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We propose to couple single atomic qubits to photons incident on a cavity containing an atomic
ensemble of a different species that mediates the coupling via Rydberg interactions. Subject to a
classical field and the cavity field, the ensemble forms a collective dark state which is resonant with
the input photon, while excitation of a qubit atom leads to a secondary ”dark” state that splits the
cavity resonance. The two different dark state mechanisms yield zero and π reflection phase shifts
and can be used to implement quantum gates between atomic and optical qubits.
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I. INTRODUCTION

Numerous proposals for large scale quantum comput-
ing and communication employ coupling of flying and
stationary qubits in the form of photons and atoms [1].
Optically dense media allow efficient protocols for cou-
pling light to collective qubit degrees of freedom in atomic
samples [2], while a high Q cavity may provide strong
coupling between a single photon and a single atom [3],
allowing non-destructive detection of the reflection of a
single photon by its modification of an atomic superposi-
tion state [4]. Recently, these efforts culminated with the
demonstration of deterministic entanglement between a
single atom and photons reflected from a high Q cavity,
[5].

Recent experiments have demonstrated single-photon
phase modulation due to traversal of an atomic medium
with a stored Rydberg polariton [6], and in Ref. [7], a
phase gate was proposed where a light pulse scattering
on a cavity that contains a qubit stored in an atomic
ensemble acquires a conditional reflection phase shift.
Similarly, Ref. [8] proposed a photonic phase gate be-
tween photons sequentially scattered under electromag-
netically induced transparency (EIT) conditions, where
the first photon is stored in a collective Rydberg state,
taking the place of the atomic qubit in Ref. [7]. In
this article, we propose to mediate an effective single-
atom single-photon interaction by employing individu-
ally trapped qubit atoms and an atomic ensemble of a
different species. By the inter-species dipolar interaction
a single Rydberg excited qubit atom can couple strongly
to the Rydberg states of the surrounding ensemble atoms
[9, 10]. This, in turn, affects their collectively amplified
coupling to light fields [11–15] and thus the optical prop-
erties of the system at the single photon level.

In our proposal, the qubit information is retained in
single register atoms and photons while the ensemble only
serves to mediate an effective, collectively enhanced and
broad bandwidth interaction between them. In a quan-
tum repeater architecture, the effective coupling to light

mediated by the ensembles applies also for repeater nodes
containing several individual qubit atoms and paves the
way for deterministic quantum gates and distillation pro-
tocols. Elements of our proposal may be demonstrated in
single species experiments by exciting the qubit and the
ensemble atoms to different Rydberg states as in Ref. [8].
Compared to the dual species implementation, however,
maintaining the separate roles as qubit and ensemble
atoms puts stronger requirements on the spatial sepa-
ration and addressing of the otherwise indistinguishable
ground state atoms. Our use of different atomic species
makes the addressing much easier and, importantly, it
implies that the light interacting with the ensemble is
not resonant with any transition in the qubit atoms. The
qubit information may thus be protected from ensemble
decoherence mechanisms, [16, 17], and does not degrade
due to re-absorption of fluorescence emitted from the en-
semble [18].

The article is organized as follows: In Sec. II, we
present the atomic level scheme and our use of single and
two-atom adiabatic dark states in our gate protocols. In
Sec. III, we provide a quantitative input-output analy-
sis of the single photons scattering on the cavity holding
the atomic system. In Sec. IV, we describe applications
for atom-photon and atom-atom phase gates. In Sec. V,
we present numerical analyses of the gate fidelities using
real atomic parameters and realistic assumptions for the
optical cavity and the trapped atomic ensembles. Sec.
VI concludes the article.

II. PHOTON PHASE SHIFTS DUE TO ATOMIC
DARK STATE DYNAMICS

We shall analyze our proposal for the special case of
cesium (Cs) register and rubidium (Rb) ensemble atoms,
which have favourable interactions among specific Ryd-
berg states [18]. In Fig. 1, panels (a,b) show a schematic
set-up with blue (red) balls representing Cs ground state
(Rydberg excited) atoms and the dashed oval represent-



2

ing the circumference of the ensemble of N Rb atoms.
Panel (a) assumes the Cs ground state |g′〉, where (a,i)

shows the Rb level scheme with the ground state |g, g′〉
coupled by the quantized cavity field to the excited state
|e, g′〉 with (single-atom) coupling strength G. A resonant
laser, coupling the Rydberg level |r, g′〉 with strength Ω
to |e, g′〉, results in the, so-called, EIT dark state |D〉 ∼
Ω|g, g′〉 − G|r, g′〉 [19, 20] with a vanishing state |e, g′〉
amplitude due to destructive interference, and the two
bright states shown in (a,ii).

