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We derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast
to previous publications, we assumed that an intrinsic surface impedance due to a finite electric
conductivity of the metal can be of the same order as the roughness-induced impedance. We
then applied our results to the analysis of a long-standing problem of the discrepancy between the
experimental data on the propagation of surface waves in the terahertz range of frequencies and the
classical Drude theory.

I. INTRODUCTION

The subject of Surface Waves (SW) propagat-
ing on a rough metal surface has attracted at-
tention of many researches. There exists a vast
literature devoted to this phenomenon. One of
the earliest results was obtained by S. Rice in
1951 [1] who derived a dispersion relation for
SW on a rough metal-air interface for the case
of a metal with infinite conductivity (i.e. zero
resistance). Although SW on a plane metal-
air interface can, in theory, exist only if the
metal possesses a finite electric resistivity, Rice
has shown that roughness of the metal-air in-
terface, in certain sense, replaces the electri-
cal resistance so that SW on a rough surface
can propagate even if the electrical resistance
is negligible. Relatively recent reviews of more
than 20 methods employed in solving this kind
of problems can be found in [2, 3]. In a form
most relevant to the study of SW, important
results are obtained in [4] and cited in [5, p. 36].

In contrast to the earlier studies, in this pa-
per, we consider SW taking into account a finite
electrical resistance of the metal assuming that
its effect in the SW dispersion is of the same or-
der of magnitude as the surface roughness. The
idea of our calculations is taken from Ref. [6]
devoted to the beam wake field in an accelerator
vacuum chamber caused by the wall roughness.
By comparing our results to Ref. [4] we con-

clude that the analysis in that article refers to
the case where the effect of roughness is small
compared to the resistivity.

In a number of publications, the authors start
from a general treatment of scattering and ab-
sorption of electromagnetic waves on a rough
boundary between air and a dielectric media
with given permittivity 𝜀(𝜔). In this paper, we
employ a different approach based on the con-
cept of a surface impedance. Note that this
approach was successfully used earlier in our
study of SW on a conducting cylinder [7]. It
greatly simplifies calculations by eliminating the
need to compute electromagnetic fields inside
the metal.

Practical interest to the study of surface
waves is heated by existing discrepancy between
a variety of plasmonics-based implementations
in the terahertz (THz) spectral range and pre-
dictions based on the Drude theory [8] as dis-
cussed in a recent review [9]. It is generally ac-
cepted that the Drude theory is good to describe
the optical response of metals. This is certainly
true at optical frequencies. It is also valid when
THz time-domain spectroscopy is used to mea-
sure the properties of thin films. However the
Drude theory fails to predict the correct atten-
uation length of SW in the THz range of fre-
quencies.

Below, we adhere to the following plan of pre-
sentation.

In section II we remind key facts about
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dimensionless surface impedance and SW on
plane metal-air interface. In section III, we de-
rive dispersion relation of SW on a sinusoidally
corrugated surface for 1D case. In section IV,
we extend this result to 2D corrugation. In sec-
tion V, we compute effective surface impedance
for a rough surface. Finally, in Section VI we
compare our theory with available experimental
data.

II. SURFACE WAVE AT A FLAT
METAL-AIR INTERFACE

Consider a 𝑝-polarized wave that propagates
in the 𝑧 direction along a plane metal-air inter-
face. The magnetic field

H = {𝐻0, 0, 0} e𝑖𝑘𝑧𝑧−κ𝑦𝑦−𝑖𝜔𝑡 (1)

of the wave in the upper half-space 𝑦 > 0 is char-
acterized by the frequency 𝜔 and wavenumber
𝑘𝑧, as to κ𝑦, it can be found from the equation

𝑘2𝑧 − κ2
𝑦 = 𝜔2/𝑐2 (2)

and its real part should be positive for the wave
to be considered as SW. As a standard theory
of surface waves predicts (see e.g. [5, 7]), the
parameters 𝑘𝑧 and κ𝑦 for a SW propagating on
a plane metal-air interface are given by

𝑘𝑧 = 𝑘

√︂
𝜀

1 + 𝜀
, κ𝑦 = 𝑘

√︂
− 1

1 + 𝜀
, (3)

where 𝜀 = 𝜀(𝜔) is the permittivity of the metal,
and 𝑘 = 𝜔/𝑐. The most simple model of a metal
assumes that 𝜀 = 1− 𝜔2

𝑝/𝜔
2, where 𝜔𝑝 is called

the plasma frequency. In such a model, κ𝑦 is
real (i.e. SW exist) if 𝜀 < −1, i.e. 𝜔 < 𝜔𝑝/

√
2.

