we cannot account
for processes that bring the atoms to hyperfine states not
included in the double-lambda scheme of Ref. [22], or to
farther momentum states in the realization of Ref. [23].
In terms of Majorana fermions, the Dicke model (1) be-
comes

H = ω0a
†a− ωz

N∑
j=1

f†j fj +
g√
N

N∑
j=1

ηj(fj − f†j )(a† + a) .

(3)
Following the usual path-integral prescription we first

introduce the bare Green functions describing the cav-
ity and the fermions, and then derive Feynman rules for
their coupling[55]. In this study we focus on the long-
time steady state in which all decay processes had time
to stabilize and the Green functions depend on the time-
difference only. The bare (retarded) Green function of
the cavity is then given in Ref.[17] and equals to a 2× 2
diagonal matrix, G−1,R

a (ω) = (ω+iκ)τz−ω01z. Here τz is
a Pauli matrix whose entries correspond to particles (a†)

and holes (a) and 1z is the unit matrix. The bare Green
functions of the atoms describe their dynamics in the ab-
sence of the photon-atom coupling. We assume that each
atom is coupled to an independent dissipative channel,
leading to Green functions that do not couple different
atoms and shall be denoted by Gfj (ω) and Gηj (ω).

We next introduce the Rabi coupling as a vertex con-
necting the cavity field a, a fermionic field fj , and a Ma-

jorana field ηj , with coefficient g/
√
N . This coupling

generates a self-energy for the cavity field of the form
ΣRa (ω)(1z + τz). The Dicke transition corresponds to a
diverging response function at ω = 0, or equivalently to
a zero-frequency pole, and is set by

det
[
G−1,R
a (0) + ΣRa (0)

]
= 0 (4)

Substituting the expression for G−1,R
a we obtain

det

[(
iκ− ω0 + ΣRa (0) ΣRa (0)

ΣRa (0) −iκ− ω0 + ΣRa (0)

)]
= 0 ,

leading to the critical condition

ω2
0 + κ2 + 2ω0ΣRa (0) = 0 (5)

In general, the self energy ΣRa depends on the photon-
atom coupling g and Eq. (5) sets its critical value, gc.
1/N expansion To compute the self-energy ΣRa (ω) we

need to consider all possible diagrams that start and end
with a cavity field (see Fig. 2 for details). A one-loop
diagram is plotted in Fig. 2(c), and equals to[56]

ΣRa (ω) =
g2

N

N∑
j=1

∫ ∞
−∞

dΩ

2π

[
GKfj (Ω)GRηj (ω − Ω)

+ GKfj (−Ω)GRηj (ω − Ω)
]

(6)

Here the second term is generated by a diagram anal-
ogous to Fig. 2(c), but with an inverse direction of the
fermionic arrow. Note that the resulting integral does

(a) 𝑎𝑎 𝑓𝑓𝑗𝑗
𝜂𝜂𝑗𝑗𝑓𝑓𝑗𝑗∗𝑎𝑎∗

(b)

(c)

(d)

𝑗𝑗
𝑗𝑗

𝑗𝑗
𝑗𝑗

𝑗𝑗
𝑗𝑗

𝑗𝑗
𝑗𝑗

𝑗𝑗
𝑗𝑗

FIG. 2: (a) Bare Green functions. (b) Bare vertexes, propor-

tional to g/
√
N . (c-d) One-loop and two-loop self energies for

the cavity field ΣRa . The former contribution does not scale
with N , while the latter scales as 1/N and can be neglected
in the limit of N → ∞.
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not depend on N : each vertex introduces a 1/
√
N fac-

tor, balanced by the sum over all atoms. Fig. 2(d) shows
an irreducible two-loop integral that contributes to the
self energy of the cavity field. This diagram contains
four vertexes and a single sum over j and is therefore
suppressed as 1/N . (See also Refs. [33, 34] for a similar
result in the case of atoms with motional degrees of free-
dom.). In the limit of N → ∞ only series of one-loop
irreducible diagrams do not vanish. This series is exactly
resummed by the above-mentioned self-energy approach.