Panel (b) assumes a Cs atom is excited to a Rydberg
state |r′〉, where (b,i) shows the Cs-Rb pair of states
|r, r′〉 is coupled by a dipole-dipole interaction with the
strength ~V to a nearly degenerate pair of Rydberg states
|p, p′〉 (energy defect ~δ). If δ ' 0, the states |e, r′〉, |r, r′〉
and |p, p′〉 form a correlated two-atom EIT configuration
(EIT 2), leading to a ”dark” state ∼ V |e, r′〉 − Ω|p, p′〉
with no |r, r′〉 amplitude (b,i, faded red) and two ”bright”
eigenstates (not shown). The bright states are shifted in
energy, while the dark state can be excited resonantly
from |g, r′〉 by absorption of a cavity photon. This cou-
pling is collectively enhanced by the presence of N Rb
atoms and results in normal-mode splitting, shifting the
incident photon out of resonance by ±

√
NG (b,ii).

The photon is ultimately reflected from the cavity, but
the intermediate excitation of the dark state in panel (a)
causes a π-phase shift compared to the reflection from the
off-resonant cavity in panel (b). The Cs atom hyperfine
ground state provides qubit states |g′0〉 ≡ |0〉, |g′1〉 ≡ |1〉,
and by resonant excitation of Cs from |0〉 to |r′〉, the
phase of the photon is controlled by the qubit state of a
single Cs register atom, but benefiting from the collec-
tively enhanced coupling strength with the N -atom Rb
ensemble.

III. PHASE SHIFTS FROM INPUT-OUTPUT
THEORY

In our quantitative analysis, detailed in the Appendix,
we apply the formalism of [8], and we obtain the complex
reflection coefficient for a photon incident on the cavity

R{j}(ω) = 1− κ

κ2 − iω +

N∑
n=1

|Gn|2
Γe

2
− iω

+
|Ω|2

Γr

2 − iω +
∑

{j} |Vjn|2
Γp
2 +i(δ−ω)


−1

−1

,

(1)

(where {j} denotes the set of excited Cs atoms). In our
calculation, we assume that the cavity decoherence is
dominated by the mirror transmission loss and we have,
for simplicity, omitted the decay of the Cs Rydberg ex-
cited states at this stage. In the absence of Rb-Rb Ryd-
berg interactions, the optical reflection process is linear,
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FIG. 1. (Color online) Panels (a,b) depict Cs atoms (blue
and red circles) within in an ensemble of Rb atoms (dashed
oval). Panel (a) shows how an incident photon couples into
an EIT dark state |D〉 and exits with the phaseshift χ ∼ π.
(a,i) the Rb ground state |g〉, excited state |e〉 (decay Γe) and
Rydberg state |r〉 (decay Γr) energy levels near a ground state
Cs atom |g′〉 are coupled by the (quantum) cavity field and
a laser control field. Panel (b) shows the effect of a Cs atom
excited to state |r′〉 where the state |r, r′〉 is nearly resonant
with a Förster coupled state |p, p′〉 (b,i). The dipolar coupling
V and the laser field forms the ”EIT 2” configuration with two
”bright” states (not shown) and a ”dark” state (|D〉 faded
red), resonant with the cavity field. The collective coupling
to the Rb ensemble splits the cavity resonance and causes the
reflection of the incident field with the phase shift χ ∼ 0. All,
or only nearby, Rb atoms may form the EIT 2 dark state, as
depicted by the grey shading in (b).

and the coefficient (1) relates the quantized field oper-
ators in the input-output formalism, assuming an addi-
tional Langevin noise term to ensure unitarity [21]. We
have not, however, made any assumptions about the in-
teractions among Rydberg excited Rb atoms, as we shall
apply Eq.(1) only for the case where the cavity is illumi-
nated by a single photon and, hence, at most a single Rb
atom is excited (see Appendix).

