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Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion
of solitons in one-dimensional Bose-Einstein condensates subjected to a spin-orbit coupling (SOC).
We demonstrate that the spin dynamics of solitons is governed by a nonlinear Bloch equation. The
spin dynamics influences the orbital motion of the solitons leading to the spin-orbit effects in the
dynamics of the macroscopic quantum objects (mean-field solitons). The latter perform oscillations
with a frequency determined by the SOC, Raman coupling, and intrinsic nonlinearity. These findings
reveal unique features of solitons affected by the SOC, which is confirmed by analytical considerations
and numerical simulations of the underlying Gross-Pitaevskii equations.

PACS numbers: 05.45.Yv, 03.75.Lm, 03.75.Mn

Solitons, which are generally realized as self-supported
solitary waves, are among the most fundamental objects
in the nonlinear science. With the realization of Bose-
Einstein condensates (BECs), matter-wave solitons have
drawn enormous interest [1–9]. In the experiments, both
bright and dark solitons have been successively created in
atomic BECs [1, 10–14]. On the other hand, the success-
ful realization of the artificial spin-orbit coupling (SOC)
in binary BEC [15–18] has stimulated intensive studies
on novel SOC-induced effects [19–34]. In particular, a
variety of solitons species, such as stripe modes, 2D com-
posite solitons, and half-vortex gap soliton have been pre-
dicted in the condensates combining the SOC, which is
a linear interaction, and the intrinsic collisional nonlin-
earity [35–51]. In ring-trapped BEC, Rashba SOC leads
to the non-trivial magnetization dynamics of dark soliton
[52].

Soliton dynamics has been the subject of many stud-
ies carried out in various settings, including BEC [1–9],
nonlinear optics [53–59], and others. In particular, it
has been shown that harmonic trapping potentials in-
duce motion of solitons in quasi-one-dimensional (1D)
BEC [60–65]. Due to the particle-like nature, the soliton
dynamics differs essentially from the dipole mode of the
non-interacting condensate loaded into the same poten-
tial. In particular, the oscillation frequency of trapped
dark solitons differs by factor 1/

√
2 from the trap fre-

quency [60]. Here, we address the soliton dynamics in
1D BEC under the action of the Raman-induced SOC
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[15, 16]. Since the Raman transition can flip the spin
along with inducing a finite momentum transfer, the evo-
lution of the spin degree of freedommay be coupled to the
spatial motion of solitons. This effect, if it can be made
conspicuous enough, may be considered as the SOC at
the level of the motion of a macroscopic quantum body,
the matter-wave soliton. In this connection, it is relevant
to mention a recent result showing that the SOC can
induce anharmonic properties beyond the effective-mass
approximation in collective dipole oscillations [16, 66, 67].
Yet the macroscopic SOC effects in the motion of solitons
have not been explored before, to the best of our knowl-
edge.
In this work we investigate the soliton dynamics in 1D

BEC influenced by the SOC. We find that an interplay
of the SOC, Raman coupling, and nonlinearity induces
precession of the soliton’s spin S under the action of an
effective magnetic field, which is governed by a nonlinear
Bloch equation (12). In turn, the spin precession couples
to the orbital motion of the soliton via feedback onto
its center-of-mass momentum, as shown below by equa-
tion of motion (15) for the center-of-mass coordinate, 〈z〉.
Thus, Eqs. (12) and (15) directly demonstrate the effects
of the SOC on the 1D motion of the macroscopic quan-
tum object.
In the presence of SOC, the dynamics of the quasi-1D

BECs, elongated in the direction of z, is modeled by the
mean-field Gross-Pitaevskii (GP) equation:

i∂t

(

ψ↑

ψ↓

)

= ĥ0

(

ψ↑

ψ↓

)

+

(

g↑↑|ψ↑|2, g↑↓|ψ↓|2
g↓↑|ψ↑|2, g↓↓|ψ↓|2

)(

ψ↑

ψ↓

)

,

(1)
where ψσ are the pseudo-spin components of the BEC
macroscopic wave function, with σ =↑, ↓ labelling the
spin states. These can represent, for instance, the hyper-



