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We demonstrate a method to generate spatially homogeneous entangled, spin-squeezed states of
atoms appropriate for maintaining a large amount of squeezing even after release into the arm of
a matter-wave interferometer or other free space quantum sensor. Using an effective intracavity
dipole trap, we allow atoms to move along the cavity axis and time average their coupling to the
standing wave used to generate entanglement via collective measurements, demonstrating 11(1) dB
of directly observed spin squeezing. Our results show that time averaging in collective measurements
can greatly reduce the impact of spatially inhomogeneous coupling to the measurement apparatus.

Spin-1/2 atoms must project into either “up” or
“down” when measured. For N unentangled atoms, the
independent randomness in this quantum projection fun-
damentally limits the single-shot phase resolution of any
quantum sensor to ∆φSQL = 1/

√
N rad, the standard

quantum limit (SQL) [1]. Collective measurements of
atoms in optical cavities have recently produced some of
the most strongly entangled, spin-squeezed states to date,
directly improving the phase resolution of a quantum sen-
sor’s “clock hand” by a factor up to 60-70 (roughly 18 dB)
in noise variance below the SQL [2, 3].

Spin-squeezed states could be used to improve a wide
range of quantum sensors, with today’s best atomic
clocks [4–6] being particularly promising candidates [7,
8]. In this work we focus on preparing spin-squeezed
states appropriate for matter-wave atom interferometry
with applications including inertial sensing [9], measure-
ments of gravity and freefall, [10, 11] and even the search
for certain proposed types of dark matter and dark en-
ergy [12, 13].

A major challenge arises for cavity-based atom interfer-
ometry and other applications involving release of spin-
squeezed atoms into free space. The problem is that
the probe mode used to perform the collective measure-
ment is a standing wave, but the atoms are trapped
in a 1-dimensional lattice defined by a standing wave
cavity mode with a significantly different wavelength.
Some atoms will sit in lattice sites positioned near nodes
and some near anti-nodes of the entanglement-generating
probe light. As a result, the atoms will contribute to the
collective measurement with different strengths. In this
common case, the large degree of squeezing exists only for
this specific coupling configuration and would be largely
lost after releasing the atoms into the arm of an inter-
ferometer, since their final coupling to the cavity mode
or other readout detector will be different from the orig-
inal configuration [14]. In contrast, we wish to create
spatially homogeneous entanglement, quantified by the
amount of observed phase resolution beyond the SQL
that one can achieve when every atom couples equally to
the final measurement apparatus.

In this Letter, we demonstrate a method to create ho-
mogeneous spin-squeezed states in a standing wave opti-
cal cavity by allowing the atoms to traverse many wave-

FIG. 1. (a) Optical lattice sidebands separated by one free
spectral range (FSR) are injected into the cavity to create an
axially homogeneous “dipole” trap. The dipole trap intensity
and its envelope are plotted inside of the optical cavity, with
exaggerated wavelength λl × 103. (b) The envelope of the
residual lattice potential Vres(z) normalized to the peak lattice
potential depth V0 is plotted near the cavity center, optimized
for a minimum at z = 0 (gold, β = 1.20) and for the minimal
fraction of trapped atoms determined experimentally (red,
β = 1.32). (c) Fraction of atoms remaining in the cavity
mode (blue points) vs. fall time, fit to a model (red dash)
described in the text. Fluorescence images show the falling
atom cloud at various times (inset).

lengths of the standing wave during each collective mea-
surement. Atoms experience a time-averaged coupling
to the cavity so that every atom is measured with the
same strength, ensuring homogeneous entanglement. We
do this by creating an optical trap with a uniform axial
potential, which we refer to as an effective “dipole trap”
as opposed to the standing-wave “lattice”. The dipole
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trap maintains transverse confinement of the atoms while
allowing free movement subject to gravity along the ver-
tical cavity axis. We demonstrate 11(1) dB of directly
observed squeezing via collective measurements in the
dipole trap and use fluorescence images and noise scalings
to show that the generated squeezing is homogeneously
shared among the atoms to a large degree, in principle
allowing significant amounts of squeezing for free space
or guided matter-wave interferometry. We also discuss
the limits placed on entanglement generation with time-
averaged measurements.