We recall, that when no Cs atoms is excited ({j} = ∅),
we want R∅(ω) = −1, and if one or several Cs atoms
are excited, we want R{j}6=∅(ω) = 1, over the frequency
range ∆ω spanning the incident photon spectrum. This
is accomplished due to the interaction term in the second
line of (1) which has a significantly stronger effect for our
Förster coupled Rydberg states than in the analyses [7, 8]
applying Rydberg (blockade) energy shifts.

A. Performance estimates

We shall apply a straightforward numerical evaluation
of Eq. (1) for realistic spatial configurations of the atoms,
but to gain semi-quantitative insight in the performance
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of our coupling scheme as function of different parame-
ters, we shall here approximate the system by separat-
ing the contributions to Eq. (1) from ensemble atoms
that interact and do not interact with an excited qubit
atom. Taking a homogenous cavity coupling Gn → G,
and applying Vjn = C3/r

3
jn where rjn is the distance be-

tween the Cs and Rb atoms, Eq. (1) suggests that Rb
atoms are unperturbed by Cs atoms beyond the distance
RB = (Γe |C3|2 /γ|Ω|2)

1
6 where γ = max(|δ|,Γp). As-

suming that the interaction term dominates the denom-
inator of the second line of Eq. (1) for a homogeneous
density of Rb atoms within RB of the Cs atom, Eq. (1)
simplifies to

R(ω) = 1−
(

1

2
− iω

κ
+ fB(ω)NBC + fE(ω)NEC

)−1

,

(2)
where NB (NE = N − NB) are the number of atoms
perturbed (unpertubed) by the Cs atoms, C = |G|2/κΓe
is the single atom cooperativity, and integrals within and
beyond RB yield

fB(ω) = −(1 + i) tan−1

[
(1 + i)α√
i+ 2ω/Γe

]
/α
√
i+ 2ω/Γe(3)

with α = [
Γp

2δ + i(1− ω
δ )]

1
2 , and,

fE(ω) = iΓe(
iΓe
2

+ ω − 2|Ω|2
2ω + iΓr

)−1, (4)

respectively.
When one or several Cs atoms are excited to the Ryd-

berg state, we want the term fB(ω)NBC to be larger than
all other terms in the parenthesis in Eq. (2), such that we
obtain R(ω) ∼ 1 for the bandwidth ∆ω. For ω = 0 and
Γp � δ, fB ∼ i − 1, and we request that the frequency
splitting is larger than the cavity linewidth

√
NB |G| > κ,

equivalent to the request that the cooperativity of the
perturbed part of the ensemble NBC � 1. For the
case of no Cs Rydberg excitation, the EIT mechansim
should yield R(ω) ∼ −1 around resonance. The last term
fE(ω)NEC, however, represents a phase shift and deco-
herence associated with the atomic excited state compo-
nent of the EIT dark state. For Γr = 0, the resulting

|R(ω)|2 becomes Lorentzian with a width |Ω|2√
N |G|

√
κ
Γe

.

Our simple estimates are confirmed by numerical cal-
culations and they show that the reflection phase shift
can be accurately controlled by the Cs qubit atoms. We
shall now present a few applications for quantum infor-
mation processing tasks, obtaining expressions for their
fidelities that we then compute for realistic experimental
situations by a numerical treatment of Eq. (1).

IV. APPLICATION FOR ATOM-PHOTON AND
ATOM-ATOM PHASE GATE

Rather than merely scattering a single photon on the
cavity, we may employ a photonic qubit, with a two-

dimensional Hilbert space associated with either a zero
and a one photon state component, or with (dual rail)
spatial, time-bin, or frequency components. If only one
of the photonic qubit components experiences the reflec-
tion phase shift controlled by the Cs qubit levels, we ob-
tain a single-atom single-photon phase gate. The fidelity
of the gate is reduced if the reflection is imperfect and
if the photon occupies different mode functions before
and after the reflection. The distortion of a normalized
temporal mode function φ(t) (

