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Single-photon devices at microwave frequencies are important for applications in quantum infor-
mation processing and communication in the microwave regime. In this work, we describe a proposal
of a multi-output single-photon device. We consider two superconducting resonators coupled to a
gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-
resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems
described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling
between one of the normal modes and the qubit can be induced, and this induced second-order non-
linearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade.
Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from
the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching.
Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a
pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon
state. In addition, it is found that the optical state truncation caused by the strong qubit-induced
nonlinearity can lead to an entanglement between the two resonators, even in their steady state
under the Markov approximation.

PACS numbers: 42.50.Ar, 42.50.Pq, 85.25.-j

I. INTRODUCTION

In quantum information, the generation, distribu-
tion, and storage of quantum information at the single-
photon level are of great importance [1–3]. Therefore,
single-photon sources of non-classical light states are
needed [4, 5]. In some cases, we can reduce the power
of a laser or maser source to avoid large probabilities of a
multi-photon output. However, the field might be of an
extremely low intensity. Photon sources differ not only by
their frequencies and polarizations, but also by the statis-
tical properties of the emitted photons [6]. Photons from
a coherent source are still classical, while in proposals of
security for the quantum cryptography [7] the sources of
single-photons exhibiting strong antibunching and sub-
Poissonian statistics can help to avoid eavesdropping on
an encode message.

To increase the output rate of such sources of non-
classical fields, one requires some form of nonlinearity.
For example, single-photon manipulation can be real-
ized via photon blockade (see Refs. [8–16] and references
therein), in which the nonlinearity prevents more than
a single excitation being exited in a cavity: Only when
the first photon has left the cavity another identical pho-
ton can be reexcited. Photon blockade originates from
the anharmonic energy-level structure in nonlinear sys-
tems. It has been predicted and demonstrated exper-
imentally in platforms such as optical cavities with a
trapped atom [17], integrated photonic crystal cavities
with a quantum dot [18, 19], or microwave transmission-
line resonators (superconducting “cavities”) with a single

superconducting artificial atom [20, 21]. Recently, pho-
ton blockade and closely related phonon blockade were
predicted in optomechanical systems (see, e.g., [22–27]).
In the earlier studies, the observation of conventional
photon blockade requires large nonlinearities with respect
to the decay rate of the system. More recently, it was
found that strong entanglement [9, 28] and strong pho-
ton antibunching [29, 30] can be generated via destruc-
tive quantum interference in coupled nonlinear oscilla-
tors: Transition paths for multi-excitations cancel each
other and, as a result, the population of the two-photon
state is effectively suppressed. This underlying mech-
anism is called “unconventional photon blockade” and
further research has been devoted to it in various kinds
of systems [31–36]. It is worth mentioning that the idea
of using photon blockade as a single-photon turnstile de-
vice was suggested already in the first theoretical works
on this effect [9, 11].

The standard single-photon blockade has also been
generalized to multiphoton blockade, which is also re-
ferred to as photon tunneling. These multiphoton ef-
fects have not only been described theoretically (see,
e.g., [13, 27, 37–40] and references therein), but even
demonstrated experimentally [4, 19, 41–43]. Such multi-
photon effects are often discussed in the context of optical
state truncation (for a review see Ref. [44, 45]). Here we
focus on the standard single-photon blockade, although
we also show that multiphoton processes can also be in-
duced in our system.

Recent developments on superconducting quantum
devices provide versatile artificial quantum systems
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for quantum communication and information process-
ing [46–51]. For example, methods for microwave-photon
detection based on superconducting quantum circuits
have been demonstrated in Refs. [52–56]. Moreover,
schemes for measuring photon statistics in the microwave
regime have also been proposed both in theoretical and
experimental studies [57, 58]. All these progresses have
laid a solid foundation for applications at the single-
photon level based on superconducting circuits. There-
fore, efficient and well-performed single-photon devices
in the microwave regime are very important, and have
been studied. Resonant photon blockade has been ob-
served in a quantum circuit composed of a superconduct-
ing qubit and a transmission-line resonator [21]. More-
over, Ref. [59], discussed the effect of ultrastrong coupling
on photon blockade in circuit quantum electrodynamics
(QED) systems. All these schemes require the qubit and
resonator to be resonant. In another approach [20], the
dispersive microwave photon blockade was predicted due
to the χ(3) nonlinearity (about ∼1 MHz), which can be
induced by a qubit. The sub-Poissonian photon statis-
tics and photon antibunching were also predicted in such
systems.

Here we introduce another mechanism to obtain
microwave-photon blockade via the effective quadratic
coupling in a circuit-QED-based system. Our scheme
is composed of two resonators and a single qubit. Dif-
ferent from standard circuit-QED systems with Jaynes-
Cummings coupling, our system is based on both longi-
tudinal and transverse couplings. We demonstrate that,
in principle, arbitrary multiphoton processes can be in-
duced in our system. In particular, we obtain the effec-
tive Hamiltonian for the quadratic coupling between one
supermode and the qubit. As opposed to the resonant
photon blockade, the first excitation of this system is
a bare single-photon state, rather than hybridized with
the qubit excited state (i.e., a polariton state), which
might provide higher tolerance to imperfections in experi-
ments [20]. The second-order nonlinear coupling strength
can be of tens of MHz under current experiment ap-
proaches, which is much stronger than the induced χ(3)

nonlinearity in superconducting systems [15, 40]. With
a stronger nonlinearity, we can consider resonators with
higher-photon escape rates and apply stronger coherent
drive fields for the two resonators, and the single-photon
output fields can be of much higher intensities. By mod-
eling the quantum input and output fields from channels
of independent resonators and joint channels of two res-
onators, we find that all the three output fields are anti-
bunched and sub-Poissonian in photon-number statistics,
so our proposal can serve as an efficient single-microwave
photon source with multi-output channels.

The organization of this paper is as follows: In Sec. I,
we describe the layout of the model consisting of a qubit
and two superconducting resonators, and then we analyt-
ically derive the Hamiltonian for multi-photon processes
in the two resonators. In Sec. II, we demonstrate how
to employ the effective quadratic coupling between the

qubit and the resonators to achieve single-photon block-
ade in the two resonators. After that, we find that it is
possible to apply our system as a microwave single photon
device with multi-output channels. In Sec. III, we show
our numerical results. In particular, we analyze nonclas-
sical photon-number correlations and give a phase-space
description of the single-mode (single-resonator) states
generated via photon blockade. The last section presents
our final discussions and conclusions.