Homogeneous squeezing can also be obtained using a
travelling wave “ring” cavity [15], but birefringence must
be controlled to maintain the efficacy of utilizing cycling
transitions [16]. Another appealing approach is to in-
troduce a commensurate lattice [3, 17]. This approach
requires special mirror coatings and frequency doubling
equipment and doesn’t permit guided movement for atom
interferometry within the cavity mode. Homogeneous
entangled states can also be obtained without using a
cavity [18–22], but free space experiments have not yet
achieved the large amounts of squeezing observed using
optical cavities.

In this work, we use the pseudo-spin states
defined by the ground hyperfine states of 87Rb,
with |↓〉 ≡ |52S1/2, F = 1,mF = 1〉 and |↑〉 ≡
|52S1/2, F = 2,mF = 2〉 split by 6.8 GHz. As in Refs.
2 and 16, we describe the total pseudo-spin state of N

atoms by a collective Bloch vector ~J , with spin projec-
tions Jx, Jy, and Jz. The spin projection on a single trial

Jz = N↑ − N
2 is determined by making a collective mea-

surement of the total number of atoms in the upper spin
state N↑. For an unentangled, coherent spin state (CSS),
quantum projection noise (QPN) leads to fluctuations in

Jz of size ∆Jz,QPN =
√
N/2. In this work, ∆X will refer

to the standard deviation of a quantity X as measured
over repeated trials of the experiment.

The collective measurement is performed using the ex-
perimental apparatus and techniques described in Ref.
2. In brief, we trap 87Rb atoms in the central 2 mm of a
2 cm optical cavity with finesse F = 2532(80). A cavity
mode is tuned δc = 2π × 400 MHz to the blue of the |↑〉
to |e〉 ≡ |52P3/2, F = 3,mF = 3〉 transition. The cavity
resonance frequency ω is shifted by an amount depend-
ing on the number of atoms in |↑〉 due to the dispersive
interaction between the atoms and cavity. The cavity’s
resonance frequency is measured by probing the cavity in
reflection for 40 µs. The probing is collective because it is
not possible to tell from the single probe mode precisely
which atoms are in |↑〉.

In a single trial, we apply resonant microwaves to pre-
pare each atom in an equal superposition (|↑〉+ |↓〉)/

√
2.

We then perform two consecutive measurements of the
projection Jz, with the two measurement outcomes la-
beled Jzp and Jzf , with subscripts denoting pre and final
measurement. The quantum projection noise is common
to the two measurements and is removed when we take
the difference between the pre and final measurements,

yet the atoms nearly completely retain coherence of the
quantum phase between |↑〉 and |↓〉. This allows one to
sense a quantum phase that evolves between the final and
premeasurements below the SQL.

The atoms are initially cooled to approximately 10 µK
and trapped in a far off resonance red detuned optical
lattice at λl = 823 nm (with corresponding wave vec-
tor k0 = 2π/λl). We then convert this standing-wave
lattice into an effective dipole trap. This is achieved
by simultaneously driving multiple TEM00 longitudinal
modes of the cavity near 823 nm. Adjacent longitudi-
nal modes have opposite symmetry with respect to the
cavity center. To lowest order, near the center of the
cavity, one mode creates a cos2(k0z) standing-wave in-
tensity profile while the next mode creates a sin2(k0z)
intensity profile such that the sum of the two standing
waves cos2(k0z)+sin2(k0z) = 1 creates a net uniform in-
tensity profile along the cavity axis as shown in Fig. 1(a).

