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Tightly confined modes of light, as in optical nanofibers or photonic crystal waveguides, can lead
to large optical coupling in atomic systems, which mediates long-range interactions between atoms.
These one-dimensional systems can naturally possess couplings that are asymmetric between modes
propagating in different directions. Strong long-range interaction among atoms via these modes can
drive them to a self-organized periodic distribution. In this paper, we examine the self-organizing
behavior of atoms in one dimension coupled to a chiral reservoir. We determine the solution to
the equations of motion in different parameter regimes, relative to both the detuning of the pump
laser that initializes the atomic dipole-dipole interactions and the degree of reservoir chirality. In
addition, we calculate possible experimental signatures such as reflectivity from self-organized atoms
and motional sidebands.

I. INTRODUCTION

Optical systems such as tapered optical nanofibers and
photonic crystal waveguides have attracted great interest
due to their ability to support tightly confined modes of
light [1–4]. The small mode volume in such setups re-
sults in a large coupling between the guided mode and
atoms near the structure, modifying the optical proper-
ties and responses of nearby atoms [5–10]. Atoms can be
held in the evanescent field along a nanofiber by use of a
two-color dipole trap, which provides confinement in az-
imuthal and radial directions. By introducing a standing
wave, the trap can be made to constrain the atoms along
the axial direction [11–16]. In photonic-crystal waveg-
uides, a trap scheme making use of Casimir-Polder forces
could accomplish a similar goal [17, 18]. If there is no ax-
ial trapping, the atoms are free to move along the fiber or
waveguide. The atoms can then be driven either through
the guided mode or by side illumination. If dissipation is
introduced, then self-organized solutions to the equations
of motion with stable spatial configurations of the atoms
exist [19]. Similar phenomena have also been theoreti-
cally explored [20] and observed [21] for cold atoms in a
cavity. This organization arises due to the forces associ-
ated with emission and re-absorption of photons into the
guided modes, which can be described by an effective
dipole-dipole interaction [22–27]. Furthermore, the ef-
fectively infinite-range character of photon-mediated ex-
change in 1D and strong coupling to the guided modes
causes these inter-atomic forces to become quite promi-
nent [28]. The final configuration of the atoms in position
and momentum space will depend on optical properties
of the driving field.

The optical interface in nanophotonic systems need
not be perfectly bidirectional [29–32]. This is due to
the fact that a tightly confined mode has longitudinal
polarization [33]. An atom may preferentially interact
with the left- or right-propagating mode, which could

provide valuable tools for quantum optics [34]. How-
ever, self-organized configurations may be modified or
nonexistent in cases where the interaction has this chi-
ral nature. Some study for small numbers of atoms has
been done in a scattering-matrix formulation in Ref. [35],
but chiral systems were not the main focus of that
work. Self-organized configurations have several poten-
tial technological applications, including optical process-
ing, nanophotonic interfaces, and quantum information
storage [36–39]. In addition, they may serve as simula-
tors for various quantum mechanical many-body models
[40]. In addition, the strong optical nonlinearity due to
the atoms coupled to the waveguide can lead to photon-
photon interactions [41–44].

In this paper, we present analytic and numerical re-
sults showing that chiral systems will still produce self-
organized solutions. We will show how these solutions
differ from the symmetric case when the pump field is
both near and far from resonance and present proposals
for experimental detection of self-organization behavior
in chiral systems that include an analysis of optical re-
sponse to probe lasers as well as an examination of the
structure of motional sidebands in chiral systems.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system under investigation. We
then, in Sec. III, examine cases where the interaction is
entirely unidirectional both near and far from resonance
before examining (Section IV) the behavior when the sys-
tem is biased toward one direction but still allows atoms
to couple to both left- and right-propagating modes with
different strengths. Next we discuss in Sec. V means of
producing couplings with varying chirality and identify-
ing experimental signatures of differently self-organized
configurations. Finally, Section VI summarizes our re-
sults, and the Appendix contains mathematical details
omitted from the main text.
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FIG. 1. (a) Atoms are free to move along the axis z and
are illuminated from the side by a pump field of real Rabi
frequency Ω and detuning δ. They decay with different rates
into left- and right-propagating guided modes (ΓL and ΓR)
and into free space (γ). (b) The level diagram of the atom
in question and the applied field. Although drawn here as
positive (blue-detuned), δ may be of either sign.

II. SETUP

A. Physical System and Equations of Motion

Suppose that N atoms are free to move axially along
the waveguide, and that the confinement in the radial and
azimuthal directions is strong enough to neglect these
degrees of freedom, making the system effectively one-
dimensional. The atoms have a single transition with
angular frequency ω and associated wavevector in the
fiber k. The ground and excited state of the atoms are
denoted |g〉 and |e〉, respectively. The atoms are illumi-
nated from the side by a pump laser with frequency ωL,
corresponding detuning δ = ωL − ω, and real Rabi fre-
quency Ω. It should be noted that it is not necessary
to illuminate from the side, as atoms can also be illumi-
nated through the guided mode. These dynamics would
be different as each atom would be driven at a different
phase. While this may form an interesting basis for fu-
ture work, here we restrict ourselves to side illumination.
However, the numerical methods of this work would also
be applicable to these systems if the appropriate phase
was added to the driving Rabi frequencies. This setup is
illustrated in Fig. 1. The total decay rate for an atom
into all modes, both guided and free space, is denoted
Γtot. Some of this decay goes into free space and is lost
to the system, which occurs at rate γ. The decay rate
specifically into the guided modes is Γ1D, a sum of ΓL and
ΓR, the decay into left and right directions, respectively:

Γtot = Γ1D + γ = ΓL + ΓR + γ (1)

In numerical results of this paper, Γ1D = 0.25Γtot, which
is a value easily accessible in current photonic crystal
waveguides [24]. This was the value used in previous
work on the symmetric case, so that all results will
match those of Ref. [19] in the limit ΓL = ΓR. While
Γ1D = 0.25Γtot is higher than accessible with current op-
tical nanofiber technology [45], reducing Γ1D does not
qualitatively change the self-organization behavior, as
discussed in Sec. V. In particular, self-organized stable
configurations still exist if Γ1D takes a smaller or larger

value. Higher values of Γ1D/Γtot have the advantage of
stronger self-organized potentials, and therefore require
less cooling, also discussed in Sec. V.