The self-energy (6) has a simple interpretation in terms
of spin-spin correlation functions. To see this mapping
it is convenient to transform the integral expression ap-
pearing in Eq. (6) to the time domain

ΣRa (ω) =
ig2

N

N∑
j=1

∫ ∞
0

dt〈[fj(t)ηj(t), f†j (0)ηj(0)]〉 eiωt

+ 〈[f†j (t)ηj(t), fj(0)ηj(0)]〉 eiωt (7)

=
4ig2

N

N∑
j=1

∫ ∞
0

dt 〈[σxj (t), σxj (0)]〉 eiωt (8)

=− 8g2

N

N∑
j=1

∫ ∞
0

dt Im
[
〈σxj (t)σxj (0)〉

]
eiωt . (9)

Here the average 〈...〉 refers to the bare theory in which
the atoms are decoupled from the cavity, in analogy to
the Lamb theory of the lasing transition [35–38]: Eq. (9)
involves a sum over j, indicating that in the limit of N →
∞, the cavity feels each atom independently.

Eqs. (5) and (9) express the position of the Dicke tran-
sition in terms of the correlation functions of individual
dissipative spins. These correlations can be computed
using either the Majorana fermion representation[30–32],
or more conventional methods of quantum optics, such
as master equations in the Lindblad form. For the sake
of brevity, we employ here this latter method and leave
the corresponding calculations using Majorana fermions
for a future longer study. The introduction of Majorana
fermions in the present work was nevertheless necessary
to develop the 1/N expansion leading to Eq. (9).

We specifically consider three distinct types of single-
atom baths, listed in Fig. 1 along with their correspond-
ing Lindblad operators.

(i) Dephasing – Dephasing processes preserve the
spin polarization of the atoms and can be mathematically
described by the Lindblad operators σzj . In the presence
of this type of dissipation, the spin-spin correlation func-
tions can be computed using the master equation: for
any t > 0 one finds (see Methods below)

〈σxj (t)σxj (0)〉 = e−γφt [cos(ωzt) + i〈σz〉 sin(ωzt)] . (10)

Combining this expression with Eqs. (5) and (9) we find

ΣRa (0) = 4g2
〈σzj 〉ωz
ω2
z + γ2

φ

and gc =
1

2

√
ω2
z + γ2

φ

−2〈σzj 〉ωz
ω2

0 + κ2

ω0
.

(11)

In the limit of N →∞, this specific type of bath pre-
serves σzj : its expectation value is determined by the ini-
tial condition of the atoms. In contrast, for finite values
of N it is necessary to consider 1/N corrections which
can modify the steady state value of 〈σzj 〉. As shown in
Ref. [39], these terms generically lead to a steady state
with 〈σzj 〉 = 0, where the Dicke transition does not oc-
cur (gc → ∞). On the other hand, re-pumping schemes
leading to a steady state with 〈σzj 〉 6= 0 can guarantee
the observation of the Dicke transition [39]. Note that
the spins do not need to form a coherent/entangled state
to support this transition [40, 41].
(ii) Thermal bath – Let us now consider a decay

channel induced by a thermal bath at temperature T ,
with decay rate γT . This situation is equivalent to having
two Lindblad baths respectively coupled to σ−j and σ+

j

with rates (1 + nT )γT and nT γT , where nT is the Bose-
Einstein distribution (see Methods section). Eq. (11) is
modified according to 〈σz〉 → 0.5 tanh(ωz/2T ) and γφ →
γT /tanh(ωz/2T ). The critical coupling is then given by

gc =
1

2

√
ω2
ztanh2(ωz/2T ) + γ2

T

ωztanh3(ωz/2T )

ω2
0 + κ2

ω0
. (12)

In the limit of γT → 0 and κ→ 0, Eq. (12) reproduces the
critical temperature of the equilibrium closed system[10,
11, 13, 14], given by tanh(ωz/2T ) = ωzω0/4g

2
c .