II. MODEL

A. Circuit layout and Hamiltonian

As schematically shown in Fig. 1, we consider a gap-
tunable superconducting artificial atom, such as a charge
or flux qubit, coupled with two superconducting res-
onators of frequencies ω1 and ω2 [60–63]. Moreover, we
assume that the coupling between the resonators is di-
rectly mediated via a capacitance C [64]. The Hamilto-
nian can be written as

H̄0 =
1

2
ωσ̄z +

1

2
∆σ̄x +

∑
i=1,2

ωia
†
iai

+g(a†1a2 + a†2a1) + σ̄z
∑
i=1,2

Gi(a
†
i + ai), (1)

where ai (a†i ) denotes the annihilation (creation) opera-
tor for the ith resonator, g is the coupling constant be-
tween the two resonators due to the hopping capacitor
C, and Gi is the coupling strength between the ith res-
onator and the qubit. Here we assume that g � Gi,
which justifies the use of the rotating-wave approxima-
tion (RWA) in Eq. (1). The Pauli spin operators σ̄z and
σ̄x are defined in the basis of the two quantum states of
the qubit, and ω and ∆ are the energy bias and tunable
qubit gap, respectively. In experiments, both ω and ∆
can be controlled independently via external parameters.
For example, in a flux qubit [65–68], ∆ can be tuned
by applying an external flux though the superconducting
quantum interference loop, while ω can be adjusted by
controlling the flux though the qubit loop.

Note that we assume that the inter-resonator coupling
g is much smaller than the qubit-resonator couplings Gi.
Moreover, these couplings can be strong but not ultra-
strong, to justify the application of the RWA. However,
the RWA is not valid in the ultrastrong coupling regime,
where at least one of the couplings Gi is comparable or
larger than the corresponding resonator frequency ωi. In
such a case, due to the counter-rotating terms, photon
blockade effects are usually significantly changed com-
pared to the standard blockade under the RWA (see
Refs. [59, 69]). For example, Ref. [69] showed that multi-
ple antibunching-to-bunching transitions can be observed
when increasing the resonator-qubit coupling strength in
the standard (i.e., transverse) Rabi model. These tran-
sitions lead to the vanishing and reappearance of pho-
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FIG. 1. (Color online) (a) Schematic circuit layout and (b)
the couplings and dissipative channels of our proposal. A
gap-tunable qubit (e.g., a flux or charge qubit) couples with
two superconducting (e.g., transmission-line) resonators with
strengths Gi for i = 1, 2. The eigenfrequencies for the ith res-
onator and the qubit are ωi and ωq, respectively. A capacitor
C is used to directly mediate the two resonators and results
in a coupling strength g. In the left-hand side, two coherent
microwave drives, with strengths ε1 and ε2, are applied to the
resonators 1 and 2, respectively. In the right-hand side, the
single photon output microwave photons are collected from
ports 1, 2, and 3. Ports 1 and 2 are semi-infinite transmission
lines connected to resonators 1 and 2. This results in photon
escape rates κ1,1 and κ2,1, respectively. Port 3 is the joint out-
put transmission line from resonators 1 and 2, with photon
escape rates κ1,2 and κ2,2. We assume that the input fields
bin,i for these three ports are all independent vacuum noises.
Beside escaping into the transmission lines, the photons in the
two resonators can also dissipate into the environment with
intrinsic rates κin,i. For the qubit, the decay (dephasing) rate
is Γ (Γf ).

ton blockade due to the presence of the counter-rotating
terms, which modify the nonlinearity of the energy spec-
trum and can cause two-photon cascade decays. We ex-
pect that similar effects can be observed in our model
if the inter-resonator and qubit-resonator coupling con-
stants are increased.

In the qubit basis, we can write the Hamiltonian in

FIG. 2. (Color online) The lowest energy levels for the Hamil-
tonian in Eq. (14). The supermode A+ couples with the qubit
with quadratic form, while the supermode A− decouples from
the qubit. The frequency difference between these two super-
modes is ∆2. When ∆2 = 0, these two modes are degenerate.
The effective drives for the supermodes A+ and A− are ε+
and ε−, respectively, as shown in Table I.

Eq. (1) as

H0 =
1

2
ωqσz +

∑
i=1,2

ωia
†
iai + g(a†1a2 + a†2a1)

+
∑
i=1,2

[
Gx,iσx(a†i + ai) +Gz,iσz(a

†
i + ai)

]
, (2)

where the coupling constantsGx,i = −Gi sin θ andGz,i =
Gi cos θ describe, respectively, the transverse and longi-
tudinal couplings between the qubit and the resonators,
with tan θ = ∆/ω, and ωq =

√
ω2 + ∆2 is the trans-

formed qubit eigenfrequency.
In a typical picture of a circuit-QED system, the in-

teraction between cavities and artificial atoms is trans-
verse, which can be simplified to Jaynes-Cummings-type
models under the rotating-wave approximation. Another
alternative layout for circuit-QED is based on the longi-
tudinal qubit-cavity interaction [70–73]. The Hamilto-
nian in Eq. (2) describes a qubit with both transverse
and longitudinal couplings to the resonators. In such an
artificial system, multiphoton Rabi oscillations between
a single resonator and a qubit have been predicted in
Ref. [63]. In the following discussions, by considering
a more general case with two resonators coupled with a
qubit, we will analytically obtain the effective Hamiltoni-
ans for arbitrary multiphoton processes between the two
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resonators and the qubit.

We apply two coherent driving fields for the two res-
onators with strengths ε1 and ε2, respectively, as shown
in Fig. 1. Under the rotating-wave approximation, the
corresponding driving Hamiltonian is

Hd =
∑
i=1,2

(εia
†
ie
−iωd,it + ε∗i aie

iωd,it), (3)

and the total Hamiltonian for the system can be ex-
pressed as

Hs = H0 +Hd. (4)

The two driving fields might have a phase difference θ.
By assuming that ε1 = |ε1|e−iθ/2 and ε2 = |ε2|eiθ/2, we
will in Sec. IV.B show that both the relative phase θ
and the drive strength |εi| have significant effects on the
photon distribution statistics of the output fields.