An alternative description of metals adopts that
𝜀 = 1 + 4𝜋𝑖𝜎/𝜔 with 𝜎 being the electric con-
ductivity. The latter model is more reliable for
a limit of relatively low frequencies (e.g., tera-
hertz, infrared and lower) where 𝜔 ≪ |𝜎| and
|𝜀| ≫ 1. Then Eq. (3) can be approximated by

𝑘𝑧 ≈ 𝑘

(︂
1− 𝜉2

2

)︂
, κ𝑦 ≈ 𝑘𝑖𝜉, (4)

where

𝜉 =
1√
𝜀
= (1− 𝑖)

√︂
𝜔

8𝜋𝜎
(5)

is the dimensionless surface impedance. The
real 𝜉′ and imaginary 𝜉′′ parts of 𝜉 = 𝜉′ + 𝑖𝜉′′

determine a vertical extension 𝐿𝑦 of SW and its
attenuation length 𝐿𝑧 according to the equa-
tions

1

𝐿𝑦
≡ Reκ𝑦 = Re(𝑘𝑖𝜉) = −𝑘𝜉′′, (6)

1

𝐿𝑧
≡ Im𝑘𝑧 = Im(𝑘 − 𝑘𝜉2/2) = −𝑘𝜉′𝜉′′. (7)

Energy flux S = (𝑐/8𝜋)Re[E × H*] in SW
is mainly directed along the metal-air inter-
face and partially towards the metal surface.
By designating the real and imaginary parts of
𝑘𝑧 = 𝑘′𝑧+𝑖𝑘

′′
𝑧 and κ𝑦 = κ′

𝑦+𝑖κ′′
𝑦 with the prime

and double primes respectively, one can write

S =

{︂
0,−

κ′′
𝑦

𝑘
,
𝑘′𝑧
𝑘

}︂
𝑐|𝐻0|2

8𝜋
e−2(𝑘′′𝑧 𝑧+κ′

𝑦𝑦) . (8)

By order of magnitude

𝑆𝑦 = 𝒪(𝜉1), 𝑆𝑧 = 𝒪(𝜉0). (9)

The energy flux 𝑆𝑧 in the direction of SW prop-
agation is subject to the equation of the energy
balance

𝜕

𝜕𝑧

∫︁ ∞

0

𝑆𝑧 d𝑦 = 𝑆𝑦

⃒⃒⃒
𝑦=0

. (10)

It means that the energy density of SW de-
creases because of absorption in the metal and
leads to easily verified relation

−𝑘′𝑧𝑘′′𝑧 /κ′
𝑦 = −κ′′

𝑦

which is a sequence of Eq. (2). Since κ′
𝑦 ∼ κ′′

𝑦 =

𝒪(𝜉1) and 𝑘′𝑧 = 𝒪(𝜉0), this relation implies that
𝑘′′𝑧 = 𝒪(𝜉2) in accord with Eq. (4). It is also
worth noting that∫︁ ∞

0

𝑆𝑧 d𝑦 = 𝒪(𝜉−1). (11)
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On a rough surface, the dispersion relation for
SW given by Eqs. (3) and (4) changes. We note
however that Eqs. (4), (6), and (7) can be kept
by renormalizing the surface impedance 𝜉 → 𝜉
so that one can say that the roughness changes
the surface impedance. The ordering (9) and
(11) also remains valid for a SW on a rough
metal-air interface with the substitution 𝜉 → 𝜉.