We define a “chiral decay rate”

χ ≡ ΓR − ΓL. (2)

The advantage of separating off the chiral decay rate is
that the equations of motion will now be similar to pre-
vious work [19] with an additional term that represents
the excess coupling in one direction, as will be shown in
Eqs. (9) - (11). The chirality of the system can be char-
acterized by the fraction of the decay into guided modes
that is preferentially directed in one direction. We define
χr ∈ [−1, 1],

χr ≡
χ

Γ1D
=

ΓR − ΓL
Γ1D

. (3)

If χr = 0, then ΓR = ΓL, whereas if χr = 1, then
ΓL = 0 and all spontaneous emission into the fiber is
into rightward-propagating modes. In this fully-chiral
case, the interaction is one-way, and atoms only affect
atoms to their right. In this work, we without loss of
generality take χr ≥ 0. In all cases, numerical parame-
ters are those of the cesium D2 line [46]: the transition
has wavenumber in vacuum h̄k/(2π) = 11727 cm−1 and
decay rate in free space γ = 5.2 MHz. Throughout this
paper we present results as dimensionless ratios wherever
possible, but atomic parameters are necessary in our sim-
ulations to specify the ratio between the recoil frequency
ωr = h̄k2/2m (where m is atomic mass) and total emis-
sion rate γ.

The full atom-field Hamiltonian can be reduced to a
dissipative spin model by integrating out photonic de-
grees of freedom, as in Ref. [47]. This procedure is car-
ried out explicitly in the Appendix. The evolution of
the system density matrix ρ is then given by the master
equation

ρ̇ = − i
h̄

[H, ρ]− 1

2

∑
m

(
L†mLmρ+ ρL†mLm − 2LmρL

†
m

)
.

(4)
This can be compared to previous work on symmetry-
broken master equations, Refs. [48, 49]. The coherent
evolution is described by the following Hamiltonian,

H =
∑
j

[
p2
j

2m
− h̄δσjee − h̄

(
Ωσjeg + h.c.

)]
+
∑
j

∑
i6=j

h̄ΓL sin (k |zi − zj |)σiegσjge

+ ih̄
χ

2

∑
j

∑
i<j

[
σjegσ

i
gee
−ik|zj−zi| − σiegσjgeeik|zj−zi|

]
,

(5)

where σjµν is the atomic state operator |µ〉 〈ν| for the
atom j with µ, ν ∈ {e, g} corresponding to excited and
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ground states. The position of the jth atom is given by
zj .

The first term of Eq. (5) is a kinetic energy for mo-
mentum pj and mass m. The second term, proportional
to δ, is the energy of the excited state in the rotating
frame. The third term, proportional to Ω, represents the
interaction between the pump laser and the atoms. The
fourth term, proportional to ΓL, sums over all pairs and
describes the process of exchange of atomic excitations,
mediated by a guided photon in the case of a symmetric
coupling. The sinusoidal modulation reflects the prop-
agation phase of the photon mediating the interaction;
the interaction is infinite-ranged.

The excess in the coupling to the other mode has been
moved into the fifth term, proportional to χ. We have
chosen to work with ΓL and χ (rather than ΓL,R) in
Eq. (5) to facilitate comparison to the symmetric case,
simply by setting χ = 0.

The incoherent evolution in the master equation [Eq.
(4)] is described by the jump operators Lm, where m runs
over the N independent atomic emissions into free space
with rate γ, the symmetric decays in both directions of
the guided mode with rate ΓL, and the asymmetric decay
with rate χ:

Lj =
√
γσjge, (6)

LL,R =
√

ΓL
∑
j

e∓ikzjσjge, (7)

Lχ =
√
χ
∑
j

e−ikzjσjge. (8)

The exponential in Eq. (7) has a minus sign for the de-
cays into rightward-propagating modes. This formula-
tion is equivalent to previous work in chiral dissipative
systems [50], where ΓL and ΓR are kept separated. In the
χr = 1 case, this is a cascaded system, as described by
Refs. [48, 49, 51]. The jump operators Li,L,R are identical
to those used to describe atoms couples symmetrically to
a waveguide, as in Ref. [19].

We work in a classical limit for the motion of the atoms,
obtaining evolution equations for the expectation values
of momentum and position. This approximation is jus-
tified if the atoms are not cooled to near their motional
ground state. As we will be dealing exclusively with ex-
pectation values from now on, we will omit angle brackets
for notational convenience–z, σge, and p should be read as
expectation values. In addition, we will make the approx-
imation that atomic excitation is low enough that satu-
ration can be neglected (we treat a factor σgg−σee ≈ 1),
which also implies that the spins are not correlated, i.e.,
〈σjegσige〉 ≈ 〈σjeg〉〈σige〉. The de-correlation follows by
writing a two-atom wavefunction and evaluating the two
expectation values. Since σjee and σiee are both small, the
|ee〉 component of the wavefunction can be neglected,

and under this condition the two expectation values are
equal. The equations of motion are:

żj =
pj
m
, (9)

σ̇jge =

(
iδ − Γtot

2

)
σjge + iΩ− ΓL

∑
i 6=j

σigee
ik|zj−zi|

− χ
∑
i<j

σigee
ik|zj−zi|, (10)

ṗj = −h̄kχ
∣∣σjeg∣∣2 − 2h̄kχ<

∑
i<j

σjegσ
i
gee

ik(zj−zi)

− 2h̄kΓL<
∑
i

[
σigeσ

j
ege

ik|zj−zi|sgn (zj − zi)
]
− γppi.

(11)

The term γp does not arise from Eq. (4); it is an exter-
nal damping which removes energy from the system so
that the atoms can come to equilibrium. This is required
to achieve numerical convergence; without this term the
atoms do not achieved a self-organized equilibrium. The
external damping in these equations could be provided by
the same cooling systems that will be necessary to trap
the atoms initially. A standard optical molasses setup
would destroy the coherences that are necessary to pro-
duce the dipole-dipole interaction. However, other cool-
ing schemes may be able to provide the needed damping
force. One possibility could be a form of stroboscopic
cooling, in which the system is alternated between peri-
ods of cooling and periods of interaction. The resulting
dynamics would then resemble those analyzed here. A
further discussion of cooling and the damping coefficient
required to stabilize the system can be found in Sec. V D.

The momentum equation, Eq. (11), contains a term

−h̄kχ
∣∣σige∣∣2. This is not present in the symmetric case

(where χ = 0). It arises because spontaneous emission is
no longer symmetric. The symmetric case lacks this term
and converges to states with pj = 0 for all j, as the γp
damping term removes kinetic energy from the system,
but this is not expected for chiral couplings. Instead,
self-organized solutions in the chiral case will be those
for which pi = pj for all pairs of atoms i, j. There will be
a center-of-mass motion but the atoms will remain fixed
in relative spacing. The final momentum will be inversely
proportional to γp, and without damping the system will
continue accelerating.