2

fine states |1,−1〉 and |1, 0〉 of 87Rb atoms [15]. Here

ĥ0 = −1

2
∂2z + V (z) + iλ∂zσz +Ωσx + δσz (2)

is a single-particle Hamiltonian which includes the
Raman-induced SOC characterized by a strength λ, with
Ω and δ describing, respectively, the frequencies of the
Raman coupling and the Zeeman detuning. Here also
V (z) = γ2z2/2 is an effective 1D harmonic trap potential,
and γ ≡ ωz/ω⊥ is the trap’s aspect ratio, with ωz and ω⊥

being the trapping frequencies along the longitudinal and
transverse directions, respectively. The frequencies and
lengths are measured in units ω⊥ and a⊥ =

√

~/mω⊥, re-
spectively, and, as mentioned above, λ = kLa⊥ represents
the SOC strength, with kL being the momentum transfer.
Note that, as the strengths of the inter- and intra-species
atomic interactions are very close in the experiment, it is
reasonable to assume SU(2)-symmetric spin interactions,
with all components gσσ′ taking a single value, g. To
focus on the SOC effects on the dynamics of solitons, we
first consider the free space, while the external trap will
be discussed afterwards.
For λ = Ω = 0, the system reduces to a normal

binary BEC without the SOC. In this case, Eq. (1)
is known as the integrable Manakov’s system which
gives rise to well-known exact soliton solutions [68].
In particular, bright-bright (BB) solitons are ψσ =
(ηǫσ/

√−g)sech(ηz) exp
(

iη2t/2
)

for the attractive sign of

the nonlinearity, g < 0, where η−1 is the soliton’s width
and ǫσ satisfies the normalized condition, |ǫ↑|2 + |ǫ↓|2 =
−g/(2η). We use such exact soliton solutions as an ini-
tially prepared wave function, and then study the soliton
dynamics as the SOC is switched on. Note that Eq. (2)
is an effective single-particle Hamiltonian in the frame
transformed via the local pseudo-spin rotation by angle
ϑ = 2λz about the z axis [15, 16]. The transformation
adds opposite phase factors, e±iλz , to the two compo-
nents of the input waveforms.
In the general case, the GP system (1) is no

longer integrable. Therefore we employ a varia-
tional approximation to investigate the soliton dy-
namics [5, 69], based on Lagrangian L(t) =
∫ +∞

−∞
{(i/2)∑σ=↑,↓ [ψ

∗
σ (ψσ)t − ψσ (ψ

∗
σ)t] − H}dz, where

H is the Hamiltonian density of the system. We first
consider the attractive nonlinearity, with g < 0. In this
case, we introduce the following variational Ansatz for
BB solitons, with the total norm fixed to be 1:

(

ψ↑

ψ↓

)

=

√

η

2

(

(sin θ) sech(ηz + ξ↑)e
i(k↑z+ϕ↑)

(cos θ) sech(ηz + ξ↓)e
i(k↓z+ϕ↓)

)

, (3)

where θ, η, ξσ, kσ, ϕσ are time-dependent variational pa-
rameters. Here θ determines the population imbalance
between the pseudo-spin components, η−1 defines their
common width, kσ is the wavenumber, and ϕσ the phase.
For the SU(2) atomic interactions, two-component soli-
tons favor the mixed phase [70]. Hence the positions of
spin up and down solitons will overlap, ξ↑ = ξ↓ = ξ, as
confirmed by the numerical simulations below.