∫
|φ(t)|2dt = 1) is readily

obtained in frequency space, where the mode amplitude
φ(ω)→ R{j}(ω)φ(ω), with R{j}(ω) given in Eq. (1). The
resulting loss of fidelity of the phase gate depends on the
input qubit states and on the overlap functions,

T{j} =

∫ ∞
−∞

dω |φ(ω)|2R∗{j}(ω). (5)

Following arguments given in [8] we obtain the average
fidelity over all possible input atom and photon qubit
states,

Fat·ph =
1

16

∣∣2 + T{j} − T{∅}
∣∣2 . (6)

with numerical values depicted in Fig. 3(a,d,g).

The phase shift accompanying reflection of a photon
with no qubit degrees of freedom has interesting applica-
tions on systems with several qubit atoms. Consider the
situation sketched in Fig. 2, where we assume that the Cs
qubit atoms are far apart and do not interact with each
other. If none of the cesium atoms are in the Rydberg
state, the photon is scattered via the Rb dark state and
undergoes a π-phase shift, while if one, or several cesium
atoms occupy their Rydberg states, the surrounding ru-
bidium ensemble causes the mode splitting and reflection
of the incident photon with a vanishing phase shift. The
reflection phase factor on the photon thus acts to produce
different phases on different states of the cesium register,
as illustrated with the implementation of an atom-atom
phase-gate in Fig. 2. The fidelity of this gate depends
on the distinguishability of the reflected photon wave
packets for the different atomic qubit states. A simple
calculation shows that the average fidelity over all input
atomic qubit states becomes

Fat·at =
1

16

∑
{j},{k}

Θ({j})Θ({k})T {j}{k} . (7)

where {j} and {k} explore the four combinations of
atoms that are either excited from |0〉 to |r′〉 or remain in
the qubit state |1〉, Θ({j} = ∅) = −1, Θ({j} 6= ∅) = 1,
and

T
{j}
{k} =

∫ ∞
−∞

dω |φ(ω)|2R{j}(ω)R∗{k}(ω). (8)

Numerical values for Fat·at are depicted in Fig. 3(b,e,h).
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FIG. 2. (Color online) A controlled-phase gate between two
non-interacting Cs atoms: (i) the atoms are excited from |0〉
to |r′〉. (ii) a single photon is scattered off the cavity and |11〉
undergoes a sign change with respect to the other states. (iii)
a π-pulse returns the excited atoms from |r′〉 to |0〉.

V. NUMERICAL ANALYSIS

For a quantitative assessment of the atom-photon and
atom-atom phase gates, we consider the recent experi-
mental set-ups with densities 1011 − 1012 cm−3 [22] to
1014 − 1015 cm−3 [23, 24]. A Gaussian Rb density distri-
bution n = N exp[−(x2 + z2)/R2

c − y2/R2
y]/(R2

cRyπ
3/2)

with (Rc, Ry, RG) = (5, 20, 15)µm overlaps a standing
wave cavity field Gn = G0 sin( 2π

λ yn) exp[−(x2
n + z2

n)/R2
G ]

addressing the λ = 788 nm D2 transition (Γe = 3MHz)
with G0 ' 1 MHz.

We study a photon-atom phase gate with the Cs qubit
atom located in the middle of the Rb cloud y = 0µm,
and an atom-atom phase gate between Cs atoms posi-
tioned along the principal axis of the Rb distribution at
y = ±15µm. The Cs atoms may be held in position
by optical potentials which may be designed to repel Rb
atoms and thus suppress collisions that could decohere
the qubit information. The Rydberg Cs-Rb interaction
is

Vjn(θjn, rjn) =
√
f(θjn)

C3

r3
jn

,

where two prominent Förster resonances are
(F1) Rb48s1/2Cs51s1/2 ↔ Rb48p3/2Cs50p1/2,

CF1
3 = 1.69GHz µm3, and δF1 = −5.71MHz,

and, (F2) Rb84s1/2Cs89s1/2 ↔ Rb84p1/2Cs88p1/2,

CF2
3 = −18.2GHz µm3, and δF2 = −2.43MHz [18, 25].