B. Numerical Strategy For Finding Steady-State
Behavior

We begin with atoms in random positions and with no
initial momentum or coherences. At time t = 0, a pump
field of real Rabi frequency Ω and detuning δ switches
on, and atoms begin interacting. The system is evolved
in time according to Eqs. (9)-(10) until all the derivatives
in the equations of motion are zero, except for position
(due to the expected center-of-mass motion).
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In general, there may not be a unique steady state
that arises from this procedure. First, since the atomic
positions only enter into the equations of motion through
phase factors eikz, there is a multiplicity of solutions aris-
ing from invariance under shifts of the atomic position
by integer wavelengths. In addition, different initial con-
ditions in the random positions of the atoms could in
principle lead to different steady-state solutions, which is
particularly true when the atoms are driven close to res-
onance. In order to find a replicable and reliable steady
state, we follow a particular route in parameter space. As
discussed in Sec. III A, for infinite detuning the atomic
coherences de-couple from the positions, which leads to a
unique steady-state solution. In practice, the procedure
starts with a detuning δ = ±20Γtot, large enough that a
deterministic configuration emerges close to the δ = ±∞
solution. After the initial run, the δ = ±20Γtot equilib-
rium results for p, σ, and z are used as initial conditions
for a new simulation with δ slightly closer to resonance.
This scheme can find steady states under a near-resonant
pumping that can be replicated from one run of the pro-
gram to the next. In addition, such a preparation pro-
cedure could perhaps mirror an experimental scheme to
produce these arrangements.

This procedure illustrates the necessity of the damp-
ing rate γp. If the initial condition is far away from the
steady-state, then there will be potential energy stored in
the initial positions of the atoms. Since atomic interac-
tions mediated by photon exchange conserve momentum,
the self-organizing forces are not capable of bringing the
configuration to a low-energy equilibrium; dissipation is
required to achieve self-organization. However, the fi-
nal configuration is determined by interatomic distances,
and these are not affected by the damping rate as can be
seen by setting ṗj = 0 in Eq. (11). Therefore, the damp-
ing rate does not affect what steady-state configuration
is found. If γp is set to 0 after a steady state has been
achieved, the self-organized configuration will remain in-
tact, but it will now accelerate due to asymmetric spon-
taneous emission. The self-organization survives in an
accelerating frame.

III. CHIRAL SELF-ORGANIZATION

In this section we explore the types of self-organized
solutions that arise when χr = 1, that is, in the case
of a one-way (cascaded) interaction. In this regime,
the asymmetric decay rate χ is equal to the total decay
into guided modes Γ1D. However, to make clear which
terms we are including from the general equations, we
still write χ. First, we discuss the simpler case of the
“weak-scattering” limit (large detuning) before deriving
a general solution which allows for any detuning.

A. Weak-Scattering

In Eq. (10), one sees that the atomic coherence of each
atom j is driven by a combination of the external field
with Rabi frequency Ω and the fields rescattered into the
waveguide by other atoms i 6= j. The weak-scattering
limit is defined as the regime in which the re-scattered
fields are negligible. Quantitatively, a sufficient condition

is NΓ1D �
√
δ2 + Γ2

tot/4 and Ω� Γtot, δ. This allows us
to say that σjge = s0, for all j which can be determined

by solving the σjge equation (10) if the terms involving
other atoms are discarded:

|s0|2 =
|Ω|2

δ2 + Γ2
tot/4

. (12)

The value of s0 actually has no effect on the steady-
state positions of the atoms in the weak scattering case.
Throughout this paper in the numerics we set Ω =

.1
√
δ2 + Γ2

tot/4 so as to enforce constant saturation of
the atoms even as δ changes. Note that a different pref-
actor value for Ω rescales the σ expectation values, and
choosing different values of Ω only affects the transient
behavior but not the actual steady-state solutions.

The dynamics of a chiral system are not Hamiltonian.
This is because every atom has a damping term included
which does not conserve energy. This differs from the
symmetric case, where the damping can be omitted with-
out leading to runaway momentum and the problem can
be solved by energy minimization of the many-body po-
tential in the weak-scattering limit. We use the chiral
part of the equation of motion for momentum, Eq. (11),
but we set all σjge = s0 due to the weak-scattering condi-
tion:

ṗj = −h̄kχs2
0 − 2h̄kχs2

0<
∑
i<j

eik(zj−zi) − γppj . (13)

For an equilibrium state, the momentum will be constant,
so

pj = − h̄kχs
2
0

γp

1− 2<
∑
i<j

eik(zj−zi)

 . (14)

For the leftmost atom, the second term disappears as an
empty sum. The right-hand side of Eq. (14) must be the
same for every atom to yield a self-organized configura-
tion, pi = pj for all i, j. Therefore the sum must vanish
for all atoms. The condition is

<
∑
i<j

eik(zj−zi) ∝ ∂

∂zj

∑
i<j

sin k (zj − zi) = 0. (15)

The condition of stationary momentum is identical to a
condition in which a potential acting on a single particle
is minimized,

Vj = 2h̄χs2
0

∑
i<j

sin k (zj − zi) . (16)
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This resembles a dipole potential acting on the jth atom
which considers only the influence of atoms to its left.
Minimizing this ensures that the sum in Eq. (15) van-
ishes. Therefore, equilibrium for each particle is achieved
by minimizing this potential, even though the system as
a whole does not minimize any general many-body po-
tential.

As previously noted, there is a multitude of solutions
associated with the displacement of atoms by an integer
number of wavelengths. Therefore, instead of the actual
position zj , we will consider the fractional distance fj
satisfying 0 < fj ≤ 1, defined such that zj = λ(nj +
fj) where nj is an integer [19]. All arguments kzj to
periodic functions are replaced with 2πfj . In addition,
the position of the leftmost atom is defined to be f0 = 1
without loss of generality. The position of the next atom
is found by minimizing the next potential, which is

V1 = 2h̄χs2
0 sin 2π (f1 − 1) = 2h̄χs2

0 sin 2πf1. (17)

This is minimized by setting f1 = 3/4. The potential ex-
perienced by the next atom follows from these positions,
and so on. To find fj , we rewrite Eq. (16) as

Vj = Ej cos (2πfj − δj) , (18)

where

δj = arctan

(∑
i<j sin 2πfi∑
i<j cos 2πfi

)
− π

2
, (19)

Ej = −2h̄χs2
0

√∑
k,l

cos 2π (fk − fl) (20)

= −2h̄χs2
0

√
j + 2

∑
l

∑
k<l

cos 2π (fk − fl) (21)

= −2h̄χs2
0

√
j. (22)