In general, Eq.(12) is a monotonous increasing func-
tion of the temperature indicating that as expected, the
superradiant transition is suppressed by the temperature
of the spins. Interestingly, Eq. (12) shows that the criti-
cal temperature is affected by the decay rates κ and γT .
This result is in striking contrast to the common classical
equilibrium case, where the strength of the coupling to
a dissipative bath is not expected to affect the critical
temperature[42].
(iii) Generalized Markovian bath – We finally

consider a Markovian bath that couples coherently to
both σ−j and σ+

j , and is described by the Lindblad oper-

ator Lj = σ−j + tσ+
j , where t is a fixed unitless parame-

ter. This situation might be relevant to some implemen-
tations of Dicke-type models using the 4-level scheme of
Ref. [22] (see Ref. [43] for details). A straightforward cal-
culation (see Methods below) shows that the critical cou-
pling is given by Eq. (11) with 〈σz〉 = 0.5(1− t2)/(1+ t2)
and γφ → γeff = γt(1−t)2, leading to the critical coupling

gc =
1

2

√
(1 + t2)(ω2

z + γ2
t (1− t)2)

(1− t2)ωz

ω2
0 + κ2

ω0
. (13)

In the limit t → 0 we recover the semiclassic result of
Ref. [18]: in this case the steady states coincides with the
fully polarized state

∏
j | ↓z〉j and the Holstein-Primakoff

approximation becomes exact. In the opposite limit t→
1, the Dicke transition does not occur because the steady
state is characterized by 〈σzj 〉 = 0, in contrast to the
result of the non-linear sigma model of Ref. [17].
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For intermediate 0 < t < 1, the interplay between
γeff and 〈σz〉 leads to the non-trivial behavior depicted
in Fig. 3. Note in particular that γeff is a decreasing
function of t and tends to 0 at t = 1, in analogy to the
spontaneous-emission-induced coherence of Ref. [44]. In-
deed in this limit the Lindblad operator is σx and does
not directly affect the correlator 〈σx(t)σx(0)〉. As a con-
sequence, for small t� 1, gc(t) has a negative slope due
to the linear decrease of γeff as a function of t. In con-
trast, for t <∼ 1, gc(t) has a positive slope due to the de-
crease of 〈σz〉 ∼ (1− t2). The resulting non-monotonous
behavior differs from the previously-studied collective de-
cay channels, where the critical coupling depends on the
effective decay rate only.

Conclusion In summary we studied the effects of
atomic decay channels on the Dicke transition. Employ-
ing a fermionic path-integral analysis, we derived a closed
expression for the critical coupling in terms of single-
atom correlations, Eqs. (5) and (9). We considered sev-
eral types of dissipative channels and computed the cor-
respondent value of the critical photon-atom coupling gc.
We found that in general the critical coupling does not
depend on the total spin of the system S, but rather
on the average spin polarization 〈σzj 〉, (see Eqs. (5) and
(11)). If the dissipative channel leads to a depolarized
steady-state with 〈σzj 〉 = 0 the Dicke transition disap-
pears.

In the present discussion we considered non-
equilibrium steady states, in which all correlation func-
tions depend on the time-difference only. The present
analysis can nevertheless be directly extended to the
study of the real-time dynamics, by considering the re-
tarded Green function θ(t−t′)〈[σxj (t), σxj (t′)]〉. In analogy
to the steady state situation, it is sufficient to first solve
for the dynamics of each atom independently, and then

t
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FIG. 3: Critical coupling of the Dicke model in the presence
of a Markovian single-atom decay channel described by the
Lindblad operator L = σ− + tσ+. Here g0 is the critical
coupling for a fully polarized system, Eq. (2). The critical
coupling diverges in the limit of t→ 1, where 〈σzj 〉 = 0.

use this result to compute the response of the cavity. This
approach might be useful to describe the transient Dicke
transition observed in the experiments[7–9, 45].