III. 1D CORRUGATION

To get an idea of the effect of the roughness,
we first consider a case of 1D surface corruga-
tion assuming that the elevation of the metal-air
interface is given by equation

𝑦 = 𝜇ℎ sin(𝑞𝑧), (12)

where ℎ and 𝑞 stand for the amplitude and wave
number of the sinusoidal corrugation, and 𝜇 is
a formal dimensionless parameter used below to
distinguish between different orders of expan-
sion over small amplitude ℎ. The unit vector
normal to the interface is given by

n =
{0, 1,−𝜇𝑞ℎ cos(𝑞𝑧)}√︀
1 + ℎ2𝜇2𝑞2 cos2(𝑞𝑧)

(13)

and the corrugation is supposed to be shallow,
i.e. its amplitude ℎ is much smaller than the
period, 𝑞ℎ≪ 1.

Having in mind properties of SW outlined in
Section II, we will seek the magnetic field in the
form of 𝑝-polarized wave

H = {𝐻𝑥, 0, 0} (14)

as the sum

𝐻𝑥(𝑦, 𝑥) = 𝐻0𝑥(𝑦, 𝑥) + 𝛿𝐻𝑥(𝑦, 𝑧) (15)

of a fundamental mode 𝐻0𝑥(𝑦, 𝑥) =
𝐻0 e

𝑖𝑘𝑧𝑧−κ𝑦𝑦 with given amplitude 𝐻0 and
a satellite field 𝛿𝐻𝑥(𝑦, 𝑧) that appears due
to corrugation. Here and henceforth the
time factor e−𝑖𝜔𝑡 is dropped for the sake of
brevity. Recall that Eq. (3) was derived for flat
metal-air interface and should be changed on

corrugated surface. Therefore we will consider
κ𝑦 as a free parameter to be found at the end
of our calculations while 𝑘𝑧 is related to κ𝑦
through the equation

𝑘𝑧 =
√︁
𝑘2 + (𝜇2κ𝑦)2 (16)

instead of (3). As will be shown below, the
correction to κ𝑦 due to surface corrugation is
of second order in 𝜇 (i.e. in ℎ). Therefore we
assume that both κ𝑦 and 𝜉 are of second order
in 𝜇 as we are most interested in analyzing the
case where the effect of roughness is of order
of the intrinsic surface impedance 𝜉 on its own.
Thus, the fundamental harmonic in SW should
be sought in the form

𝐻𝑥0(𝑦, 𝑧) = 𝐻0 e
𝑖𝑘𝑧𝑧−𝜇2κ𝑦𝑦 . (17)

As to the satellite field, we seek it in the form
of two waves, exponentially decaying as 𝑦 rises:

𝛿𝐻𝑥(𝑦, 𝑧) = 𝜇𝐵+ e𝑖(𝑘𝑧+𝑞)𝑧−
√

(𝑘𝑧+𝑞)2−𝑘2𝑦 +

+ 𝜇𝐵− e𝑖(𝑘𝑧−𝑞)𝑧−
√

(𝑘𝑧−𝑞)2−𝑘2𝑦 . (18)

The magnetic fields (17) and (18) obey the
Helmholtz equation

𝜕2𝐻𝑥

𝜕𝑦2
+
𝜕2𝐻𝑥

𝜕𝑧2
+ 𝑘2𝐻𝑥 = 0. (19)

Note however that the satellite waves with
wavenumbers 𝑘𝑧 ± 𝑞 do not represent eigen-
modes by itself (i.e. they are not a proper so-
lution of the boundary value problem on cor-
rugated surface) and, hence, they cannot exist
without fundamental mode with the wavenum-
ber 𝑘𝑧. Instead, the fundamental SW plus the
satellite waves form a proper mode of the rough
metal-air boundary.

The electric field is expressed through H by

E =
𝑖

𝑘
rotH. (20)

At the metal-air interface the tangential part of
the electric field

E𝑡 = −[n× [n×E]] (21)
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is related to the magnetic field by the boundary
condition [10]

E𝑡 = 𝜇2𝜉 [n×H] . (22)

Our goal is to find a replacement for the dis-
persion relation (4) on a flat metal-air interface
which would be valid on a rough surface. Due
to Eq. (16) this goal will be achieved if we com-
pute κ𝑦 up to the second order on 𝜇. To do that
we put the expressions for the electric and mag-
netic fields in Eq. (22), expand the result into a
series over parameter 𝜇 and separate terms with
different dependency on 𝑧, i.e., the terms con-
taining e𝑖𝑘𝑧𝑧, e𝑖(𝑘𝑧𝑧±𝑞)𝑧, e𝑖(𝑘𝑧𝑧±2𝑞)𝑧, e.t.c. This
procedure yields a set of equations for unknown
coefficients 𝐵± and κ𝑦.