The last equality follows from Eq. (15). Equation (18)
implies that the minimal single-particle energy Ej is
achieved when

fj =
δj
2π
. (23)

The total energy of the chain is
∑
Ej ∝ N3/2 to leading

order in N [52].
As shown in Fig. 2, numerical results agree with the

positions predicted by Eq. (23) for both the χr = 1 re-
sults as calculated by the methods of this section as well
as the χr = 0 results [19]. In addition, equilibrium con-
figurations in the weak-scattering limit are included for
several intermediate chiralities. For chiralities less than
χr = 1, the arrangement of atoms is closer to that of
the symmetric case, where the spacing between atoms is
uniform and equal to (1− 1

2N )λ [19].
The similarity between symmetric and intermediate

cases is more pronounced near the right end of the chain,
where the spacing between atoms is quite close to uni-
form. This can be understood intuitively by realizing

0 10 20 30 40 50
j

0.0

0.2

0.4

0.6

0.8

1.0

f j

χr = 0

0. 3

0. 6

1. 0

FIG. 2. Results of weak-scattering calculations, showing nu-
merical results (points) for a range of chiralities, and analytic
results (lines) for χr = 0, 1. The x-axis enumerates the atoms
while the y-axis shows their fractional positions as defined in
the text.

that atoms on the right side of the chain receive pho-
tons from almost all other atoms in both the symmet-
ric and chiral cases, while an atom towards the left re-
ceives photons from substantially fewer atoms in the chi-
ral case. Therefore, we might expect atoms further down
the chain would resemble the symmetric case more. In
addition, it is known that the energy of the symmetric
weak-scattering case scales as N2 [19], so the fact that it
dominates over the chiral configuration (with E ∝ N3/2)
is sensible.

B. Near Resonance

In the purely chiral case, the system can be solved
exactly for any detuning, even outside of the weak-
scattering limit discussed in Sec. III A. Consider the
equations of motion for a single atom j in the purely
chiral case:

ṗj = −h̄kχ
∣∣σjge∣∣2 − 2h̄kχ<

∑
i<j

σjegσ
i
gee

ik(zj−zi) − γppj ,

(24)

σ̇jge =

(
iδ − Γtot

2

)
σjge + iΩ− χ

∑
i<j

σigee
ik|zj−zi|. (25)

Setting both time derivatives to zero gives

pj = − h̄kχ
γp

∣∣σjge∣∣2 + 2<
∑
i<j

σjegσ
i
gee

ik(zj−zi)

 , (26)

σjge =
−iΩ + χ

∑
i<j σ

i
gee

ik|zj−zi|

iδ − Γtot

2

. (27)

Once again, all the pj ’s must be the same. Therefore all
pj = p0, and since the equations of motion for p0 do not
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0 10 20 30 40 50
j

0.0
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0.4

0.6

0.8

1.0
f j

δ=∞

−2Γtot

+2Γtot

FIG. 3. Results of calculations near-resonance at full chirality
(χr = 1), showing numerical results (points) and analytic
results (lines). The weak-scattering case (δ →∞) has been
included for comparison.

refer to the position of the other atoms, it can be found
to be

pj = − h̄kχ
γp

∣∣σ0
ge

∣∣2 , (28)

where the value of σ0
ge follows from the j = 0 case of

Eq. (27). By substituting this into Eq. (26), the general
condition for all atoms is found,∣∣σjge∣∣2 − ∣∣σ0

ge

∣∣2 = −2h̄kχ<
∑
i<j

σjegσ
i
gee

ik(zj−zi). (29)

The damping rate γp dropped out of the equations of
motion entirely, just as in the weak-scattering case. It is
also important that the equations of motion for j do not
make any references to an atom i > j. Thus these equa-
tions can be easily solved iteratively starting from the
first atom, j = 0, for any value of δ. This iterative ap-
proach requires a purely one-way coupling (χr = 1). As
shown in Fig. 3, this analytical result agrees with the nu-
merical results precisely, although closer to resonance the
numerical method does not converge to a self-organized
solution.

The iterative nature of the calculation appears to have
physical significance. In simulation, each atom tends to
come to equilibrium “one by one,” with an atom equi-
librating later if further down the chain. This trend in
equilibration times is illustrated for the weak-scattering
case in Fig. 4.

IV. SMALL CHIRALITIES NEAR RESONANCE

In Sec. III A, we discuss results at arbitrary chirality for
pump fields far from resonance, while Sec. III B focused
on cases near resonance only for fully chiral (χr = 1)
cases. In this section, we turn our attention to the general
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FIG. 4. The time required to converge to equilibrium for
each atom. This time is defined as the latest time at which
the atomic momentum is more than 1% away from its equilib-
rium value. This data represents 10,000 separate instances of
the weak-scattering limit with χr = 1 in random initial posi-
tions each time. For each trial, the time for the first atom to
converge to its final position was calculated, and this was then
subtracted from all data points to isolate the trends. Atoms
further down the chain converge later in the process.

case, with pump fields at arbitrary detunings and χr any
value.

For χr >∼ .65 the system does not converge to a steady-
state in the weak-scattering regime. Instead, a limit cycle
behavior is observed, in which the atomic configuration
periodically returns to previous points, but it does not
settle into a steady-state or self-organized behavior. Sim-
ilar limit cycle behavior in driven dissipative systems was
observed in Ref. [53]. In general, the limit cycle behav-
ior emerges at χr > .6 and vanishes at χr > .99. The
locations of these dynamical transitions are sensitive to
the number of atoms used in the simulation. This be-
havior makes our protocol for starting in a far-detuned
pump field and slowly stepping down closer to resonance
unviable, and we do not examine such chiralities further.

For smaller chiralities at most detunings, there are not
large differences between cases with intermediate chiral-
ity χr < 0.65 and the symmetric case. Much of the rele-
vant behavior and analysis is contained in Ref. [19].

For small, positive detunings, small changes in chirality
can produce drastic differences in behavior. In the case of
a symmetric interaction, the atoms form a “phase-slip”
configuration in which two halves of the atomic ensem-
ble form a nearly regular lattice with spacing λ, with a
3λ/4 phase slip between them. If the two collections of
atoms were single bodies interacting with a dipole-dipole
potential, then their interaction would be proportional to
sin 2π(f2−f1), and the 3λ/4 positional difference between
them minimizes this two-body potential. The phase-slip
configuration does not occur at large chiralities, but can
emerge at lower nonzero chiralities. As chirality increases
from χr = 0, an N atom chain will no longer form two
N/2 groups, but that instead the groups become increas-



7

0 10 20 30 40 50
j

0.70

0.75

0.80

0.85

0.90

0.95

1.00
f j

χr = . 27

χr = 0

. 15

. 25

FIG. 5. Evolution of the phase-slip configurations as χr in-
creases from 0 to 0.27 at δ = Γtot. These are produced by the
numerical protocol outlined in Section II B.

ingly imbalanced until the phase slip becomes unstable
at χr ≈ 0.3 and collapses to a single lattice with spacing
close to λ (Fig. 5).