Inserting the Ansatz (3) into the Lagrangian and per-
forming the integration, we obtain

L (t) =
ξ

η

dk+
dt

− ξ

η
cos (2θ)

dk−
dt

− dϕ+

dt
+ cos (2θ)

dϕ−

dt

− 1

2

[

k2+ − 2k+k− cos (2θ) + k2−
]

− 1

6
η2 − 1

6
gη

− Ωπk− sin(2θ) cos (2ϕ− − 2k−ξ/η)

η sinh (πk−/η)

+ δ cos (2θ)− λ [k+ cos (2θ)− k−] , (4)

where k± ≡ (1/2) (k↑ ± k↓) and ϕ± ≡ (1/2) (ϕ↑ ± ϕ↓).
The evolution of the variational parameters is governed
by the corresponding Euler-Lagrangian (EL) equations,
see the Supplementary material for details.
Note that the EL equations produce simple results,

η ≈ −g/2 and k− ≈ λ, in the case of a weak SOC,
πλ << η. Indeed, in the absence of SOC, the relation
η = −g/2 holds for the normalized wave function, in-
dicating that the width of the solitons is determined by
the nonlinearity, and k− remains equal to the initial rela-
tive momentum λ between the components of the soliton.
Thus, we arrive at a reduced system of the EL equations,
in which η and k− are considered as frozen quantities:

k̇+ = 2λΩ̃ sin(2θ) sinφ , (5)

φ̇ = −2Ω̃ cot(2θ) cosφ+ 2λk+ − 2δ , (6)

θ̇ = −Ω̃ sinφ , (7)

˙〈z〉 = k+ . (8)

Here, 〈z〉 =
∫ +∞

−∞ z(|ψ↑|2 + |ψ↓|2)dz ≡ −ξ/η is the

center-of-mass coordinate, Ω̃ = Ωπλ/[η sinh(πλ/η)], and
φ ≡ 2ϕ−+2k−〈z〉 is the phase difference between the two
components of the soliton. Thus, Eqs. (5)-(8) account
for the nonlinear coupling of the center-of-mass momen-
tum k+, phase difference φ, population imbalance θ, and
center-of-mass coordinate 〈z〉.
We introduce a normalized complex-valued spinor,

χ = (χ↑, χ↓) describing the two-component wave func-

tion ψσ =
√

ρ (z, t)χσ, where ρ ≡ |ψ↑|2 + |ψ↓|2 is

the total density, with |χ↑|2 + |χ↓|2 = 1. Further-
more, we define the spin density S = χTσχ, where
σ ≡ {σx, σy, σz} is the vector set of the Pauli matri-
ces. Therefore, we have {Sx, Sy, Sz} = {sin(2θ) cos(2λz+
2ϕ−),− sin(2θ) sin(2λz+2ϕ−),− cos(2θ)} for the Ansatz
given by Eq. (3). In this paper, we focus on the center-
of-mass motion of the soliton by setting z = 〈z〉 = −ξ/η.
Consequently, the evolution of the atomic spin at the soli-
ton’s center-of-mass is governed by the following equa-
tions:

Ṡx = 2(λc1 − δ)Sy − 2λ2SzSy , (9)

Ṡy = −2Ω̃Sz − 2(λc1 − δ)Sx + 2λ2SzSx , (10)

Ṡz = 2Ω̃Sy , (11)

where c1 ≡ λSz,0, with Sα,0 (α = x, y, z) being the initial
values of the components. These equation of motion for
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FIG. 1: (Color online). The track of the spin density on
the Bloch sphere (a), and the corresponding evolution of the
spin components (b) and center-of-mass coordinate (c) of the
soliton for the initially balanced state, with θ(t = 0) = π/4,
and initial phase difference ϕ−(t = 0) = π/4 [see Eq. (3)].

Other parameters are Ω = 0.5, λ = 0.5
√

Ω, δ = 0, and g =
−10. z and t are measured in units of a⊥ and ω−1

⊥ .

the soliton’s spin can be rewritten as

Ṡ = S×Beff , Beff =
{

2Ω̃, 0, 2λ2Sz − 2(λc1 − δ)
}

. (12)

This represents the Bloch equations for the spin preces-
sion under the action of the effective magnetic field, Beff .
The macroscopic SOC for the soliton as a quantum body
is determined by the effect of evolution of the spin on the
soliton’s longitudinal momentum, resulting in the cou-
pled nonlinear dynamics of the soliton’s spin and posi-
tion. At the first glance, nonlinear terms in Eqs. (9)-(11)
arise essentially from the SOC strength, λ. However, the
atomic interactions also play a fundamental role, as in the
no-interaction limit, Ω̃ = 0, these equations reduce to the
linear Bloch precession under a fixed effective magnetic
field.
To tackle solutions of the nonlinear Bloch equation,

we first integrate Eq. (9), dividing it by Eq. (11). This

yields Sx = c2 −
(

λ2/2
)