In zeroth order of expansion on 𝜇, we obtain
only trivial equations since all terms in Eq. (22)
yield zero.

The first order of the expansion yields 2 equa-
tions for the satellite amplitudes 𝐵± after sep-
arating terms with e𝑖(𝑘𝑧±𝑞)𝑧 factors. Solving
these equations and noting that 𝑘𝑧 = 𝑘 in this
order gives

𝐵± = − 𝑖𝑘𝑞ℎ𝐻0

2
√︀
(𝑘 ± 𝑞)2 − 𝑘2

. (23)

Finally, second order of the series yields 3
independent equations after separating terms
proportional to e𝑖𝑘𝑧𝑧, e𝑖(𝑘𝑧+2𝑞)𝑧, and e𝑖(𝑘𝑧−2𝑞)𝑧.
The last two equations could allow determining
amplitudes of the second order satellites with
wavenumbers 𝑘𝑧 ± 2𝑞 but we did not include
them in Eq. (18). And the former equation al-
lows computing the wavenumber κ𝑦. Noting
that in this order again 𝑘𝑧 = 𝑘 we find

κ𝑦 = 𝑖𝑘𝜁+
ℎ2𝑘2𝑞2

4
√︀
𝑞(𝑞 − 2𝑘)

+
ℎ2𝑘2𝑞2

4
√︀
𝑞(2𝑘 + 𝑞)

. (24)

The corrugation terms here, which are pro-
portional to ℎ2, are additive to the intrinsic
impedance 𝜉. Therefore one can use the disper-
sion relation (4) for SW on corrugated metal-air
interface after substitution of 𝜉 for the effective
surface impedance

𝜉 = 𝜉 − 𝑖ℎ2𝑘𝑞2

4
√︀
𝑞(𝑞 − 2𝑘)

− 𝑖ℎ2𝑘𝑞2

4
√︀
𝑞(2𝑘 + 𝑞)

. (25)

In case 𝜉 = 0 Eq. (24) coincides with Eq. (6.10)
in Ref. 1.

The square roots
√︀
𝑞(𝑞 ± 2𝑘) in Eqs. (24)

and (25) originate from the 𝑦 components√︀
(𝑘𝑧 ± 𝑞)2 − 𝑘2 of the wave vector of satellite

waves. Therefore the sign of these roots, when
𝑞(𝑞 ± 2𝑘) < 0 and they are imaginary, should
be chosen in such a way that an exponentially
decaying satellite wave transforms into a wave
freely propagating out of the metal. Hence,√︀

𝑞(𝑞 ± 2𝑘) → −𝑖
√︀
|𝑞(𝑞 ± 2𝑘)| (26)

if 𝑞(𝑞 ± 2𝑘) < 0. It can be readily seen that
of the two roots at a given value of 𝑞 only one
is imaginary (an, hence, only one of the two
satellite waves is freely propagating) if

− 2𝑘 < 𝑞 < +2𝑘 (27)

and that both roots are real if

|𝑞| > 2𝑘 (28)

(and both satellite waves are decaying).
Without lost of generality we assume below

in this Section that 𝑞 > 0 and focus on the
case 0 < 𝑞 < 2𝑘. Then, the surface corrugation
attracts additional energy flux in fundamental
SW towards the metal. Normal component of
the energy flux at the metal-air interface (at
𝑦 = 0) is

𝑆𝑦

⃒⃒⃒
𝑦=0

=
𝑐

8𝜋
Re(𝐸𝑧𝐻

*
𝑥) =

𝑐

8𝜋
Re

(︂
𝑖κ𝑦
𝑘

|𝐻0|2
)︂

=

= −𝜉′ 𝑐|𝐻0|2

8𝜋
− ℎ2𝑘𝑞2

4
√︀

|𝑞(𝑞 − 2𝑘)|
𝑐|𝐻0|2

8𝜋
(29)

where 𝜉′ = Re(𝜉) > 0. The second term in (29)
describes the energy influx caused by the surface
corrugation. However exactly the same energy
flux is reradiated outwards as satellite wave. In-
deed, noting that a free propagating wave in the
case 0 < 𝑞 < 2𝑘 has the amplitude 𝐵− and radi-
ates at the angle 𝜃− = arcsin