The configurations in Fig. 5 are obtained by beginning
far off resonance and slowly decreasing δ as described
in II B. However, we can also converge first to a phase-
slip configuration close to the critical chirality (where the
phase-slip configuration disappears) and then use this as
the initial condition for a simulation with slightly higher
chirality. This will still lead to a collapse at roughly the
same χr, but it allows the collapse process to be observed.
Collapse due to a quench in chirality from χr = 0.26 to
χr = 0.27 is a runaway process, in which atoms cross the
phase slip one by one. This process cascades until there
is only one chain and no phase slip.

A heuristic picture offers insight into the process of
this collapse. Consider the equation of motion for atom
j. If other atoms are frozen in their equilibrium positions
and coherences, the force atom j would experience if it
were moved away from its original zj can be determined
by calculating ṗj . (Note that we the equilibrium coher-
ence at each zj should also be recalculated.) By integrat-
ing the resulting curve, an effective potential is obtained.
The problem is not actually well-described by a poten-
tial, and this effective potential includes nonconservative
terms like the damping force. This process can be per-
formed for any atom j, but targeting the one just before
the phase slip allows us examine its stability against small
perturbations. At χr = 0, the equilibrium configuration
starts out with a “double well” potential (Fig. 6), with
both sides stable. As chirality increases, one well weak-
ens and eventually vanishes leaving only a single stable
point. The behavior of the effective potential should be
compared to the number of stable configurations at each
point in parameter space. For χr = 0, the N/2 split is not
the only stable configuration; as many as seven atoms out
of a total of fifty can be moved from one side to the other
and still maintain a stable phase-slip configuration. At
the other extreme, at χr = 0.25, there are only two sta-
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FIG. 6. The effective potential resulting from integrating the
force equation Eq. (11) in various equilibrium configurations,
ranging from symmetric (χr = 0) to just before collapse (χr =
0.25) at detuning δ = Γtot. This curve was generated by
examining the force on the last atom before the phase-slip
(the rightmost atom in the left super-atom), as illustrated in
the inset. Note that a constant vertical offset on any of these
lines has no physical significance.

ble phase-slip configurations. This movement of atoms
across the phase slip is accomplished by converging to
a stable solution at a particular χr, and then manually
setting fj = fj+1, moving the atom across the phase
slip. This modified steady state is then used as the ini-
tial condition for another run of the simulation to ensure
that another steady state exists with this configuration.
Situations that exhibit a double-well structure allow the
atom to be placed on either side of the phase-slip, but
this freedom slowly disappears as χr increases.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we first outline a scheme by which tun-
able chirality can be achieved in the optical nanofiber
platform (Sec. V A). We also present an analysis of the
optical response of self-organized ensembles by transfer
matrix methods (Sec. V B) and consider the motional
modes in the weak scattering regime (Sec. V C). Finally,
we consider other experimental concerns including the
influence of finite temperature (Sec. V D). Throughout
this section, we use the D2 line of neutral cesium, with
details given in Ref. [46].

A. Achieving Variable Chirality

In this work, χr is treated as a tunable chirality, but
we have not discussed how this might be achieved. In
many systems, this can be achieved by taking advan-
tage of spin-orbit coupling in light. A thorough theo-
retical treatment of this phenomenon can be found in
Refs. [54, 55]. Experimental measurement of chiral be-
havior in nanofibers is described in Ref. [29], while sim-
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FIG. 7. Illustration of how a variable polarization of trapping
light can be used to achieve the full range of chiralities. The
central grey circle shows a cross-section of the nanofiber. The
elongated red-blue shape represents the trapping potential,
which can be rotated by choosing a quasilinear polarization
of the trapping light rotated by θ relative to the quantization
axis. Since sweeping through this angle varies the coupling
from one chirality to the next continuously, the value of χr

will vary from −1 to 1. The positive z axis points out of the
page.

ilar measurement controlling directional emission from a
nanobeacon was performed in Refs. [56, 57]. An external
magnetic field breaks cylindrical symmetry and provides
a quantization axis (horizontal in Fig. 7) by setting the
direction of the two-level atomic dipole. Due to the con-
finement of light in the fiber, its polarization has a longi-

tudinal component which is parallel to the wavevector ~k
(in or out of the page in Fig. 7) and a transverse compo-
nent perpendicular to the quantization axis. If the longi-
tudinal and transverse amplitudes are equal (as shown at
the top of Fig. 7), this yields a circular polarization rel-
ative to the quantization axis. However, if the direction

of ~k is reversed then the two components (transverse and
longitudinal) will now change phase with respect to each
other. Therefore, light propagating in opposite directions
will have opposite circular polarizations (opposite signs
in text on top of Fig. 7). Similarly, at a diametrically
opposite position on the fiber surface (bottom of Fig. 7),

the component of polarization transverse to ~k has been
reversed. Thus, at the bottom of Fig. 7 the pairing of
circular polarization and direction of propagation will be
reversed compared to the top of the figure. At angu-
lar positions between these two positions, the two modes
are mixed, meaning light traveling in either direction will
consist of both polarizations. An atom can be coupled
to a given light field with variable, controllable chirality
by adjusting its azimuthal position.

Consider using a cesium atom in its electronic
ground state, 62S1/2. Under a pump field resonant to

the |62S1/2, F = 4,mF = 4〉 → |62P3/2, F = 5,mF = 5〉

transition, excited electrons can only decay into the
|62S1/2, F = 4,mF = 4〉 state. In addition, this decay

can only occur via the emission of a σ+ polarized photon.
If an atom is trapped on one side of the fiber (the “top”
side in Fig. 7), then it predominantly emits in the −z di-
rection. On the opposite side atoms predominantly emit
in +z. At an intermediate position (i.e., along the quan-
tization axis), atoms have access to both modes equally,
and decay symmetrically. Adjusting the azimuthal posi-
tion of the atomic ensemble relative to the quantization
axis varies the coupling from symmetric to chiral. This
is possible by adjusting the polarization of the trapping
light, which entirely controls the azimuthal position of
the trap. This scheme is similar to that used by previous
experimental realizations of chirality [58, 59].