To drive adjacent longitudinal modes, we phase mod-
ulate the lattice light at the cavity free spectral range
(FSR), FSR = 2π × 8.1050(5) GHz, using a fiber-
coupled phase modulator. The resulting axial com-
ponent of the potential at distance z from the cav-
ity center can be written V (z) = V0[J2

0 (β) cos2 (k0z) +
J2
−1(β) sin2 ((k0 + δk−1)z) + J2

1 (β) sin2 ((k0 + δk1)z) +
. . . ], where Jn(β) is the nth Bessel function and β is the
modulation index. δkn = nFSR/c is the additional wave
vector for the sidebands offset by n cavity free spectral
ranges, with speed of light c. Interference terms between
sidebands are neglected since they oscillate at 8 GHz.

Figure 1(b) shows the depth of the residual standing-
wave lattice potential in the dipole trap Vres(z) as a func-
tion of distance from the center of the cavity for two dif-
ferent values of β. We find β ≈ 1.32 (overdriving the
dipole trap) to be the optimum value for freeing atoms
to move. This is due to a wider minimum of Vres(z)
which overlaps the atomic spatial distribution as well as
the fact that overdriving causes the lattice potential wells
to be converted into small potential peaks, giving atoms
additional potential energy.

When an atom begins to fall in the dipole trap, the
increase in the residual lattice depth is not sufficient to
stop the atom from continuing to fall; rather, we expect
the atom to be guided by the optical dipole trap until
it collides with the lower mirror. In Fig. 1(c), we mea-
sure the number of atoms in the cavity as a function of
freefall time, tdrop, by continuously monitoring the dis-
persive shift of the cavity resonance frequency. The data
is renormalized to account for background atom loss and
is reasonably described by a fit (purple line) which as-
sumes atoms are guided by the net transverse intensity
profile of the dipole trap until they are lost when they
collide with the lower mirror. For comparison, ballistic
expansion out of the cavity mode would occur in only
2 ms if we were to simply turn off the optical lattice.
The free fall and guiding are corroborated by fluorescence
measurements such as shown in Fig. 1(c) inset for various
tdrop. Figure 1(c) and fluorescence images indicate that
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at long times only 5(1)% of the atoms remain trapped due
to the spatial extent of the cloud and the small resudual
lattice. The majority of the atoms move along the cavity
axis, the key for obtaining time-averaged homogeneity
in the coupling of the atoms to the standing-wave probe
mode.

FIG. 2. (a) Projection noise scaling versus total atom number
N , measured in the lattice (red squares) including a theoret-
ical prediction (red line) and in the dipole trap (blue circles)
including a fit to infer a coupling fraction ζ (blue line, with
68% confidence interval bands). Sequences are inset. Dura-
tions of microwave pulses and measurements are shown in the
first sequence. Dashed boxes represent Bloch vector rotations
through a given angle using resonant microwaves. Solid boxes
represent cavity frequency measurements. (b) Quantum noise
reduction in the dipole trap with 6.3(3)×105 atoms. A his-
togram of Jzf − Jzp (black data points) shows a standard
deviation 13.9(6) dB below projection noise ∆Jz,QPN = 397
atoms (gold line and shaded distribution). The measurement
sequence is inset.

For a fixed total atom number, we expect the projec-
tion noise induced fluctuations in the cavity resonance
frequency ∆ωQPN to be smaller in the dipole trap than
in the lattice. While the total dispersive shift is the same
in both cases, in the lattice the dominant contribution is
from the subset of atoms situated near antinodes of the
probe. The ith atom’s coupling to the cavity is defined
by its Jaynes-Cummings coupling parameter gi, with a
single-photon Rabi frequency given by 2gi. The atoms
at antinodes have a coupling gi near the maximum value
g0 = 2π× 0.519(5) MHz and provide stronger than aver-
age fluctuations in the cavity resonance frequency. In the
ideal time-averaged situation, on the other hand, the full
ensemble only couples with the rms coupling strength
grms = g0/

√
2, actually leading to weaker cavity fre-

quency fluctuations. To quantify the level of homoge-

neous coupling, we define a model where fractionally, ζ of
the atoms release into the dipole trap and are assumed to
have perfectly homogeneous coupling. 1− ζ of the atoms
remain fixed in position and maintain their original cou-
pling. In this model, the projection noise induced fluctu-
ations in the cavity resonance frequency can be written
∆ωQPN = g2rms

√
N(3− ζ)/

√
8(g20N + δ2c ) [23].