B. Multiphoton processes

To explicitly demonstrate multiphoton processes be-
tween the qubit and the two resonators, we first introduce
the two supermodes via their annihilation operators:

A+ =
G1a1 +G2a2

G
, (5a)

A− =
G2a1 −G1a2

G
, (5b)

where G =
√
G2

1 +G2
2 = G1

√
1 + β2, and the commu-

tation relation between Ai and A†j is [Ai, A
†
j ] = δij . We

define β = G1/G2 as the ratio of the coupling strengths.
The detuning between the resonator fundamental fre-
quencies should satisfy the relation

ω1 − ω2 = g(β2 − 1)/β. (6)

Assuming that the two drives are of the same frequency
ωd,i = ωd, we express Hs in Eq. (4) in terms of A+ and
A− as follows:

Hs =
1

2
ωqσz +

∑
i=±

ΩiA
†
iAi +Gzσz(A

†
+ +A+) +Gxσx(A†+ +A+) +

∑
i=±

εi(A
†
ie
−iωdt + H.c.), (7)

where the renormalized eigenfrequencies Ω± and the
driving strengths ε± for the supermodes A± are presented
in Table I, and

Gz = G cos θ, (8a)

Gx = −G sin θ (8b)

are the longitudinal and transverse coupling strengths
between the qubit and the supermode A+, respectively.
From Eq. (7), we find that the supermode A− decouples

from the qubit. Let us apply the frame rotated by the

unitary polariton transformation exp[−λσz(A†+ − A+)],
with λ = Gz/Ω+ [62, 74], and use the commutation re-
lation

[A+, f(A+, A
†
+)] =

∂f(A+, A
†
+)

∂A+
,

where f(A+, A
†
+) can be expanded in a power series of

the supermodes A+ and A†+. Then the total Hamiltonian
becomes

Hs =
1

2
ωqσz +

∑
i=±

ΩiA
†
iAi +Gx

{
σ+

[
A†+f(λ) + f(λ)A+

]
+ H.c.

}
+
∑
i=±

εi(A
†
ie
−iωdt + H.c.)− 2λε+σz cos(ωdt), (9)

where f(λ) = exp[2λ(A†+ − A+)]. For weak driving
strengths ε1,2 and a small Lamb-Dicke parameter λ �
1 [75], 2λε+ is a much smaller parameter. Therefore the

last term in H̃s can be neglected.

Let us now show how to realize multi-photon processes
by setting ωq ' nΩ+, with n being the order of the
photon-qubit transitions. By expanding the third terms
in Eq. (9) in terms of the small parameter λ, and keep-
ing only the resonant terms, we obtain the corresponding

Hamiltonian for the n-photon processes,

Hn = Gx
∑∞
m=1

[
B1(m,n)σ+A

†m
+ Am+n

+ + H.c.
]

+Gx
∑∞
m=0

[
B2(m,n)σ+A

†m
+ Am+n

+ + H.c.
]

,(10)
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Supermode A+ Supermode A−

Eigenfrequencies Ω+ = ω1 + g
β , Ω

′

+ = Ω+ − 4G2
x

3Ω+
Ω− = ω2 − g

β

Driving strengths ε+ = βε1+ε2√
1+β2

ε− = ε1−βε2√
1+β2

First-excited states |ψ1+〉 = β|10〉+|01〉√
1+β2

|ψ1−〉 = |10〉−β|01〉√
1+β2

Second-excited states |ψ2+〉 = β2|20〉+
√

2β|11〉+|02〉
1+β2 |ψ2−〉 = |20〉−

√
2β|11〉+β2|02〉
1+β2

Effective nonlinear coupling couples with the qubit decouples from the qubit

TABLE I. The parameters and eigenstates of the two supermodes A+ and A−, according to the Hamiltonian in Eq. (14).

where the coefficients Bi(m,n) are expressed as

B1(m,n) = e−2λ2 (−1)m+n(2λ)2m+n−1

(m− 1)!(m+ n)!
, (11a)

B2(m,n) = e−2λ2 (−1)m+n−1(2λ)2m+n−1

m!(m+ n− 1)!
. (11b)

From Eq. (10), we conclude that, in principle, arbitrary
multi-photon processes between the qubit and one su-
permode of the two resonators can be induced in this
circuit-QED system. However, for a small parameter λ,
the rates of n-photon transitions, which are determined
by B1(m,n) and B2(m,n), decrease rapidly with increas-
ing m and n; so higher-order photon-qubit transitions
have slower rates and, therefore, can be overwhelmed by
the rapid oscillation terms and decoherence channels.

In experiments, the interaction in a circuit-QED sys-
tem can easily enter into the strong-coupling regime [76–
78]. For two superconducting resonators oscillating at
frequency ωi/(2π)=2.5 GHz with Gi=0.06ωi, and by set-
ting θ = π/4, the rates for the two-photon (n = 2)
and three-photon transitions (n = 3) between the qubit
and the supermode A+ are Θ2/(2π) '18 MHz and
Θ3/(2π) '1.1 MHz, respectively.

Here we assume that the qubit should be operated

around its optimal point (but not exactly at this point),
so the dephasing noise of the qubit is the dominant de-
coherence channel. As reported in Ref. [79], for a flux
qubit operated around the optimal point (the flux bias
is Φb ∼1×10−3Φ0, with Φ0 being the flux quantum), the
dephasing rate was measured about 6 µs−1 (the corre-
sponding dephasing rate Γf/(2π) ' 1 MHz). The qual-
ity factor Q of a superconducting resonator can easily
exceed 104 [80] (i.e., the decay rate γ/(2π) '0.25 MHz).
Thus, the rate for the two-photon (three-photon) transi-
tions exceeds (is comparable to) all the decoherence rates
in current experimental implementations, and it is possi-
ble to observe quantum coherent phenomena due to these
multiphoton processes.