Ω̃−1S2
z + (λc1 − δ)Ω̃−1Sz, where

c2 ≡ Sx,0 + (δ − c1λ) Ω̃
−1Sz,0 +

(

λ2/2
)

Ω̃−1S2
z,0 is a con-

stant determined by the initial conditions. Next, we focus
on the case of δ = λc1, which implies a particular rela-
tion between the strengths of the Zeeman splitting and
SOC, making the analysis more explicit. By differenti-
ating Eq. (11), we then arrive at a standard equation
of anharmonic oscillations for the single spin component,
Sz,

d2Sz

dt2
+ ΞSz + 2λ4S3

z = 0 , (13)

where Ξ ≡ 4Ω̃(Ω̃ − c2λ
2) may be positive or negative.

Equation (13) has a usual solution [71]

Sz(t) =

√
1− Ξτ2

2λ2τ
cn (t/τ, k) , k2 =

1

2

(

1− Ξτ2
)

, (14)

where cn is the Jacobi’s cosine with modulus k, and τ is
an arbitrary parameter taking values τ < 1/

√

|Ξ|. In the
case of Ξ > 0, the linearized version of Eq. (13), which

corresponds to τ → 1/
√

|Ξ| in Eq. (14), gives rise to free

Rabi oscillations with frequency
√
Ξ. In the general case,

the frequency given by solution (14), ωosc = π/(2τK(k)),

where K(k) is the complete elliptic integral, exceeds
√
Ξ

due to the nonlinear shift. Note also that the nonlinearity
may give rise to oscillations in the case of Ξ < 0, when
the free Rabi oscillations are impossible.
Further, in the spin representation, Eq. (5) can be

written as k̇+ = −2λΩ̃Sy, which accounts for the effect
of the evolution of the spin on the center-of-mass mo-
mentum. This leads to the following equation of motion
for the center-of-mass coordinate:

d2 〈z〉
dt2

= −2λΩ̃Sy . (15)

In other words, if we consider the soliton as a macroscopic
quantum body carrying the intrinsic angular momentum,
Eq. (15) represents the driving force, exerted by the in-
trinsic momentum and acting on the linear momentum,
which is literally the macroscopic SOC. We stress that
the mechanism of the soliton’s motion is definitely differ-
ent from the conventional collective dipole oscillations of
BEC in a harmonic-oscillator trap. Indeed, in the present
case the force which drives the motion of solitons under
the action of SOC is the spin precession, rather than the
force induced by the external potential [16, 66, 67]. On
the other hand, here we consider an effectively mechan-
ical motion, which is produced by the interplay of the
nonlinear self-trapping and SOC.
To illustrate the soliton dynamics in detail, we dis-

play, in Fig.1, numerical solutions of Eqs. (9)-(11) and
(15), with initially balanced populations in the two com-
ponents, which corresponds to θ(t = 0) = π/4 and
ϕ−(t = 0) = π/4. First, in Fig. 1(a) we show that
the soliton spin moves along a closed orbit on the Bloch
sphere. Accordingly, perfect periodic oscillations of the
spin can be identified in Fig. 1(b), and perfectly periodic
motion of the soliton’s central coordinate is seen in Fig.
1(c). In particular, for weaker SOC, the center-of-mass

oscillations can be approximated as 〈z〉 ≃ (λ/Ω̃) sin2(Ω̃t)

with amplitude λ/Ω̃ and a period π/Ω̃, which depend
on the strengths of SOC, Raman coupling and atomic
interaction.
To test these findings obtained in the variational (i.e.,

effectively mechanical) approximation, we numerically
solved the GP system (1) with the input in the form

of BB solitons, ψ↑ =
√

η/2 (sin θ0) sech(ηz)ei(λz+ϕ↑,0)

and ψ↓ =
√

η/2 (cos θ0) sech(ηz)ei(−λz+ϕ↓,0). In Figs. 2
(a)-(c), the density of the soliton’s components exhibits
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FIG. 2: (Color online). (a)-(c) The evolution of the density
in the two components of the soliton produced by the GP
simulations for the initially balanced state with θ(t = 0) =
π/4 and ϕ−(t = 0) = π/4. The parameters are Ω = 0.5, λ =