We observe this change in the projection noise scaling
between the lattice and dipole trap by performing the
measurement sequences of Fig. 2(a) in the lattice (red,
superscript L) and in the dipole trap (blue, superscript
D) versus the total atom number in the cavity N . The
ω↑ and ω↓ windows represent the outcome of a measure-
ment of the cavity resonance frequency, sensitive to N↑
or N↓ respectively, and we plot the observed projection
noise fluctuations ∆ωQPN,meas = ∆(ω↑ − ω↓) in either
the lattice or the dipole trap. The lattice data is used
as a calibration of g0 with the theoretical scaling plot-
ted in red. The dipole trap data is fit to the model
2 × ∆ωQPN (since the measurement sequence includes
two anti-correlated windows, ω↑ and ω↓) with ζ as a free
parameter. We fit ζ = 1.0(2), consistent with our expec-
tation of 95% from the data in Fig. 1(c). In both the
lattice and dipole data of Fig. 2(a), a small linear con-

tribution to ∆ωQPN,meas (as opposed to ∆ωQPN ∝
√
N),

due to noise in the π-pulse, is observed and included in
the fit model. For simplicity, this contribution has been
subtracted from both the data and fit in Fig. 2(a).

By consecutively performing a pre and final measure-
ment ωD

↓ , labeled ωD
↓p and ωD

↓f we can show a large degree
of spin noise reduction below QPN and correspondingly
demonstrate the creation of entangled, spin-squeezed
states in the dipole trap. We measure spin squeezing
using the Wineland criterion for phase enhancement rel-
ative to the SQL, (∆θ/∆θSQL)

2 ≡ S = R/C2 [2, 24]. The
observed spin noise reduction normalized to the quantum
projection noise level is R = (∆(Jzf −Jzp)/∆Jz,QPN)2 <
1. Squeezing or enhanced phase resolution also requires
the additional demonstration of retained coherence, or
Bloch vector length, often referred to as “contrast”,

C ≡ 2| ~J |/N .
The measurement sequence is shown in the inset of

Fig. 2(b) and is the same as that of Ref. [2]. We use
tdrop = 13 ms, which accelerates the atoms enough to
average over approximately 13 cycles of the probe stand-
ing wave during the 40 µs measurement window. Fig-
ure 2(b) shows noise in measurements of ωD

↓f − ωD
↓p in

the dipole trap with total atom number N = 630(30) ×
103 atoms. Experimental parameters grms, δc, and N
are used to scale between cavity frequency measurements
and Jz, ∂ω/∂Jz = g2rms/

√
4g2rmsN↑ + δ2c . The data is

collated into a histogram on the left, showing a stan-
dard deviation 13.9(6) dB less than the projection noise
level shown in yellow. No noise subtractions or postselec-
tion were applied to data in which squeezing is observed.
The remaining contrast after the premeasurement was
independently measured, C =0.70(5). Together with the
noise reduction, this yields a directly observed phase res-
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FIG. 3. (a) Power spectra showing coupling oscillations for
fall times of 1 ms (blue solid), 7.5 ms (red dotted) and 15
ms (green dashed) with their respective fits. (inset) Center
frequency f0 of the fitted Boltzmann distribution for various
fall times (points) compared to a freefall prediction line of
f0 = 2at/λp (line), see text for definitions. (b) Power spec-
trum showing coupling oscillations at the trap frequency when
atoms are trapped in the optical lattice.