(︁√︀
|𝑞(𝑞 − 2𝑘)|/𝑘

)︁
,
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we obtain

𝑆𝑦 =
𝑐

8𝜋
|𝐵−|2 sin 𝜃− =

=
𝑐

8𝜋

⃒⃒⃒⃒
⃒ 𝑖𝑘𝑞ℎ𝐻0

2
√︀
𝑞(𝑞 − 2𝑘)

⃒⃒⃒⃒
⃒
2 √︀

|𝑞(𝑞 − 2𝑘)|
𝑘

=

=
𝑐

32𝜋

ℎ2𝑘𝑞2√︀
|𝑞(𝑞 − 2𝑘)|

|𝐻0|2. (30)

This process can be categorized as a scattering
of SW on the surface corrugation. It leads to
additional weakening of primary SW according
to Eq. (10) just as if the scattered energy flux
would be absorbed by the metal.

IV. 2D CORRUGATION

Assume now that a sinusoidal corrugation is
not aligned with the direction of propagation of
SW. Let the metal-air interface be given by the
equation 𝐹 = 0, where

𝐹 = 𝑦 − 𝜇ℎ sin(q · x+ 𝜓) (31)

with an arbitrary 2D vector

q = (𝑞𝑥, 0, 𝑞𝑧), (32)

radius-vector

x = (𝑥, 0, 𝑧), (33)

an arbitrary phase 𝜓, and the amplitude of cor-
rugation ℎ. The unit vector normal to the inter-
face that enters Eqs. (21) and (22) is now given
by

n =
∇𝐹
|∇𝐹 |

. (34)

The fundamental SW is now sought in the
form

H0 =
(︀
𝐻0, 𝜇

2𝐵, 0
)︀
e𝑖𝑘𝑧𝑧−𝜇

2κ𝑦𝑦, (35)

where 𝐵 is an unknown coefficient to be found;
this form is justified by the final result.

The satellite waves are characterized by the
wave vectors

k± = k± q+
(︁
0,
√︀
𝑘2 − (k± q)2, 0

)︁
, (36)

where

k = {0, 0, 𝑘𝑧}, (37)

and

|k±| = 𝑘. (38)

Each wave has 2 independent polarizations. We
generate polarization unit vectors v± and u±
using the following procedure. First we select
an initial vector v0, say

v0 = (1, 0, 0) (39)

or v0 = (0, 1, 0) or v0 = (0, 0, 1). Then we
compose a vector perpendicular to 𝑘+:

v1 = v0 − (v0 · k+)k+/𝑘
2 (40)

and normalize it:

v+ = v1/|v1|. (41)

This yields the first unit vector v+ perpendic-
ular to k+. Rotating it by 90∘ about the di-
rection of the wave vector k+ yields the second
unit vector:

u+ = [v+ × k+]/𝑘. (42)

To compose similar vectors v− and u− for the
second satellite wave it is sufficient to perform
the substitution q → −q in v+ and u+. Tak-
ing different initial vectors v0 generates differ-
ent sets of polarization vectors. We chose a set
that originates from Eq. (39):
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v± =

{︃√︀
𝑘2 − 𝑞2𝑥
𝑘

,∓
𝑞𝑥
√︀
𝑘2 − 𝑞2𝑥 − (𝑘𝑧 ± 𝑞𝑧)2

𝑘
√︀
𝑘2 − 𝑞2𝑥

,− 𝑞𝑥(𝑞𝑧 ± 𝑘)

𝑘
√︀
𝑘2 − 𝑞2𝑥

}︃
,

u± =

{︃
0,− 𝑘 ± 𝑞𝑧√︀

𝑘2 − 𝑞2𝑥
,

√︀
𝑘2 − 𝑞2𝑥 − (𝑘𝑧 ± 𝑞𝑧)2√︀

𝑘2 − 𝑞2𝑥

}︃
.