It is also possible to extend the present analysis
to realistic experimental situations including for exam-
ple: the coexistance of thermal and Markovian baths;
non-symmetric Dicke models where the rotating and
counter-rotating terms of the Dicke Hamiltonian are dif-
ferent; multi-mode cavities where glassy transitions are
expected[46–49]. Furthermore, it would be interesting
to study the critical exponents of the non-equilibrium
transition and compare them with the equilibrium case,
following the lines of Ref. [17]. Finally, it is desirable to
extend the present analysis to include the decay of indi-
vidual atoms to additional states that were neglected in
their present two-level description.
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METHODS: Master equations for a single spin
coupled to a dissipative bath

In this section we use the Lindblad master equation[50]
to compute the correlations of a single spin in the pres-
ence of dissipation. We then apply Eq. (9) and compute
the cavity self-energy. These calculations are not explic-
itly mentioned in the main article because they are com-
pletely standard, and are brought here only for the sake
of completeness.

We consider an isolated spin described by the Hamil-
tonian H = ωzσz and the Lindblad operator L. To com-
pute Sx(t) = 〈σx(t)σx(x)〉 we first derive the time evolu-
tion of the operator σx(t) from the master equation

dσx

dt
= −i[H,σx]− γα

(
LαL

†
ασ

x + σxLαL
†
α − 2LσxL†

)
(14)

(i) Dephasing – For L = σz, Eq. (14) becomes

dσx(t)

dt
= ωzσy − γφσx (15)

dσy(t)

dt
= −ωzσx − γφσy (16)

These equations are solved by

σx(t) = e−γφt (cos(ωzt)σx(0) + sin(ωzt)σy(0)) (17)

σy(t) = e−γφt (cos(ωzt)σy(0)− sin(ωzt)σx(0)) (18)
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Using (σxj )2 = 1/4 we find that for any t > 0

Sx(t) = 〈σx(t)σx(0)〉 (19)

=
1

4
e−γφt (cos(ωzt)− 2i〈σz〉 sin(ωzt)) . (20)

A straightforward integration gives:

ΣRa = 4g2

∫ ∞
0

Sx(t)− Sx(−t) =
4g2ωz〈σz〉
(ω2
z + γ2)

(21)

(ii) Thermal bath – We now consider the decay pro-
cess due to the coupling to a finite temperature bath.
The correspondent master equation is

dσx

dt
= −i[H,σx]

−
∑
α=±

γα
(
σασ−ασx + σxσασ−α − 2σασxσ−α

)
,

(22)

where γ− = γT (nT + 1), γ+ = γTnT , and nT =
(eωz/T − 1)−1 is the Bose-Einstein distribution[51]. A
direct evaluation demonstrates that Eqs. (15) and (16)
are modified by γφ → (1 + 2nT )γT = γT /tanh(ωz/2T ).
Using the corresponding master equation for σz one finds

dσz

dt
= −γT [(1 + nT )(2σz − 1) + nT (2σz + 1)] (23)

= −γT [−1 + (2 + 4nT )σz] (24)

Thus, in the steady state 〈σz〉 = 1/(2 + 4nT ) =
0.5 tanh(ωz/T ), in agreement with the equilibrium re-
sult.

(iii) Generalized Markovian bath – We now con-
sider the Lindblad operator L = σ− + tσ+. A direct
evaluation leads to

L†Lσx + σxL†L− 2L†σxL = γt(1− t)2σx (25)

As a consequence, the equations of motion of σx are the
same as (15) and (16), with γφ → γt(1 − t)2. Note in
particular that for t = 1, L = σx and the correlator of
σx does not decay over time. We deduce that

ΣRa (0) =
4g2ωz〈σz〉

ω2
z + γ2

t (1− t2)
(26)

We next need to find the steady state expectation value
of 〈σzj 〉. For this purpose we use the master equation (14)
with σx → σz and obtain

dσzj
dt

= −γt
[
(1− t2)− 2(1 + t2)σz

]
(27)

In the steady state the expectation value of the LHS is
zero and 〈σz〉 = 0.5(1 − t2)/(1 + t2). Combining this
expression with Eq. (26) we obtain Eq. (13).
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