III. ANALYTICAL RESULTS

A. Photon blockade in two resonators

In this part, we will demonstrate the single-photon
blockade in the two resonators, which can be induced by
the two-photon processes. By setting ωq ' 2Ω+ � Gx
and neglecting the last term, we expand Eq. (9) to first
order in λ, and obtain

Hs
∼=

1

2
ωqσz +

∑
i=±

ΩiA
†
iAi +Gxσx(A†+ +A+) + 2λGx

[
σ+(A†2+ −A2

+) + H.c.
]

+
∑
i=±

εi(A
†
ie
−iωdt + H.c.). (12)

The effective Hamiltonian for the third term can be
expressed as 4G2

x/ (3Ω+)σzA
†
+A+, which can be viewed

as the dispersive coupling between the qubit and the su-
permode A+ [81]. In this paper, we find that the qubit
remains effectively in its ground state, so this term will
only renormalize the eigenfrequency of the supermode
A+ to Ω

′

+ = Ω+ − 4G2
x/ (3Ω+). Assuming ωq = 2Ω

′

+,

and performing the unitary transformation

U = exp

{
−iωdσzt− i

∑
i=±

ωdA
†
iAit

}
, (13)
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we obtain the following time-independent Hamiltonian
by neglecting the fast-oscillating terms in Hs

Heff =
1

2
∆+σz +

∑
i=±

∆iA
†
iAi

+ Θ
(
σ+A

2
+ + σ−A

†2
+

)
+
∑
i=±

εi(A
†
i +Ai), (14)

where Θ = −2λGx, ∆+ = Ω
′

+ − ωd is the frequency
detuning between the supermode A+ and the drive field,
and ∆− = ∆+ + ∆2 with

∆2 =
4G2

x

3Ω+
− g(1 + β2)

β
(15)

is the frequency difference between these two super-
modes, which can be obtained from the parameters in
Eq. (6) and Table I. The third term in Eq. (14) describes
the quadratic coupling between the supermode A+ and
the qubit, while the supermode A− decouples from the
qubit. Moreover, the supermode A+ (A−) is driven with
strength ε+ (ε−) and detuning ∆+ (∆−).

As shown in Table I, the ground state of the system is
|g〉 ⊗ |ψ0〉 = |g〉|00〉, and the first-excited states for the
supermodes A+ and A− are the single-photon entangled
states

|ψ1±〉 =
G1|10〉 ±G2|01〉√

G2
1 +G2

2

. (16)

Without the nonlinear coupling of the resonators with
the qubit, the second-excited states for the supermodes
A+ and A− become |ψ2+〉 and |ψ2−〉, respectively, which
are defined by

|ψ2±〉 =
G2

1|10〉 ±G1G2|10〉+G2
2|01〉

G2
1 +G2

2

. (17)

However, due to the effective nonlinear coupling, the sec-
ond excited states for supermode A+ are the two dressed
(as marked by the subscript d) states

|Ψd,±〉 =
|g〉|ψ2+〉 ± |e〉|00〉√

2
(18)

with energy splitting 2
√

2Θ, as shown in Fig. 2. As a con-
sequence, the energy levels of supermode A+ become an-
harmonic. It should be noted that ε± can conveniently be
adjusted by changing the pumping strengths ε1 and ε2, as
presented in Table I. Hence, under the conditions: ∆− �
ε−, or ε− ' 0, the supermode A− cannot be driven effec-
tively. Meanwhile, if the supermode A+ are resonantly
driven with strength ε+, the state |ψ1+〉 will be occupied,
and the first photon can enter into the two resonators.
However, the two-photon state |ψ2+〉 can hardly be ex-
cited due to the non-existence of available states. Thus,
for the two resonators, the two-photon states |20〉, |02〉,
and |11〉 will be of extremely low probabilities. Similar to

the case in Refs. [28, 82], the Hilbert space of this com-
posite system is only spanned by the vacuum and single-
photon states. These two resonators behave as a qubit
with the ground and excited states being |ψ0〉 = |00〉 and
|ψ1+〉, respectively.

B. Input-output relations for the three ports

We consider the input and output ports as sketched in
Fig. 1. At the outer edges, each resonator is capacitively
coupled to two semi-infinite transmission lines [64]. By
combining one transmission line of each resonator as port
3 [83], we achieve three input and output ports. Here we
discuss the first-order correlation features of the output
field from these three channels. The second-order corre-
lation functions will be discussed in Sec. IV.C.

The corresponding boson operators for the input and
output modes of the ith port are denoted as bin,i and
ci, respectively. According to the input-output relations,
the input, output, and intra-resonator fields are linked
through the boundary conditions [83–85],

c1 = bin,1 +
√
κ1,1a1, (19a)

c2 = bin,2 +
√
κ2,1a2, (19b)

c3 = bin,3 +
√
κ1,2a1 +

√
κ2.2a2, (19c)

where κi,j is the photon escape rate from the resonator i
to its jth line [64, 83]. With the intrinsic loss rate κin,i of
the resonator i, the total loss rate for this resonator can
be expressed as γi = κin,i + κi,1 + κi,2. Without loss
of generality, we assume that the decay rates of all the
channels for each resonator are the same, i.e., κin,i =
κi,j = γi

3 for i, j = 1, 2. Moreover, the input fields bin,i
of the three ports are all independent quantum vacuum
noises, and satisfy the Markov correlation relations:

〈bin,i(t)b†in,j(t
′
)〉 = δ(t− t

′
)δij , (20)

so all the normally-ordered cross correlations between the
intra-resonator and input field are zero, and the correla-
tions of output fields at each port can be expressed only
with the resonator operators. The average output pho-
ton numbers collected through the three ports, which are
proportional to the first-order correlation functions with
the zero-time delay, can be expressed as

N1 = 〈c†1c1〉 =
γ1

3
〈a†1a1〉, (21a)

N2 = 〈c†2c2〉 =
γ2

3
〈a†2a2〉, (21b)

N3 = 〈c†3c3〉 =
γ1〈a†1a1〉+ γ2〈a†2a2〉

3

+

√
γ1γ2(〈a†1a2〉+ 〈a†2a1〉)

3
. (21c)

We will apply these input-output relations, in particular,
in Sec. IV.C.
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FIG. 3. (Color online) Time evolutions of the probabili-
ties for the system described by H = Hs (shown with solid
curves) and H = Heff (marked with symbols) in the (a)
nondissipative and (b) dissipative cases. The initial state is
|0, 0〉|g〉. (a) Without considering any decay channels, the
time-evolution of the probabilities P (0, 0) and P (ψ1+) exhibit
the Rabi oscillations between the states |0, 0〉 and P (ψ1+). (b)
The decay of the probabilities assuming the decoherent rates
Γ = Γf/2 = γ1 = γ2 = 1. We find that the sum of P (0, 0)
and P (ψ1+) is almost equal to 1 for all the evolution times.
Thus, this sum can be considered as a fidelity measure of op-
tical state truncation resulting in photon blockade. Here we
consider that the two modes are degenerate, i.e., ∆2 = 0.