(43)

Now a satellite wave can be written as

𝛿H = 𝜇 (𝑉+v+ + 𝑈+u+) e
𝑖k+·x +𝜇 (𝑉−v− + 𝑈−u−) e

𝑖k−·x . (44)

Repeating the procedure described in the previous Section and again noting that 𝑘𝑧 = 𝑘 within the
desired accuracy, we find

𝑉± =
𝑘𝑞𝑧 ± 𝑞2𝑥

2
√︀
𝑘2 − 𝑞2𝑥

√︀
𝑘2 − 𝑞2𝑥 − (𝑘 ± 𝑞𝑧)2

e±𝑖𝜓 𝑘ℎ𝐻0, (45)

𝑈± = − 𝑞𝑥

2
√︀
𝑘2 − 𝑞2𝑥

e±𝑖𝜓 𝑘ℎ𝐻0, (46)

κ𝑦 = 𝑖𝑘𝜉 +
𝑖

4
𝑞2𝑧𝑘

2ℎ2

(︃
1√︀

𝑘2 − 𝑞2𝑥 − (𝑘 + 𝑞𝑧)2
+

1√︀
𝑘2 − 𝑞2𝑥 − (𝑘 − 𝑞𝑧)2

)︃
, (47)

𝐵 = −1

4
𝑞𝑧𝑞𝑥𝑘ℎ

2𝐻0

(︃
1√︀

𝑘2 − 𝑞2𝑥 − (𝑘 + 𝑞𝑧)2
+

1√︀
𝑘2 − 𝑞2𝑥 − (𝑘 − 𝑞𝑧)2

)︃
. (48)

It has been checked that the specific expressions
for the coefficients κ𝑦 and 𝐵 are not sensitive
to the choice of polarization vectors as well as
the expression for the vectors

B± ≡ 𝑉±v± + 𝑈±u± =

=

{︃
ℎ
(︀
𝑘𝑞𝑧 ± 𝑞2𝑥

)︀
𝐻0 e

±𝑖𝜓

2
√︀
𝑘2 − 𝑞2𝑥 − (𝑞𝑧 ± 𝑘)2

,
𝑞𝑥ℎ𝐻0 e

±𝑖𝜓

2
,

± 𝑞𝑥𝑞𝑧ℎ𝐻0 e
±𝑖𝜓

2
√︀
𝑘2 − 𝑞2𝑥 − (𝑞𝑧 ± 𝑘)2

}︃
. (49)

The meaning of the coefficients κ𝑦 and 𝐵 can
be deduced from the expressions for the field of
fundamental harmonic at the plane 𝑦 = 0:

E = {𝐵,−𝐻0, (𝑖κ𝑦/𝑘)𝐻0}, H = {𝐻0, 𝐵, 0}.

One can see that the coefficient 𝐵 stands for ad-
ditional energy flux along the metal-air bound-

ary since

𝑆𝑧 =
𝑐

8𝜋
Re
(︀
𝐸𝑥𝐻

*
𝑦 − 𝐸𝑦𝐻

*
𝑥

)︀
=

=
𝑐

8𝜋

(︀
|𝐻0|2 + |𝐵|2

)︀
,

however the addition of 𝑐𝐵2/8𝜋 exceeds the ac-
curacy of our calculations. The coefficient κ𝑦 is
responsible for the energy flux in the direction
towards the metal:

𝑆𝑦 =
𝑐

8𝜋
Re (−𝐸𝑥𝐻*

𝑧 + 𝐸𝑧𝐻
*
𝑥) =

=
Re(𝑖κ𝑦)

𝑘

𝑐|𝐻0|2

8𝜋
. (50)

Further analysis follows that of Section III.
One can show that the additional roughness-
induced flux is directed towards the metal and
appears only if any of the inequalities

(𝑞𝑧 ± 𝑘)2 + 𝑞2𝑥 < 𝑘2 (51)
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Figure 1. Radiation Zone

holds. This flux is re-radiated in the form of a
freely propagating satellite wave.