For F1 with Cs aligned and Rb anti-aligned along the
z-axis f(θjn) = [10 + 6 sin2(θjn)]/9, while for F2 with

aligned Cs and Rb, f(θjn) = [4 + 6 sin2(θjn)]/9, where
θjn is the polar angle of the relative vector.

For F2, the dependence of Fat·ph [Fig. 3(a)] and Fat·at

[Fig. 3(b)] on the applied laser field coupling strength Ω

on the Rb |e〉 → |r〉 transition with Γr = Γp = 10kHz,
and on the total number of atoms through the collec-
tive cooperativity, NC, is shown. We assume Gaus-
sian photon pulses with a frequency profile φ(ω) =

exp[−ω2/(2∆2
ω)]/

√√
π∆ω with ∆ω = 10 kHz. Moving

along arrow i in Fig. 3(a), the dominant source of infi-
delity is the phase shift and decoherence associated with
the unperturbed Rb atoms, fE(ω)NEC [c.f., Eq. (2)],
being small for NC � |Ω|2/ΓeΓr. Conversely, the dom-
inant source of infidelity along arrow ii is the unwanted
excitation of the cavity mode due to the collective shift√
NB |G0| not exceeding linewidths, i.e., NBC ∼ 1. As

the distance RB , within which the Rb atoms are per-
turbed by the presence of a Rydberg Cs atom, depends
on Ω, and NB ∼ NRB/Ry in the elongated geometry, we

require NC � Ry/RB ∝ |Ω|1/3 for small infidelity.

FIG. 3. (Color online) The dependence of Fat·ph (top row)
and Fat·at (middle row) on the laser field coupling strength Ω
and on the total number of atoms multiplied with the single
atom cooperativity, NC, with photon bandwidth ∆ω = 10
kHz and cavity linewidth κ = 10 MHz for the Förster reso-
nances F2 (left column) and F1 with δF1 = 0 (middle col-
umn). The same structure is observed with higher values of
Ω (y-axis is multiplied by 2) in the right column for F2 with
δF2 = 0 and (∆ω, κ) = (1, 30) MHz. The bottom row shows
the infidelity minimized over Ω for Fat·ph (dashed) and Fat·at

(dotted) [scales as ∼ 1/
√
NC (solid)], cf., the gold lines in the

corresponding 2D plots.

Rydberg Rb-Rb interactions are not present as there
is only a single Rydberg Rb excitation via the EIT dark
state when no Cs atoms are excited. However, in the case
of the atom-atom gate, the two Rydberg Cs atoms have
an interaction energy of U/~ = (0.02, 20)kHz for (Cs51s,
Cs89s), which will reduce the fidelity if we use the highly
excited Cs89s.

This interaction can be reduced via other geometries,
e.g., larger separations where each Cs atom is surrounded
by a small cloud of Rb atoms [26], or by using the lower
Rydberg Cs state Cs51s. The latter state has a much
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weaker interaction with the Rb ensemble, but by tuning
the Rydberg levels, e.g., with ac [27] or dc [28, 29] elec-
tromagnetic fields, the energy defect δF1 of the Förster
resonance can be reduced to zero, and thus, we maximize
the effect of the interaction term Vjn in Eq. (1).

The fidelity Fat·ph [Fat·at] for F1 with δF1 = 0 is shown
in Fig. 3(d) [Fig. 3(e)] and is found to be quantitatively
similar to F2 without tuning, Fig. 3(a) [Fig. 3(b)], owing
to [CF2

3,1 ]2/δF2 ∼ [CF1
3,3 ]2/Γp [c.f., Eq. (1)]. Additionally,

the communication bandwidth can be increased by re-
ducing the temporal extent of the photon, validating the
neglect of the Cs-Cs interaction and Cs Rydberg state
decay. To maintain high fidelities, we then require an
increased Ω (to increase the EIT linewidth and reduce
the phase shift and decoherence) and an increased cavity
linewidth κ, and, consequently, increased N . For ∼ 1µs
photons (∆ω = MHz), Fat·ph [Fat·at] is shown in Fig. 3(g)
[Fig. 3(h)], with the high fidelity regimes shifted to higher
values of Ω and NC. In panels (c,f,i) of Fig. 3, we observe

a ∼ 1/
√
NC scaling of the infidelity with the collective

cooperativity, minimized over Ω.