IV. NUMERICAL RESULTS

A. Time-dependent solutions of the master
equation

In this section, we numerically demonstrate that
single-photon blockade can occur in our system even as-
suming amplitude and phase damping as described by the
master equation. Numerical computations of the time-
evolution solution of the master equation were performed
using the Python package QuTiP [86, 87].

With Γf (Γ) denoting the pure dephasing (decay) rate
of the qubit, the evolution of the reduced density operator
ρ(t) is governed by the standard Lindblad-Kossakowski

FIG. 4. (Color online) (a) Two-resonator photon-number
probabilities P (n1, n2) and (b) photon-number probabilities

P (k) of the resonator k = 1 and k = 2 for the output steady
state (i.e., for t → ∞) for the same parameters as those in
Fig. 3(b). It can be found that the multi-photon states are
hardly excited.

master equation,

dρ(t)

dt
= −i[H, ρ(t)] + ΓD[σ−]ρ(t)

+
Γf
2
D[σz]ρ(t) +

∑
i=1,2

γiD[ai]ρ(t), (22)

where the Lindblad superoperator D, acting on ρ(t) with
a given collapse operator B, is defined by D[B]ρ =
BρB†− 1

2 (B†Bρ−ρB†B). For simplicity, we assume that
all the parameters are dimensionless. By setting β = 1,
we choose the two resonators with the same frequency
ωi = 2500 and the same coupling strength Gi = 0.06ωi.
As a result, the effective quadratic coupling strength is
Θ = 18. We applied two coherent drives with the un-
balanced strengths ε1 = 0.95 and ε2 = 1 for the two
resonators. As a result, the two supermodes A+ and A−
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are driven resonantly with the strengths ε+ = 1.38 and
ε− = −0.035, respectively (which can be calculated via
the relations shown in Table I).

First, we consider the two supermodes are degenerate,
i.e., ∆2 = 0. According to Eq. (15) we obtain the direct
coupling strength between the two resonators to be equal
to g = 6. Defining the probabilities

P (n1, n2) = 〈n1, n2|ρ(t)|n1, n2〉,
P (k)(n) = 〈nk|ρ(t)|nk〉,
P (ψ1+) = 〈ψ1+|ρ(t)|ψ1+〉

for the Fock states |n1, n2〉, |nk〉 (the Fock states of the
kth resonator), and the Bell-state |ψ1+〉, we numerically
simulate the original Hamiltonian H = Hs in Eq. (4)
and the effective Hamiltonian H = Heff in Eq. (14), re-
spectively. The time-dependent evolutions are plotted in
Fig. 3, where subplot (a) [(b)] corresponds to the nondis-
sipative (dissipative) case.

It can be seen that the dynamical evolutions governed
by Heff (the curves marked with symbols) and Hs (the
solid oscillating curves) match well each other in both
nondissipative and dissipative cases, indicating that the
approximations adopted for deriving the effective Hamil-
tonian are valid. Since Θ � ε+ and γ1,2 � ε−, only
the first excited state |ψ1+〉 of the supermode A+ can
be excited effectively. Therefore, the Hilbert space of
two resonators is truncated into a two-level system due
the quadratic coupling. In Fig. 3(a), we find that the
amplitudes of P (0, 0) and P (ψ1+) approximately exhibit
qubit-like Rabi oscillations without the consideration of
any decay channel.

In Fig. 3(b), we consider the dissipative case, and find
that the sum of P (0, 0) and P (ψ1+) is almost equal
to 1, so the multiphoton probabilities P (n1, n2) with
n1+n2 ≥ 2 are of extremely low amplitudes. In this case,
the two resonators behave as a single qubit. In Fig. 4,
we plot the probabilities for photon states (n1, n2) and
the photon number distribution of each resonator for the
original Hamiltonian H = Hs when t → ∞. We find
that, for each resonator, only a single-photon state can
be excited. For the two resonators, the probabilities of
multi-photon states are all smaller than 5 × 10−3, while
the states P (0, 0), P (0, 1), and P (1, 0) are effectively oc-
cupied. This phenomenon can be explained as single-
photon two-resonator blockade; that is, only one photon
can be detected in these two resonators during two zero-
time-delay measurements.

Note that we describe the dissipative dynamics of
our system by the standard master equation under
the Markov approximation and assume weak couplings
among all subsystems: the qubit, each resonator, and
the environment. To capture the non-Markovian effects
on the photon blockade, one can use, e.g., the effective
Keldysh action formalism [88], as recently applied in a
similar physical context in Ref. [89]. Moreover, to study
photon blockade in our system in the ultrastrong or deep-
strong coupling regimes, the generalized master equation

can be applied within the general formalism of Breuer
and Petruccione (see sect. 3.3 in Ref. [90]). This gener-
alized master equation was derived in detail for a circuit-
QED system in Ref. [91]. In that approach all subsys-
tems (in our case: the qubit and two resonators) would
dissipate into a single entangled channel. This is in con-
trast to the standard master equation, as analyzed here,
where we assume separable dissipation channels for each
subsystem.

In the following sections, we focus on the steady-state
solutions of the master equation, i.e., ρss ≡ limt→∞ ρ(t),
by adopting the time-independent Hamiltonian H = Heff

and using a shifted inverse power method implemented
in Ref. [87].

B. Phase-space description of photon blockade

To visualize the nonclassical properties of the fields
generated in our superconducting circuit, we apply the
phase-space formalism of Cahill and Glauber [92]. This
formalism enables a complete description of the dynam-
ics of any quantum system in terms of quasiprobability
distributions (QPDs) and, thus, without applying opera-
tors and their corresponding calculus (as in the standard
quantum-mechanical formalisms of, e.g., Schrödinger and
Heisenberg).