olution, or spin squeezing, of S = 1/13(3) or −11(1) dB
below the SQL

When the cavity frequency is measured in a 40 µs win-
dow using the dipole trap, oscillations in the signal are
observed, indicating the atomic motion over the probe
standing wave. Specifically, we measure the number of
atoms N↑ that are coupled to the cavity as a function
of time by applying a scale factor to convert cavity fre-
quency to atom number. We refer to this rescaled time

signal as N (t) =
∑N↑

i g2i (t)/g2rms. We observe noise in
the atom’s coupling in the frequency domain, which can
be used to infer the distribution of atoms’ coupling os-
cillation frequencies. Most of the coupling oscillations
average away, since the oscillation of each atom occurs
with a random phase. However, the residual uncancelled
coupling oscillations are observed in N (t) such that the

squared Fourier transform of the time signal, |Ñ (f)2| has
units of Atoms/Hz and is closely related to the atomic
velocity distribution.

Figure 3(a) shows |Ñ (f)2|, recorded using 2 ms of data
and taking the average power spectrum of time traces
from approximately 65 trials. The data was taken after
1 ms (blue), 7.5 ms (red), and 15 ms (green) of freefall
time after release into the dipole trap. Each power spec-
trum is fit to an appropriately folded 1D Boltzmann dis-
tribution that accounts for the inability to distinguish
between upwards and downwards velocities. The fit cen-
ter frequency f0 is plotted as a function of the freefall

time t in the inset of Fig. 3(a). The result is consistent,
particularly at long times, with the simple prediction,
f0 = a t/(λp/2), where a = 9.81 m/s2 is the accelera-
tion due to gravity. The widths of the distributions are
consistent with Boltzmann distributions giving final ax-
ial temperatures of 25 µK. To contrast, Fig. 3(b) shows

|Ñ (f)2| for atoms in the lattice. Instead of a large ther-
mal distribution, a narrow distribution is observed at the
lattice trap frequency, about 200 kHz.

In summary, we infer that we have created a spatially
homogeneous squeezed state from the combined observa-
tions of Figs. 1-3. First, we observe release of 95(1)%
of the atoms (Fig. 1) at a sufficient velocity (Fig. 3)
to ensure, on average, 13 averaging cycles of the probe
standing wave during a 40 µs collective measurement.
In Fig. 2(a) we also confirm the transformation to ho-
mogenous coupling by the change in scaling of projection
noise fluctuations of the cavity. The demonstration of
11(1) dB of observed squeezing in the homogeneous con-
figuration proves our ability to create a large amount of
entanglement in this highly time-averaged scheme.

We derive in detail various theoretical limits to our
time-averaging technique in the Supplemental Material
[23]. These calculations may be useful for future imple-
mentations of time averaging in various types of atom
interferometers or other free space sensors. However,
we emphasize that since our experimental results demon-
strate, apart from Refs. 2 and 3, the largest ever directly-
observed atomic entanglement enhancement, our data al-
ready establishes this method as useful for generating
large amounts of homogeneous spin squeezing. We sum-
marize a few limitations to time-averaged squeezing in
the following paragraph.

Since the ac signals in Fig. 3 yield additional informa-
tion about the spin state of each velocity component of
the atomic ensemble, time averaging will fundamentally
limit the squeezing to order S ∝ 1

qN , where q is the total

quantum efficiency of the experiment. For q ∼ 1, this is
close to the Heisenberg limit. A more relevant limitation
for our system is imperfect averaging of the probe stand-
ing wave. For 40 µs measurements after a 13 ms drop
time and for a 25 µK ensemble, we estimate that the ob-
served noise reduction should be limited to 15 dB below
QPN, which we believe to be a primary limitation to our
observed spin noise reduction of 13.9(6) dB. In the future,
this limit could be improved using longer measurement
windows or drop times to average over more cycles of
the probe standing wave during each measurement. The
noise reduction limit due to imperfect time averaging im-
proves as R ∝ 1/(T 2

winT
2
drop) [23] for a freefall duration

of T 2
drop measurement windows with duration Twin.