As shown in Fig. 1, the radiation zone (51) in-
cludes the interiors of two adjacent circles in the
plane of vector q. As the circles have no com-
mon parts except for the point q = 0, only one
of the two summands in Eq. (47) can contribute
to the radiation for a given q. The re-radiated
energy flux is given

𝑆𝑦 =
𝑘𝑞2𝑧ℎ

2

4
√︀
𝑘2 − 𝑞2𝑥 − (𝑞𝑧 ± 𝑘)2

𝑐|𝐻0|2

8𝜋
, (52)

where of the two signs in the denominator
should be selected such that obeys the condi-
tion (51).

Singularity in Eq. (52) at

(𝑞𝑧 ± 𝑘)2 + 𝑞2𝑥 = 𝑘2 (53)

corresponds to scattering of primarily SW into
SWs of different direction but without change
of the absolute value of the wave vector (see
Ref. 5, p. 36). Such SWs represent eigenmodes
which can exist by themselves without bound to
original SW. In theory of Ref. [4] the contribu-
tion of such SWs is computed as a residue in a
complex plane and gives a negligible correction.
In our theory, this contribution is zero since the
singularity in Eq. (52) is integrable (see next
Section).

V. IMPEDANCE OF A ROUGH
SURFACE

With a small modification, our analysis can
be also applied to the case of a surface that has
a random roughness profile. A realistic metal-
air interface can be modeled by a mixture of
corrugations with different vectors q:

𝑦(x) =
∑︁
q

𝑓(q) e𝑖q·x →
∫︁

d2𝑞

(2𝜋)2
𝑓(q) e𝑖q·x .

(54)
Since 𝑦 is a real function, the coefficients 𝑓(q)
satisfy

𝑓(q) = 𝑓*(−q). (55)

In terms of previous Section,

𝑓(q′) =
ℎ

2𝑖
e𝑖𝜓 𝛿(q′ − q)− ℎ

2𝑖
e−𝑖𝜓 𝛿(q′ + q).

It is usually assumed that an average (in a cer-
tain sense) value of 𝑦(x) is zero,

⟨𝑦(x)⟩ = 0, (56)

and the correlation function ⟨𝑦(x)𝑦(x′)⟩ de-
pends only on the difference x− x′:

⟨𝑦(x)𝑦(x′)⟩ ≡𝑊 (x− x′). (57)

Averaging can be understood either as averag-
ing over the stochastic phases 𝜓 or averaging
over the coordinate x + x′ under the assump-
tion that the stochastic properties of the metal-
air interface are uniform. In terms of previous
Section,

𝑊 (x) =
1

2
ℎ2 cos(q · x).

Putting the integral (54) in Eq. (57) leads to
the conclusion that

⟨𝑓(q) 𝑓(q′)⟩ = (2𝜋)2𝐺(q) 𝛿(q+ q′), (58)

where

𝐺(q) =

∫︁
d2𝑥𝑊 (x) e−𝑖q·x . (59)
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In terms of the previous Section,

𝐺(q′) =
ℎ2

4
(2𝜋)2 [𝛿(q′ + q) + 𝛿(q′ − q)] .

Hence, to generalize the already known results
for the case of a rough surface it is sufficient to
perform the substitution

ℎ2

4
(. . .) →

∫︁
d2𝑞

(2𝜋)2
𝐺(q) (. . .) (60)

in Eq. (47). The rule (60) yields the final ex-
pression for the effective surface impedance:

𝜉 = 𝜉 +

∫︁
d2𝑞

(2𝜋)2
𝑞2𝑧𝑘 𝐺(q)√︀

𝑘2 − 𝑞2𝑥 − (𝑘 − 𝑞𝑧)2
. (61)

Recall that√︀
𝑘2 − 𝑞2𝑥 − (𝑘 − 𝑞𝑧)2 = 𝑖

√︀
|𝑘2 − 𝑞2𝑥 − (𝑘 − 𝑞𝑧)2|

if 𝑘2 < 𝑞2𝑥 + (𝑘 − 𝑞𝑧)
2.

A popular model for the correlation function
is Gaussian:

𝑊 (x) = 𝛿2 e−|x|2/𝑎2 , (62)

where 𝛿 is the r.m.s. height of the roughness and
𝑎 is an average radius of the roughness bumps.
Then

𝐺(q) = 𝜋𝛿2𝑎2 e−|q|2𝑎2/4 . (63)

numerically computed surface impedance for
the Gaussian correlation is shown in Fig. 2.