The Cahill-Glauber s-parametrized QPD,W(s)(α), for
s ∈ [−1, 1], of a given single-mode state ρ can be defined
via its Fock state representation as follows [92]:

W (s)(α) =

∞∑
k,l=0

〈k|ρ|l〉〈l|T (s)(α)|k〉, (23)

given in terms of the operator T (s)(α), which can be de-
fined via its Fock-state elements:

〈l|T (s)(α)|k〉 = c

√
l!

k!
yk−l+1zl(α∗)k−lLk−ll (xα), (24)

where xα = 4|α|2/(1−s2), y = 2/(1−s), z = (s+1)/(s−
1), c = (1/π) exp[−2|α|2/(1−s)], and Lk−ll are the associ-
ated Laguerre polynomials [93]. The real and imaginary
parts of the QPD argument α are usually identified as
the canonical position and momentum, respectively. It is
seen that this s-parametrized QPD is a generalization of
the Wigner W function for s = 0, the Husimi Q function
for s = −1, and the Glauber-Sudarshan P function in
the limiting case for s = 1.

The generalization of these single-mode QPDs for the
multimode case is straightforward. However, for brevity,
we will not present this generalization here, but will focus
on the QPDs given by Eq. (23) for the single-mode (i.e.,
first-resonator) reduced output states.

In Fig. 5 we plotted the s-parametrized QPDs for (a)
s = 0 (which corresponds to the Wigner function), (b)
s = 1/2 and (c) s = 0.54 for a given choice of parameters
of our system. These plots are tomographic projections
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FIG. 5. (Color online) Single-resonator quasiprobability distributions W (s) with parameter (a) s = 0 (corresponding to the

Wigner function), (b) s = 1/2, and (c) s = 0.54 for the steady-state solutions ρ
(1)
ss = Tr2(ρss) of the first resonator as a function

of its canonical position Re(α1) and momentum Im(α1). The corresponding plots for the second resonator for ρ
(2)
ss = Tr1(ρss)

are very similar to these and, thus, are not presented here. The other parameters used here are the same as those in Fig. 3(b).
The negativity of the QPD shown in panel (c) clearly reveals the nonclassical character of the state generated via photon
blockade. We note that the parameter s = 0.54 was chosen to be slightly larger than the nonclassical depth s0 = 0.537 of the
state (or more precisely, of the corresponding perfectly-truncated qubit state). Thus, the QPD shown in (c) is non-positive, as
indicated by the blue region.

of the QPDs, where their negative regions are marked in
blue, as seen in Fig. 5(c) for some values of the canon-
ical position Re(α1) and momentum Im(α1) of the first
resonator. The negative regions of a given QPD reveal
the nonclassical character of the generated state. For a
precise definition of nonclassicality as well as its mea-
sures and witnesses see, e.g., Refs. [94, 95] and references
therein. It is seen that only the QPD shown in Fig. 5(c)
explicitly shows the nonclassicality of the analyzed state.
This nonclassicality cannot be easily concluded by ana-
lyzing, e.g., the nonnegative Wigner function in Fig. 5(a).

The Cahill-Glauber formalism enables to define mea-
sures of nonclassicality (or quantumness) of a quantum
system. These include the nonclassical depth τ [96] (for a
recent review see Ref. [95]). This measure can be defined
as the minimum amount of Gaussian noise (quantified
by the parameter s) required to destroy the nonclassi-
cality or, equivalently, to change the negative function
P ≡ W(1) into a non-negative W(s0), i.e.:

W(s0)(α) = min
s
c′
∫

exp

(
−2|α− β|2

1− s

)
W(1)(β)d2β ≥ 0,

(25)
where s0, s ∈ [−1, 1) and c′ = 2/[π(1 − s)]. The Lee
nonclassical depth τ for a given state ρ corresponds to
this minimal Cahill-Glauber parameter s0 as follows

τ(ρ) =
1

2
(1− s0). (26)

Recently, it was shown that the nonclassical depth for
a qubit state, defined by the vacuum and single-photon

states, is given by [95]:

τ(ρ) =
〈1|ρ|1〉2

〈1|ρ|1〉 − |〈0|ρ|1〉|2
. (27)

Thus, if a perfect qubit state could be generated by
photon blockade, then its nonclassicality can be exactly
given by Eq. (27). However, in our system we predicted
the generation of only effective non-perfect qubit states,
which have a minor contribution from the Fock states
with a larger number of photons. Specifically, the con-
tribution of such terms is less than 5 × 10−3, as seen in
the subset of Fig. 4(a). Such imperfections of an effec-
tive qubit state result in its nonclassical depth to be only
approximately given by Eq. (27).

For the system parameters chosen in Fig. 5, the non-

classical depth is τ(ρ̄
(1)
ss ) = 0.23, which corresponds to

s0 = 0.537, where ρ̄
(1)
ss is the single-resonator generated

state ρ
(1)
ss = Tr2(ρss), which is artificially truncated to

the qubit Hilbert space. The nonclassical depth for the

state ρ
(1)
ss , which is calculated numerically with a high

precision in a higher-dimensional Hilbert space, is only
slightly larger than that obtained for the qubit truncated

state ρ̄
(1)
ss .

C. Nonclassical photon-number correlations in
photon blockade

Here we analyze nonclassical photon-number correla-
tions of the stationary output fields generated in our su-
perconducting system. We will show that the output sig-
nals in all the three ports can exhibit both sub-Poissonian
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FIG. 6. (Color online) The two-time second-order correlation
functions g21(τ) (red dashed curve), g22(τ) (blue dot curve)
and g23(τ) (black solid curve) as functions of the delay time τ
for ports 1, 2 and 3. All these three second-order correlation
functions are much smaller than 1, and show dips at zero-
time delay τ = 0. These dips reveal strong sub-Poissonian
photon number statistics, since g2i(τ = 0) ≈ 0, while the
increase of g2i(τ) with increasing τ from τ = 0 reveal photon
antibunching. The parameters used here are the same as those
in Fig. 3(b).

photon-number statistics and photon antibunching under
appropriate conditions.