B. Optical Signatures

Next, we establish a method by which chiral self-
organization can be detected through its optical response
to a weak probe field. Ordered spatial configurations
of atoms can be probed by sending weak guided light
through the ensemble and looking at changes in reflection
and transmission compared to both a disordered state
and a different ordered configuration [45, 60, 61]. The
optical properties of the atomic ensemble can be calcu-
lated using a transfer matrix formalism [62, 63]. It is
natural to assume that the atomic response to the probe
field will have the same chirality as the light responsible
for self-organization, which requires transfer matrix equa-
tions incorporating a chirality [45, 64]. However, if the
probe has the same chiral properties as the light used for
pumping, the interaction with probe light changes with
chirality. There are then two variables changing with χr:
the spatial configuration of the atoms in equilibrium and
the nature of their interaction with the probe. Therefore,
for what follows, we set ΓL = ΓR = Γ for the optical
response to the probe light. Physically, the probe light
might differ in either polarization or mode structure from
the light which mediated self-organization, in such a way
that the interaction it has with the ensemble is not chiral.
This allows us to see the influence only of the change in
equilibrium configuration.

Assuming such symmetric probing, the transfer matrix
for a single atom in response to a probe field of detuning
∆ is given by

m =
1

t

(
t2 − r2 r
−r 1

)
. (30)

Here, the transmission and reflection coefficients are

r = − 2Γ

2Γ + γ − 2i∆
(31)

and

t = 1− 2Γ

2Γ + γ − 2i∆
. (32)
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FIG. 8. An illustration of how the transfer matrix can be
used to calculate the fields on one side of an optical element
given fields on the other side.

This transfer matrix computes fields on the left of an
optical element using the value of fields on the right, as
shown in Fig. 8.

The transfer matrix for an entire ensemble is the prod-
uct of these individual atomic transfer matrices as well as
others corresponding to free propagation over a distance
d, which accounts for accumulated phase between atoms:(

eikd 0
0 e−ikd

)
. (33)

This calculation yields a transfer matrix M characteriz-
ing the optical response of the entire atomic array. From
M the optical properties of the ensemble can be extracted
by making an analogy to the single-atom transfer matrix.
If the elements of the final matrix are Mij , the deriva-
tion for the original single-atom transfer matrix can be
reversed to find the transmission T and reflection R co-
efficients for the calculated transfer matrix in terms of
those elements [45, 64]:

TR =
1

M22
, (34)

RL = −M21

M22
, (35)

RR =
M12

M22
, (36)

TL = M11 −
M12M21

M22
. (37)

Here, R and L refer to the transmission and reflection
response to right- or left- propagating light. Due to the
atomic arrangement, the response to light on either side
of the optical element formed by the atomic ensemble
may not be symmetric, even if the individual atomic re-
sponses are.

The collapse of phase-slip configurations as χr in-
creases is reflected in optical response by a sudden in-
crease in the width of the reflection peak, as shown in
Fig. 9. This can be understood by the well-known result
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FIG. 9. Reflection spectra for configurations near (χr =
0.15, 0.21, 0.24) and just past (χr = 0.28) the super-atom col-
lapse (δ = Γtot), calculated via transfer matrix technique.
While these plots are quite similar for both directions, the
quantity plotted here is |RL|.

that evenly spaced atoms form a mirror due to Bragg
reflection [47, 62, 65]. The quality of this mirror grows
as the number of atoms in the ensemble increases. After
the collapse, two small mirrors with a phase slip between
them become a single larger mirror, with a corresponding
increase in the reflective effectiveness.

Results from the weak-scattering regime are shown in
Fig. 10. Even assuming a symmetric atomic response to
probe light, the ensemble responds differently to differ-
ent directions of incoming light when it has been self-
organized under highly-chiral (e.g., χr = 1) interactions.
One way to understand this asymmetry is to consider the
behavior of the light as it impinges on the χr = 1 arrange-
ment shown in Fig. 2. Because the average atomic spac-
ing approaches an evenly spaced lattice on one side of the
ensemble, light that encounters that side first is primar-
ily Bragg reflected. From the other direction, however,
the light first encounters an irregularly spaced lattice of
atoms which scatter the light into free space.

If, unlike the previous cases, the probe and the atomic
coupling are both chiral, then the probe light will be
strongly scattered when incident in the direction that
atoms are sensitive to. At the same time, light pass-
ing in the opposite direction will not interact with the
atoms. In this case, light can pass in one direction but
not the other. The ability of chiral systems to provide
a direction-dependent optical element has been demon-
strated before [66], but not in a self-organized context.

C. Vibrational Modes

Vibrational modes also allow a trapped atomic ensem-
ble to be interrogated, most obviously by the appearance
of motional sidebands in the atomic spectrum. Also,
an atom driven at twice a trap frequency will undergo
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parametric heating [67, 68]. Because this resonant ef-
fect is sensitive to the trap frequencies, it can be used
for measurement and characterization of trap parameters
[69, 70]. Since the atoms in a self-organized configura-
tion are trapped by a potential generated by the other
atoms, parametric heating provides information about
the organizing potential. These modes may also have
use in quantum information processing or storage [38].
Therefore, in this section, we examine the structure of
the phonon spectrum for atoms in the chiral case.

A full treatment by matrix diagonalization of the
modes in a symmetric interaction can be found in
Ref. [19]. For the fully chiral case in the weak-scattering
limit, simple expressions for all the motional modes ex-
ist. Without a damping term, the first term in Eq. (11)
produces a constant acceleration which is identical for all
atoms. Since this change in reference frame does not af-
fect the motional modes, we drop this term and impose
the weak-scattering limit, reducing Eq. (11) to

ṗj = −2h̄kχs2
0

∑
i<j

cos k(zj − zi). (38)

This force is equivalent to atom j experiencing the poten-
tial given in Eq. (18). Expanding that potential to sec-
ond order around equilibrium yields a natural frequency
of oscillation:

ωj =

√
4χs2

0ωr
√
j, (39)

where ωr = h̄k2/ (2m) is the recoil frequency of the atom.
Only one ωj directly emerges from the potential for-

mulation. However, atoms to the left of j will oscillate
at other frequencies ωi, modulating the equilibrium posi-
tion of zj . Therefore, atomic motion from one atom also
contributes to the motion of atoms further to the right,
and the motion of zj will contain frequency components
ωi for all i < j.
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FIG. 10. Reflection spectra for weak-scattering configura-
tions, calculated via transfer matrix. Dashed lines represent
|RL|, the reflected amplitude of left-propagating light, while
solid lines represent |RR|.
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FIG. 11. Fourier transform (arbitrary units) of the motion of
the leftmost five atoms in a fully chiral chain (χr = 1) in the
weak-scattering limit. Atoms were brought to equilibrium po-
sitions, damping was then turned off, and they were displaced
slightly from equilibrium. Vertical dashed lines represent the-
oretical values where frequencies are expected, while numbers
index both the frequencies and (by color) denote which line
corresponds to which atom’s motion. Motion of the leftmost
atom (j = 0) is not visible because it undergoes only uni-
form acceleration and is thus used as a reference point. The
curves are shifted vertically relative to each other for ease of
visualization.