For the most interesting case of small-size
bumps, 𝑘𝑎≪ 1, we have

𝜉 = 𝜉 +
𝛿2

𝑎2

[︂
−𝑖

√
𝜋

2
𝑘𝑎+

2

3
𝑘4𝑎4

]︂
. (64)

Here the first term in the square brackets dom-
inates but it seems that it is missed in earlier
theories (see [4, 5]).

Concluding this section we give a numeri-
cal example motivated by ongoing experiments
with terahertz SWs on Novosibirsk Free Elec-
tron Laser [11–16]. Although our model is in-
tended for the case of a shallow surface cor-
rugation, which implies that 𝛿 ≪ 𝑎, we take

1 2 3 4
ka

-1.0

-0.5

0.5

1.0

Ξa2�∆2

Figure 2. (Color online) An additional surface
impedance caused by surface roughness for a Gaus-
sian correlation function: blue (upper curve) is the
real part of 𝜉, purple (bottom curve) is the imagi-
nary part.

Table I. Parameters of surface wave
𝐿𝑦, mm 𝐿𝑧, mm

flat metal 14.6 14.3·103

rough ideal conductor 16.1 5.8·1012

rough metal 7.7 7.5·103

experiment [16] 16 116

𝑎 = 𝛿 = 30nm and 𝜆 = 130𝜇m to model a real-
istic experimental situation [16]. For the given
wavelength the Drude model predicts

𝜀 = −101640 + 𝑖284090

and

𝜉 = 0.00105− 𝑖0.00148.

Using Eq. (64) we conclude that the surface
roughness contributes almost exclusively to the
imaginary part of the surface impedance:

𝜉 = 0.00105− 𝑖0.00277.

This results in a two-fold decrease in 𝐿𝑦 and 𝐿𝑧
as shown in Table I.

Comparison of these results with the experi-
mental data [16] shown on the last line of the ta-
ble reveals that the drastic discrepancy between
these data and the Drude theory mentioned in
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the Introduction persists even if the effect of
the metal-air interface roughness is taken into
account.

VI. DISCUSSION

The main theoretical results of this paper are
given by Eqs. (61) and (64). We have shown
that the intrinsic surface impedance caused
by the finite resistivity of metal and an addi-
tional roughness-induced impedance are addi-
tive when they are of the same order of magni-
tude. Previous studies [4, 5] dealt with the case
of either a small effect of the surface roughness
or, on the contrary, with the case of zero intrin-
sic surface impedance [1]. Finally, we concluded
that the most important first term in the square
brackets in Eq. (64) was missed in earlier theo-
ries.

In Section III we have outlined a clear picture
of energy flows in the surface wave on a rough
boundary metal-air interface. In particular, we
have shown that the roughness-induced energy
flux in SW towards the metal-air interface is
reradiated back at a slope angles provided that
the inequality (51) holds, and otherwise no ad-
ditional flux arises.

To compare our results with experimental
data summarized in Refs. [9, 16, 17], one needs
to compute vertical and horizontal scale-lengths
of a surface wave as it was done in the numerical
example at the end of Sec. V. Such a comparison

reveals that the experimentally observed reduc-
tion of the attenuation length 𝐿𝑧 by 2 orders
of magnitude as compared to the Drude theory
can be hardly caused by radiation losses of SW
energy as suggested in Ref. [9, 17]. Nevertheless,
we note that the actual correlation function of a
rough surface may significantly differ from the
Gaussian one of Eq. (62), which was used in
our calculations. For example, the correlation
function can be non-monotonic, as reported in
Ref. [18]. This would mean an existence of a
dominated wavenumber q in the power spec-
trum of the surface roughness. In turn, it could
enhance the effect of the radiation losses of the
SW power, especially if q is in proximity of solid
circles in Fig. 1.

In our opinion, it is feasible that the above
mentioned experimental results might be at-
tributed to the effect of enhanced ohmic losses
in thin metal films as it is also discussed in
Ref. [9, 17].
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