Let us define the time-delay second-order correlation
function of the output field of the steady state as

g2i(τ) = lim
t→∞

〈c†i (t)c
†
i (t+ τ)ci(t+ τ)ci(t)〉

〈c†i (t)ci(t)〉〈c
†
i (t+ τ)ci(t+ τ)〉

, (28)

where τ is the time-delay between two measurements. At
τ = 0, the second-order correlation function of the three
output ports can be expressed as

g21(0) = N−2
1 〈a

†
1a
†
1a1a1〉, (29a)

g22(0) = N−2
2 〈a

†
2a
†
2a2a2〉, (29b)

g23(0) =
1

9N2
3

∑
j,k,m,l=1,2

√
γiγkγmγl〈a†ja

†
kamal〉. (29c)

Several previous studies on photon (phonon) blockade
equate the concepts of photon antibunching and sub-
Poissonian photon-number statistics. However, we treat
these effects distinctly according to their standard def-
initions. Specifically, for stationary fields, photon anti-
bunching (bunching) means that g2i(τ) > g2i(0) [g2i(τ)
< g2i(0)], that is, a local minimum (maximum) around
the zero-time delay [94, 97]. The sub-Poissonian (super-
Poissonian) photon statistics only indicate that g2i(0) <
1 [g2i(0) > 1]. Thus, sub-Poissonian statistics does not
imply photon antibunching and vice versa [98]. Note that
both photon antibunching and sub-Poissonian statistics

are key features for an ideal single-photon source. We
will show that both of these two purely nonclassical ef-
fects can be observed in our proposal.

As discussed in Sec. III.A, given that only states |00〉,
|10〉, and |01〉 are of large probabilities, while the two-
photon states |20〉, |02〉, and |11〉 are of extremely low
probabilities, we will observe single-photon blockade in
two resonators: A single photon in one resonator can-
not only blockade the second photon in this resonator,
but can also blockade another photon from being ex-
cited in another resonator. Consequently, once the pho-
ton escapes from the two resonators can the system be
reexcited. As a result, the photon distribution from
ports 1 and 2 are both sub-Poissonian, and the cross-
correlation between two resonators displays the anticor-
relation. Moreover, in the following sections, we will
show that the field from port 3 also exhibits both sub-
Poissonian statistics and antibunching. Thus, a single
photon can be emitted from ports 1 and 2, or alterna-
tively from port 3.

In Fig. 6, the time-delay second-order correlation func-
tions g2i(τ) of the steady state of the output port i are
plotted, from which we find that g2i(τ)� 1 and all show
dips at τ = 0, indicating that the output microwave fields
from the three ports exhibit both sub-Poissonian photon-
number statistics and photon antibunching.

In Fig. 7, we plot the computed values of log10[g2i(0)]
and Ni changing with θ and ∆+. Here we assume that
the drives for the two resonators are of the same strength,
while the phase difference between the two microwave
drives is θ, i.e, ε1 = ε∗2 = exp(iθ/2), and the correspond-
ing driving strengths for the supermodes A+ and A− are
ε+ = 2 cos(θ/2) and ε− = 2i sin(θ/2), respectively. It is
obvious that ε+ (ε−) decreases (increases) with increasing
|θ| in the regime [0, π]. Since the resonators 1 and 2 are
identical, the modes a1 and a2 share the same dynamics
and, thus, we only plot g21(0) and N1. In particular, due
to γ1/γ2 = β = 1, for port 3 we have

N3 ∝ 〈A†+A+〉,

g23(0) ∝ 〈A†+A
†
+A+A+〉/〈A†+A+〉2,

so the photon statistics of the output field from port 3 is
determined only by the properties of the supermode A+

under these conditions.

In the left panel of Fig. 7, we consider that the two su-
permodes are degenerate with ∆2 = 0. Around ∆+ = 0
(i.e., the drive for the supermode A+ is resonant), both
g21(0) and g23(0) show a dip at θ = 0. However, with
increasing |θ|, the driving strength ε− for the supermode
A− goes up, leading to its eigenstates |ψi−〉 being effec-
tively excited. It can easily be verified that mode a1

satisfies

〈ψi−|a†1a1|ψi−〉 6= 0, (30a)

〈ψj−|a†1a
†
1a1a1|ψj−〉 6= 0, (30b)
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FIG. 7. (Color online) The average photon escape rate N1 (N3) and the second-order correlation function g21(0) [g23(0)] from
port 1 (port 3) versus the drive detuning ∆+ and the phase difference θ. The left panel corresponds to the degenerate case
(∆2 = 0) while the right panel shows the nondegenerate case (∆2 = 10). Experiments could adjust the coupling capacity C
between the two resonators, to change the frequency separation between the two supermodes. In the plot of the second-order
correlation function g2i(0), the solid black closed loops in (a, b, e, f) correspond to log10[g2i(0)] = −1 and the points inside the
loops indicate that the output fields exhibit a strong sub-Poissonian character. It can be found that, in both degenerate and
nondegenerate cases, g21(0) and g23(0) can display dips around ∆+ = 0 and θ = 0. The other parameters used here are the
same as those in Fig. 3(b).

while for supermode A+:

〈ψi−|A†+A+|ψi−〉 = 0, (31a)

〈ψj−|A†+A
†
+A+A+|ψj−〉 = 0, (31b)

where i ≥ 1 and j ≥ 2. Thus, the eigenstates of the su-
permode A− being effectively excited lead to the increase
of both output photon number N1 and second-order cor-
relation function g21(0). However, their contributions to
N3 and g23(0) vanish according to Eqs. (31a) and (31b).
In Figs. 7(a) and 7(b), it can be found that, compared
with g23(0), g21(0) is much more sensitive to the changes
of θ: even though θ is a slightly bias from 0, the photon
statistics of the output field from port 1 will not be sub-
Poissonian any more. In Fig. 7(c) we find that, around
∆+ = 0, the average photon number N1 from port 1 in-
creases with |θ|. At θ = ±π, the drive strength for the
supermode A− and the photon number in resonator 1
both reach their maxima. However, the field from port 1
is not sub-Poissonian any more. The photon output N3

from outport 3 vanishes at θ = ±π, as shown in Fig. 7(d),
for two reasons: first, the drive strength ε+ for the su-

permode A+ decreases to zero; second, there is no con-
tribution from the eigenstates |ψj−〉 of the supermode
A−.