These multiple frequencies are precisely the behavior
seen if every atom is perturbed slightly from equilib-
rium (Fig. 11). The second atom has only one frequency
present and the others have increasingly more. Note that
the motion of the leftmost atom is not visible, as we
set f0 = 1 when defining coordinates. Since it experi-
ences no potential, it has no natural frequency of oscil-
lation. Thus, experimental procedures addressing these
sidebands would be specific to a subset of atoms. Un-
like the symmetric case, in which the frequency of the
motional modes is proportional to

√
N for large N , the

chiral case has frequencies which are not changed by the
addition of more atoms. The frequency ωj will not ap-
pear if there are not at least j + 1 atoms, but once it is
present it will not be modified if more atoms are added.
This could be advantageous in an experiment where the
number of atoms trapped is not known.

D. Other Experimental Challenges

A number of experimental considerations could com-
plicate the treatment presented here. Some of these are
factors which were consciously discarded in order to make
the system more amenable to solutions, like a classical
treatment of motion. Others, however, involve additional
elements which were never included.

The precise value of Γ1D/Γtot could affect the self-
organizing behavior of the atomic ensemble. This paper
uses Γ1D = 0.25Γtot, which, while achievable in photonic



11

crystal waveguides, is overly optimistic for nanofiber se-
tups. However, while coupling strengths are an impor-
tant practical concern for conducting the experiment,
they do not have a large effect on the results presented
here. As an example, consider the χr = 1 case. Far from
resonance, the single-particle potentials given in Eq. (16)
apply. Since the spatial period of the sinusoidal potential
a particle experiences is given by k and does not depend
on decay rates, equation (20) gives minima at the same
places for any Γ1D, so the spacings will be the same for
all Γ1D. Closer to resonance, changing Γ1D does affect
the spacing. As shown in Fig. 12, the effect is a change
in lattice spacings.

Another broad class of concerns would be those that
violate the condition of 1D dynamics. The first concern
would be that atomic motional modes in the transverse
direction could be excited. However, if the main effect
of these perturbations is to bring the atoms closer or
further from the waveguide, this can be modeled as ran-
dom noise on the value of Γ1D. Figure 12 suggests that
self-organized configurations will not be sensitive to this
effect. These modes could also be resonant with the mo-
tional modes shown in Fig. 11. For nanofiber platforms,
this concern also applies to torsional modes [71] which
could be resonant with motional modes of atomic en-
sembles and lead to heating. These mode energies, their
couplings to atoms, and the associated timescales will
be system-specific, and such particulars are outside the
scope of our work.

The experimental procedure required for preparation
of a self-organized state has not been discussed. If the
desired pump is far from resonance, numerical simula-
tions show that initial positions do not affect the final
steady-state configuration. However, in practice, it may
be more convenient to release atoms from a longitudi-
nal standing-wave potential trapping them all at fj = 1.
Closer to resonance, an experiment could be designed to
emulate the procedure of adiabatically adjusting the de-
tuning from the weak-scattering limit to near resonance.
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FIG. 12. Spatial configurations of self-organized solutions
at several different strengths of Γ1D. These calculations were
made at δ = 1Γtot.

In all cases, the methods of this paper could be applied
to compute the expected steady state resulting from the
particular initial conditions of the experiment.

Our semi-classical treatment of the atomic motion con-
cerned only expectation values of momenta and posi-
tions, and did not address the variance of these oper-
ators. However, this is an oversimplification, which led
to all atoms having identical momenta. In reality, the
incoherent emission will lead to heating of the motional
degrees of freedom. A more complicated treatment of the
problem could either treat the motion quantum mechan-
ically or implement classical stochastic dynamics. Be-
cause damping exists in the system, the end result will
be a finite temperature [72]. In order to evaluate the final
achieved temperature, we disregard transverse degrees of
freedom and then apply the Einstein diffusion relation
to the one-dimensional motion of an atom [73]. In our
system this takes the form of:

mγpkBT = D (40)

Here D is the momentum diffusion coefficient in the sys-
tem. Focusing on the weak-scattering limit, the rate of
momentum diffusion will be given by 1

2 (h̄ks0)
2

Γtot [73],

D = (h̄k)
2 |Ω|2 Γtot/2

(Γtot/2)
2

+ δ2
. (41)

This is the average rate of emission (s2
0Γtot/2) multiplied

by the square of the size of the momentum “kick” re-
ceived (h̄k). Note that in reality the emission of a photon
may not provide a full h̄k of transverse momentum de-
pending on its direction of emission, but to simplify the
calculation we assume the worst-case diffusion coefficient.
Equations 40 and 41 can be rearranged to yield:

T =
h̄ωrΓtots

2
0

γpkB
≈ .98nK

γp/Γtot
. (42)

Here we have substituted the physical parameters of the
D2 line of neutral cesium and s0 = .1, as elsewhere
in the work. To evaluate whether this temperature is
problematic for chiral self-organization, we compare the
characteristic energy to the minimum trapping energy in
Eq. (20). This condition becomes

E1

kBT
=

2Γ1D

ωr
(γp/Γtot)� 1 (43)

(44)

For the value of Γ1D = .25Γtot we used in our simula-
tions, this would imply γp > ωr. This damping rate is
impossible for Doppler cooling in the two-level approx-
imation, but is accessible for Sisyphus cooling schemes
[73, 74]. However, if the two-level approximation is aban-
doned then there is no need for us to necessarily cool
using the same transition which mediates the chiral in-
teraction, meaning that Doppler cooling may still suffice.
Note that none of these considerations affect which states
are steady states of the equations of motion, but simply
give conditions required to achieve these steady states.
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VI. CONCLUSION AND OUTLOOK

We have looked at self-organization in systems with
direction-dependent atom-light coupling and found that
self-organization survives in a reference frame moving
along with the resulting center-of-mass motion. Han-
dling this center-of-mass motion may require damping
the atomic motion. In parts of parameter space, chi-
rally self-organized configurations resemble the symmet-
ric case, but in others, especially at full chirality and near
resonance, we predict dramatic differences. In the weak-
scattering limit the purely chiral case admits an iterative
solution which shows a lattice constant slowly increas-
ing with atomic index, while at resonance we observed
phase slip configurations at low chiralities which vanish
as chirality increases. We have also presented schemes for
achieving variable chirality in current optical nanofiber
systems and listed expected signatures of the chiral inter-
action and its characteristic steady-state configurations.
In particular, we calculated the optical response and the
phonon spectrum of atoms in such systems, which might
allow for interrogation via sidebands or parametric heat-
ing.