VI. CONCLUSION

To summarize, we have shown that the collective cou-
pling of an ensemble of atoms to a cavity mode together
with a novel two-atom EIT coupling mechanism among
Rydberg states can be employed for phase gates between
photons and single atoms. Using parameters correspond-
ing to current cavity QED experiments with atomic en-
sembles we find atom-photon gate fidelities which are ad-
equate for quantum communication purposes. The atom-
photon gate also allows dispersive readout of individual
atomic qubits with similar suppression of cross-talk as a
recent proposal [18] using Rydberg interactions to obtain
a fluorescence signal from an auxiliary atom.

Our ability to use photonic reflection phase shifts
to perform atom-atom (and multi-atom [30]) gates
brings promise for applications such as entanglement
distillation, decoherence-free subspace encoding and
error correction algorithms in few-qubit registers. As
the controlled atom-photon phase gates can be applied
successively on several cavities, our scheme may find
applications in strategies for distributed quantum com-
puting as well as for the establishment of networks of
entangled states with applications to distributed clocks
and high precision measurements.

ACKNOWLEDGMENTS

This work was supported by the ARL-CDQI program
through cooperative agreement W911NF-15-2- 0061, the
EU H2020 FET-Proactive project RySQ, the SFB Fo-
QuS (FWF Project No. F4016-N23) of the Austrian
Science Fund, the Marie Curie Initial Training Network

COHERENCE, and the Villum Foundation. The authors
acknowledge D. Petrosyan, M. Saffman, P. Zoller, B. Ver-
mersch and A. Glaetzle for fruitful discussions and com-
ments on the manuscript.

Appendix

Here, we shall calculate explicitly the reflection coeffi-
cient R{j}(ω) in Eq. (1) of the main text.

For notational simplicity we assume that there is only
one Cs atom and omit the label {j} = 1 of the main text;
the final result is readily extended to the case of many
Cs atoms. We first define the total Hamiltonian

H =Hsys +HBc +Hint,Bc +HBa +Hint,Ba , (A.1)

where the system Hamiltonian models a cavity that con-
tains a Cs atom and an ensemble of N Rb atoms,

Hsys =

N∑
n=1

(
−~Ω|rn〉〈en| − i~Gn|en〉〈gn|b̂

)
+ H.c.+

+~
N∑
n=1

Vn|rn〉〈pn| ⊗ |r′〉〈p′|+ H.c.+

+~ δ
N∑
n=1

|pn〉〈pn| ⊗ |p′〉〈p′| (A.2)

(in the interaction picture with respect to the cavity fre-
quency ωc). Gn is the coupling of the single-mode cav-

ity field, b̂ ([ b̂, b̂†] = 1), with the transition from the
ground-state |gn〉 to the excited state |en〉 of Rb atom n
of the ensemble. The latter is at the same time driven
by a strong and homogeneous classical field with Rabi
frequency Ω to the Rydberg state |rn〉. We assume van-
ishing single- and two-photon detunings ∆ = ωc − ωeg
and δ′ = (ωc − ωeg) + (ωLre − ωre), where, ~ωeg(~ωre)
is the energy of the excited (Rydberg) state with respect
to the energy of the ground (excited) state, while ωLre is
the frequency of the classical laser.

The second term in Eq. (A.2) represents the dipole-
dipole coupling of the Rb atom Rydberg state |rn〉 and
the Cs atom Rydberg state |r′〉 to the Rb atom Rydberg
state |pn〉 and Cs atom Rydberg state |p′〉. Interactions
among Rydberg-excited Rb atoms are neglected, because
the system is restricted to host no more than a single
(photonic or atomic) excitation at a time. The third
term in Eq. (A.2) is the small Förster energy penalty δ
of the Rydberg product states |pn〉|p′〉.

The Hamiltonian of the continuum of field modes im-
pinging on the cavity reads

HBc = ~
∫
dω ω â†c(ω) âc(ω), (A.3)

where the annihilation and creation operators at fre-
quency ω satisfy the canonical bosonic commutation re-
lation [âc(ω), â†c(ω

′)] = δ(ω − ω′). The coupling through
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the cavity mirror between the single cavity mode b̂ and
the incident field is represented by the interaction Hamil-
tonian

Hint,Bc
= i~

∫
dω gc(ω)

(
â†c(ω) b̂− b̂† âc(ω)

)
, (A.4)

where gc(ω) is in general frequency dependent.