In the right panel of Fig. 7, we plot the non-degenerate
case with ∆−−∆+ = 10. By comparing with the degen-
erate case, we find that both g21(0) and g23(0) display
the sub-Poissonian behavior in a wider range of θ. In
this case, despite of increasing θ, the driving strength ε−
for the supermode A− is still far off-resonance around
∆+ = 0, as shown in Fig. 2. Therefore, the states |ψi−〉
cannot be effectively excited, so their contributions for
the mode a1 are negligible. Only the driving ε+ for the
supermode A+ affects N1 and g21(0). Due to the nonlin-
ear coupling between the supermode A+ and the qubit,
only the state |ψ1+〉 can be excited effectively. Compared
with the degenerate case in Fig. 7(a), g21(0) in Fig. 7(e)
is less sensitive to the phase difference θ. In Fig. 7(g),
we find that, around ∆+ = −10, the photon number N1

from port 1 is very large, owing to the resonant driving of
the supermode A−. Since there is no nonlinear coupling
between the supermode A− and the qubit, multi-photon
states for the supermode A− are excited. Although the
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output photon number N1 is large, the second-order cor-
relation function g21(0) is not sub-Poissonian.

Last, we want to discuss another interesting phe-
nomenon. Specifically, if the direct coupling g between
the two resonators vanishes (i.e., the capacitor C is re-
moved), the two supermodes A+ and A− are still nonde-
generate, and the frequency difference is only determined
by the dispersive coupling strength, as shown in Eq. (15),
i.e, ∆2 = 4G2

x/ (3Ω+). In this case, even when only one
resonator is under a resonantly-coherent drive (for ex-
ample, ε1 = 1 and ε2 = 0), the phenomenon, that single
photon outputs from ports 1, 2, and 3, still exists under
the condition

∆2 = 4G2
x/ (3Ω+)� ε−, (32)

which can easily be realized in experiments. Thus, by em-
ploying only one coherent drive, and one auxiliary qubit
without any direct coupling between two resonators, the
single-photon outputs also exist in all the three output
channels.

D. Entanglement relation between the two cavities

To analyze the entanglement between the resonators,
we use the logarithmic negativity to measure the entan-
glement, which is given by [99]

Ec = log2 [NE(ρ̂12) + 1] , (33)

where the negativity NE(ρ̂12) quantifies the entangle-
ment of the two-resonator steady state ρ12, which can
be expressed as

NE(ρ̂12) =
||ρ̂T1

12 || − 1

2
. (34)

Here T1 denotes the partial transpose of the density ma-
trix ρ̂12 with respect to the resonator 1, and ||ρ̂T1

12 || is the

trace norm of ρ̂T1
12 . The logarithmic negativity Ec is an

entanglement monotone, which can be used for quanti-
fying the entanglement between the two resonators (i.e.,
the entanglement between signals from ports 1 and 2). In
Fig. 8, we adopt the parameters with θ = 0 and ∆2 = 10,
and plot the dependence of Ec on the ratio β. In this case,
only the first excited state |ψ1+〉 of the supermode A+

can be effectively driven. Note that |ψ1+〉 is a maximally-
entangled state (i.e., the ‘triplet’ state) when β = 1. As
shown in Fig. 8, we find that the output fields from ports
1 and 2 are entangled, and the logarithmic negativity Ec
reaches its maximum value when β = 1. We find that,
the entanglement between fields from these two ports
has a close relation with the single-photon blockade ef-
fects, which originates from optical state truncation (or
the nonlinear quantum scissors). That is, the states of
the two cavities are truncated to a qubit, with the single-
photon Bell ‘triplet’ state |ψ1+〉 being the first-excited
state.

FIG. 8. The logarithmic negativity Ec versus the coupling
ratio β. Here we fix θ = 0 and ∆+ = 0, and other parameters
are the same as those of the nondegenerate case in Fig. 7.
The vertical dashed line is at β = 1.

V. DISCUSSION AND CONCLUSIONS

In this paper we demonstrated that it is possible to
achieve single-photon outputs in a circuit-QED system
based on both longitudinal and transverse couplings. We
obtained the effective Hamiltonians and the rates for
multi-photon processes, and found that the effective non-
linear coupling between one of the supermodes and the
qubit can lead to photon blockade effects.

We note the multi-photon processes can also be in-
duced in the hybrid superconducting system with only
longitudinal coupling, which has been shown in our pre-
vious study [100]. In this work, we found that the second-
order nonlinearity can be about one order of magnitude
stronger. Moreover, the drive for the qubit is not needed
in the present case.

We have analyzed photon blockade in phase space by
applying the Cahill-Glauber s-parametrized QPDs. This
approach enabled us to show not only the nonclassical
character of the states generated via photon blockade,
but also to determine the degree of nonclassicality of the
states, using the Lee nonclassical depth.

Moreover, we considered two different output channels
for the fields: those from the individual resonators and
the joint channels of both resonators. It was found that
all the three output fields display photon antibunching
and sub-Poissonian photon-number distribution. Thus,
our proposal can be used to work as multi-output sin-
gle microwave photon devices. Afterwards, by analyz-
ing the steady-state solutions, we discussed the degener-
ate and nondegenerate cases of the two supermodes. In
the degenerate case, the second-order correlation func-
tion g21(0) of port 1 is much more sensitive to the in-
crease of the drive strength ε− for the supermode A−
than in the nondegenerate case. For the joint output 3,
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due to no contribution from the eigenstates of the super-
mode A−, g23(0) is more robust against the increase of ε−
than that of g21(0) in both degenerate and nondegenerate
cases. We also found that the state truncation of two-
resonator modes will lead to the entanglement between
two resonators.

Compared with the dispersive and resonant
microwave-photon blockade known from previous
studies, our proposal has the following two advantages:
first, the excited state of the system still retains a
photonic nature (i.e., this is a pure single-photon
Fock state rather than a polariton state); second, the
strong nonlinearity makes it possible to increase the
single-photon output rate.

It should be stressed that, to obtain multi-output chan-
nels, we consider two resonators in this paper, but these

results can also be applied to the simple single-resonator
case. We believe that our proposal can be helpful in de-
signing single-photon sources in the microwave regime.
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