We believe that chiral nanophotonic systems offer
many exciting opportunities for quantum optics and
atomic physics. Extensions of this paper could include re-
laxing our assumption of no atomic saturation or low den-
sity, adopting more complicated distance dependence of
our interactions, and treating the atomic motion in quan-
tum mechanically [40]. Since photon-photon interactions
mediated by atomic ensembles have attracted great inter-
est, these phenomena could be examined in regimes with
asymmetric coupling. This includes electromagnetically
induced transparency [75] as well as photon bound states
[40, 42, 76]. The ability of these systems to emulate a spin
model means they may be useful for probing the behav-
ior of chiral spin models [50, 51, 77, 78]. Finally, the fact
that these one-dimensional ensembles may be useful for
photon storage [66] means that a chiral coupling might
prove useful for photonic network or integrated photonic
circuit applications [34].
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Appendix: Reduction of Full Hamiltonian to Spin
Model

In this appendix, we begin from a full atom-field
Hamiltonian and obtain the master equation [Eqs. (4)-
(8)] governing the atoms.

The full Hamiltonian is given by:

H =
∑
j

p2
j

2m
+ h̄ωσjee + ih̄v

∫
dz

(
a†L(z)

∂aL
∂z
− a†R(z)

∂aR
∂z

)

− h̄
√

2π

∫
dz

[∑
j

δ (z − zj)
(
σjeg (βLaL(z) + βRaR(z))

)
+ h.c.

]
. (A.1)

Here the aL, aR are the field annihilation operators for
left and right propagating fields, respectively, while the
σjµ,ν = |µ〉 〈ν| are atomic state operators for each atom,
where µ, ν ∈ {e, g} stand for excited or ground states.
βL,R is the atom-field coupling strength for each mode
and v is the speed of light in the waveguide. This Hamil-
tonian does not include the emission into free space,
which has jump operator:

Lj =
√
γσjge. (A.2)

Formally integrating the equations of motion for aR
and aL, we write the field operators as a sum of the input
field and a contribution from the radiating atoms [47]:

aR(z, t) = aR,in(z − vt)

+
i
√

2πβR
v

∑
k

Θ(z − zk)σjge

(
t− |z − zk|

v

)
,

(A.3)

aL(z, t) = aL,in(z + vt)

+
i
√

2πβL
v

∑
k

Θ(zk − z)σjge
(
t− |z − zk|

v

)
.

(A.4)

Here Θ is the Heaviside theta function. The Heisenberg
equation of motion for σjge is

σ̇jge = −iωσjge − i
√

2π
(
σjee − σjgg

)
[βLaL(zj) + βRaR(zj)] .

(A.5)

Now insert Eqs. (A.3) and (A.4) into Eq. (A.5) and make
an approximation that σjge is slowly varying. Specifi-
cally, rather than treat the retardation exactly, we take
σjge(t− ε) ≈ σjge(t)eiωLε, essentially reducing the retarda-
tion effect to a relative phase depending on the frequency
of light ωL. This approximation is valid as long as the
bandwidth of the dynamics ∆ω satisfies ∆ωL/v � 1,
where L is the system size. The equation of motion be-
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comes

σ̇jge = −iωσjge −
γ

2
σjge + F (t) +

(
σjee − σjgg

)
×[

− i
(√

2πβLaL,in(zj + vt) +
√

2πβRaR,in(zj − vt)
)

+

2πβ2
L

v

∑
i

Θ(zi − zj)σigeeik|zj−zi|

+
2πβ2

R

v

∑
i

Θ(zj − zi)σigeeik|zj−zi|
]
. (A.6)

This includes free space decay term and the associated
Langevin noise F (t) [79].

If only one atom is present, then there is only one term
in each of the two sums in Eq. (A.6), and they together

contribute
2π(β2

R+β2
L)

v σjge. The single-atom spontaneous
emission rate into the waveguide is Γ = ΓL + ΓR =
2πβ2

L

v +
2πβ2

R

v , which agrees with the symmetric case in
the limit βL = βR. Removing the single-atom sponta-
neous emission from the sum and moving to the rotating

frame yields the final equation for the evolution of σjge:

σ̇jge =

(
iδ − γ + Γ

2

)
σjge +

(
σjee − σjgg

)
×[

− i
√

2π (βLaL,in(zj + vt) + βRaR,in(zj − vt))

+ ΓL
∑
i6=j

Θ(zi − z)σigeeik|zj−zi|

+ ΓR
∑
i 6=j

Θ(z − zi)σigeeik|zj−zi|
]
. (A.7)

At this point, in the symmetric case, ΓL = ΓR allows
the sums to be combined. In an attempt to duplicate
as many features of the symmetric case as possible, we
define χ = ΓR−ΓL. Then the equation of motion can be
rearranged to contain one complete and one incomplete
sum:

σ̇jge =

(
iδ − γ + Γ

2

)
σjge +

(
σjee − σjgg

)
×[

− i
√

2π (βLaL,in(zj − vt) + βRaR,in(zj + vt))

+ ΓL
∑
i6=j

σigee
ik|zj−zi|

+ χ
∑
i6=j

Θ(zj − zi)σigeeik|zj−zi|
]
. (A.8)

In the absence of input fields, these are precisely the dy-
namics yielded by the Hamiltonian, Eq. (5), as well as
the jump operators of Eqs. (6) - (8).
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[78] M. Gärttner, S. V. Syzranov, A. M. Rey, V. Gurarie, and

L. Radzihovsky, Phys. Rev. B 92, 041406 (2015).
[79] C. W. Gardiner, Quantum Noise (1991).

http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevB.92.041406

	Self-organization of atoms coupled to a chiral reservoir
	Abstract
	I Introduction
	II Setup
	A Physical System and Equations of Motion
	B Numerical Strategy For Finding Steady-State Behavior

	III Chiral Self-Organization
	A Weak-Scattering
	B Near Resonance

	IV Small Chiralities Near Resonance
	V Experimental Considerations
	A Achieving Variable Chirality
	B Optical Signatures
	C Vibrational Modes
	D Other Experimental Challenges

	VI Conclusion and Outlook
	VII Acknowledgments
	 Reduction of Full Hamiltonian to Spin Model
	 References