0.5
√

Ω, δ = 0, and g = −10. The spin dynamics and center-
of-mass motion of the soliton, generated by these simulations
(circles), and by the variational approximation based on Eqs.
(9)-(11) and (15) (solid lines) are depicted in panels (d)-(e).
Panels (f)and(g) display decay of the soliton in the case of a
weaker atomic interaction, g = −3. z and t are measured in
units of a⊥ and ω−1

⊥ .

remarkable periodic oscillations, and the soliton main-
tains its initial hyperbolic-secant profile for many oscil-
lation cycles. Note that, although the initial momenta
of the two components are opposite, the soliton does not
split. In Fig. 2 (d)-(e), we show that the direct GP sim-
ulations agree very well with the variational (mechani-
cal) approximation. For weaker atomic interactions, the
simulations show that solitons decay under the action of
SOC for πλ/η > (πλ/η)c ≈ 0.4, as shown in Fig. 2 (f)-
(g). Furthermore, when δ 6= c1λ, we find that besides
the SOC-driven oscillation, the soliton would exhibit an
additional linear motion, as found for the initially po-
larized case with θ(t = 0) = π/2 and δ = c1λ (see the
Supplementary material for details).
Now, we proceed to the case of the repulsive BEC non-

linearity, which is more relevant to current experiments
with SOC condensates [15–18]. In this case, we introduce
the following variational Ansatz for dark-dark (DD) soli-
tons:
(

ψ↑

ψ↓

)

=

√

η

2

(

(sin θ) tanh(ηz + ξ)ei(k↑z+ϕ↑)

(cos θ) tanh(ηz + ξ)ei(k↓z+ϕ↓)

)

. (16)

Inserting the Ansatz (16) into the Lagrangian, one needs
to renormalize the integrals to exclude divergent contri-
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FIG. 3: (Color online). (a)-(c) The same as in Fig. 2, but for
the dark soliton, in the case of g = 10. z and t are measured
in units of a⊥ and ω−1

⊥ .

butions of the nonvanishing background [72–76]. The
analysis yields the same EL equations as Eqs. (6)-(8),
but with η = g/2 for repulsive g > 0. We have also
performed the respective direct simulations of the GP
system with the initial conditions corresponding to the
DD solitons, ψ↑ =

√

η/2 (sin θ0) tanh(ηz)e
i(λz+ϕ↑,0) and

ψ↓ =
√

η/2 (cos θ0) tanh(ηz)e
i(−λz+ϕ↓,0). The results are

depicted in Fig. 3, where the DD soliton displays oscilla-
tions similar to those reported above for the BB configu-
ration. Note that the two components of the background
alternately disappear and revive, as shown in Fig. 3 (a)-
(b).

In experiments, the condensate is usually trapped in
a harmonic-oscillator potential, V (z) = γ2z2/2, which
affects the motion of solitons [60–65]. In this case, the
EL equations for variational parameters k+ and ξ are

modified to k̇+ = −2λΩ̃Sy +
(

γ2/η
)

ξ and ξ̇ = −k+η
with η satisfying condition 4η4 + 2gη3 = π2γ2. Corre-
spondingly, the center-of-mass motion would acquire an

additional trap-dependent term d2〈z〉
dt2

+γ2〈z〉 = −2λΩ̃Sy,
which gives rise to an additional collective oscillation
with a period ≃ 2π/γ, as shown in Fig. (4). For a weak
trap, the period of trap-driven oscillation and the char-
acteristic length of the trap are much larger than the
period and amplitude of the SOC-driven oscillation, re-
spectively. Hence, the SOC-driven oscillation of soliton
is not affected conspicuously by a weak trap and should
be distinguishable in experiment. Here we have used a
bright soliton to illustrate the effect of a (weak) axial
trap. Similar results are also identified numerically for a
dark soliton in a harmonic trap.