To realize a free space matter-wave interferometer,
atoms could be prepared in the cavity for the entangle-
ment generating premeasurement, then released into free
space for an interferometry sequence. Large momentum
transfers, similar to Ref. 25, could in principle be used
to separate the wavefunction by a large distance. The
final measurement could be performed with fluorescence
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detection at any location. The 5% of atoms with non-
uniform coupling during the premeasurement would lead
to an additional noise floor, not observed in this work,
of 13 dB below the SQL. Additionally, inhomogeneity
from radial motion will lead to another additional noise
floor of approximately 10 dB below the SQL [2]. Notably,
this radial motion would also equally affect systems using
ring cavities, commensurate lattices, or other axial aver-
aging techniques. For this reason, we do not expect our
time averaging scheme to have significant fundamental
advantages or disadvantages for free space interferometry
compared to recent results with a commensurate lattice
[3, 17].

Another possibility is to perform guided interferometry
inside the cavity mode. Here the pre and final measure-
ments would both be performed with collective cavity
measurements. In this case, the noise from the 5% of
atoms remaining trapped in the residual lattice and ra-
dial motion largely cancels at short times. The 11(1) dB
of squeezing observed in this work would in principle fully
translate to this type of interferometer. In addition to the
possibility of using entangled states, performing the final
readout via a cavity measurement may allow for reduced
technical noise, higher bandwidth, cleaner optical modes,
and power buildup for Raman transitions [26]. For the

current system the maximum free-fall evolution time of
this interferometer would be limited to approximately
50 ms due to the 2 cm long cavity. Additionally, the op-
tical potential from the residual lattice corrugation may
cause small erroneous signals in an atom interferometer
sequence. However, these signals could be sufficiently
reduced using larger optical cavities or more frequency
components to create a more perfect effective dipole trap
with smaller residual lattice corrugation.

Additionally, in concert with this method, higher or-
der transverse modes, atom-chip technologies [27, 28], or
tailored potentials [29, 30] might be combined with the
cavity measurement technique presented here to create
new varieties of matter-wave Sagnac interferometers and
other inertial sensors. The real-time observation of me-
chanical motion also opens the path to stochastic cooling
schemes based on measurement and feedback [31] with
applications to more complex systems such as molecules,
which can be challenging to laser cool using conventional
Doppler cooling methods.

We gratefully acknowledge support from NIST,
DARPA QuASAR, ARO, and NSF PFC. This material
is based upon work supported by the National Science
Foundation under Grant Number 1125844 Physics Fron-
tier Center.

[1] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilli-
gan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J.
Wineland, Physical Review A 47, 3554 (1993).

[2] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thomp-
son, Phys. Rev. Lett. 116, 093602 (2016).

[3] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Nature 529, 505 (2016).

[4] T. Nicholson, S. Campbell, R. Hutson, G. Marti,
B. Bloom, R. McNally, W. Zhang, M. Barrett,
M. Safronova, G. Strouse, et al., Nature communications
6 (2015).

[5] N. Hinkley, J. Sherman, N. Phillips, M. Schioppo,
N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Lud-
low, Science 341, 1215 (2013).

[6] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and
H. Katori, Nature Photonics 9, 185 (2015).

[7] M. A. Norcia and J. K. Thompson, Phys. Rev. A 93,
023804 (2016).

[8] E. S. Polzik and J. Ye, Phys. Rev. A 93, 021404 (2016).
[9] B. Barrett, A. Bertoldi, and P. Bouyer, Physica Scripta

91, 053006 (2016).
[10] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli,

and G. M. Tino, Nature 510, 518 (2014).
[11] D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson,

C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and
E. M. Rasel, Phys. Rev. Lett. 112, 203002 (2014).

[12] C. J. Riedel, Phys. Rev. D 88, 116005 (2013).
[13] P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons,

H. Müller, and J. Khoury, Science 349, 849 (2015).
[14] J. Hu, W. Chen, Z. Vendeiro, H. Zhang, and V. Vuletić,
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