Finally, we discuss some related experimental issues.
So far, the Raman-induced SOC has been realized for
the BEC in the 87Rb gas with repulsive atomic inter-
actions. We assume an elongated condensate of ∼ 104

atoms is trapped in a weak harmonic trap with frequen-
cies ω⊥ = 2π × 85 Hz and ωz = 2π × 5.9 Hz [65],
and the corresponding ratio of the scattering lengths is
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FIG. 4: (Color online). The results of BB solitons in the trap
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a↑↑ : a↑↓ : a↓↓ = 1 : 1 : 1.005 [15]. In this case, at the cen-
ter of the trap, we first create the stationary dark-dark
solitons with width ∼ 0.5 µm by means of the phase- and
density-engineering techniques [12]. Then two 804.1nm
Raman lasers with an intersection angle 20◦ are used to
create a weak SOC. With above parameters, the period
and amplitude of SOC-driven oscillation of solitons are
about 11 ms and 2 µm, respectively, which may be fur-
ther adjusted by varying the SOC, Raman coupling and
atomic interaction. These results show that the SOC-
driven oscillations can be experimentally observed.
In summary, we have shown that the interplay of the

SOC (spin-orbit coupling), Raman coupling, and intrin-
sic nonlinearity in quasi-1D BEC may realize the mecha-
nism of SOC in the form of mechanical motion of bright
and dark solitons, considered as macroscopic quantum
bodies. The soliton’s angular momentum (spin) evolves
according to the Bloch equation under the action of the
effective magnetic field, and induces a force affecting the
motion of the soliton’s central coordinate. The results
have been obtained by means of the variational analy-
sis and numerical simulations, which demonstrate a very
good agreement. These findings suggest new directions
for experimental studies of the dynamics of matter-wave
solitons under the action of SOC.
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Hadzievski, and B. Malomed, J. Phys. B At. Mol. Opt.
Phys. 48, 065301 (2015).

[51] Y.-C. Zhang, Z.-W. Zhou, B. A. Malomed, and H. Pu,
Phys. Rev. Lett. 115, 253902 (2015).

[52] O. Fialko, J. Brand,and U. Zulicke, Phys. Rev. A 85,
051605(R) (2012).

[53] Y. S. Kivshar, B. A. Malomed, Rev. Mod. Phys. 61, 763
(1989).

[54] Yu. S. Kivshar and D. E. Pelinovsky, Phys. Rep. 331,
117 (2000).

[55] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From

Fibers to Photonic Crystals (Academic Press, San Diego,
2003).

[56] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner,
J. Optics B: Quant. Semicl. Opt. 7, R53 (2005).

[57] A. S. Desyatnikov, L. Torner, and Y. S. Kivshar, Progr.
Opt. 47, 1 (2005).

[58] D. Mihalache, Rom. J. Phys. 57, 352 (2012).
[59] V. V. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod.

Phys. 88, 035002 (2016).
[60] T. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298

(2000); T. Busch and J. R. Anglin, Phys. Rev. Lett. 87,
010401 (2001).

[61] L. D. Carr and Y. Castin, Phys. Rev. A 66, 063602
(2002); L. Salasnich, Phys. Rev. A 70, 053617 (2004);
Z. X. Liang, Z. D. Zhang, and W. M. Liu, Phys. Rev.
Lett. 94, 050402 (2005).

[62] L. Li, B. A. Malomed, D. Mihalache, and W. M. Liu,
Phys. Rev. E 73 066610 (2006).

[63] A. Weller, J. P. Ronzheimer, C. Gross, J. Esteve, M. K.
Oberthaler, D. J. Frantzeskakis, G. Theocharis, and P.
G. Kevrekidis, Phys. Rev. Lett. 101, 130401 (2008).

[64] X. X. Liu, H. Pu, B. Xiong, W. M. Liu, and J. Gong,
Phys. Rev. A 79, 013423 (2009).

[65] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M.
Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K.
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