The remaining two terms in the Hamiltonian of
Eq. (A.1) represent the coupling between the atoms and
their environmental bath degrees of freedom. Assuming
atomic decay associated with the emission of fluorescence
photons, these terms give rise to irretrievable loss of pop-
ulation of the excited states of the system, and they can
be described by a loss of norm of the state vector, corre-
sponding to the ”no-jump” component in a Monte Carlo
wavefunction treatment of the problem [31]. Without de-
tailing the explicit form of HBa

and Hint,Ba
, we expand

the ”no-jump” state vector as follows (for the case where
the Cs atom is initially excited to the Rydberg state |r′〉),

|Ψ(t)〉 =

∫
dω φc(ω, t) â

†
c(ω) |gN , r′,Øb,Øa〉

+ Cb(t) b̂
† |gN , r′,Øb,Øa〉

+

N∑
m=1

Cem(t)|gN−1, em, r
′,Øb,Øa〉

+

N∑
m=1

Crm(t)|gN−1, rm, r
′,Øb,Øa〉

+

N∑
m=1

Cpm(t)|gN−1, pm, p
′,Øb,Øa〉. (A.5)

Here, |gN 〉 ≡ |g1, ..., gi, ..., gN 〉, while |gN−1, xm〉 denotes
the state with all ensemble atoms in the ground state ex-
cept themth atom, which is excited to either |em〉, |rm〉 or
|pm〉. |Øb〉 denotes the vacuum of the cavity mode and
|Øa〉 denotes the multimode vacuum state of the field
outside the cavity. The Schrödinger equation governs
the evolution of the state vector amplitudes: φc(ω, t) on
one-photon states with frequency ω outside the cavity,
Cem(t), Crm(t) and Cpm(t) on atomic excited states and
Cb(t) on the one-photon state in the cavity. The fre-
quency ω is defined relative to the cavity frequency ωc.

This implies that
∫
dω ≡

∫ +ϑ

−ϑ dω =
∫ ωc+ϑ

ωc−ϑ dω
′, where

ω′ = ω+ωc is the real optical frequency of the impinging
photon, while ϑ� ωc is an appropriate frequency cutoff.

Assuming spontaneous decay rates Γe, Γr and Γp for
the Rb excited states (i.e. we neglect collective phenom-
ena like sub- and super-radiance), the state vector am-

plitudes solve the following system of equations

Ċem(t) = iΩ∗mCrm(t)− Cb(t)Gm −
Γe
2
Cem(t), (A.6)

Ċrm(t) = iΩmCem(t)− iVmCpm(t)− Γr
2
Crm(t), (A.7)

Ċpm(t) = −iVmCrm(t)− iδCpm(t)− Γp
2
Cpm(t), (A.8)

Ċb(t) =

N∑
n=1

G∗nCen(t)−
∫
dω gc(ω)φc(ω, t), (A.9)

φ̇c(ω, t) = −i ω φc(ω, t) + gc(ω)Cb(t). (A.10)

The formal solutions of Eq. (A.10) is:

φc(ω, t) = e−iωtφc(ω, 0) + gc(ω)

∫ t

0

ds e−iω(t−s)Cb(s),

(A.11)

which inserted in Eq. (A.9) yields

Ċb(t) =

N∑
n=1

G∗nCen(t)− κ

2
Cb(t)−

√
κβin(t). (A.12)

Eq. (A.12) with κ = 2π|gc(ω′ = ωc)|2 is obtained
in the Markov approximation upon the assumption of
a smooth frequency dependence of gc(ω). βin(t) =

1√
2π

∫
dω e−iωtφc(ω, 0) represents the time dependent ar-

rival of the initial (t = 0) photon wave packet incident
on the cavity.

Eq. (A.10) can also be solved so that it matches the
shape of the later (reflected) photon wave packet at T >
t,

φc(ω, t) = e−iω(t−T )φc(ω, T )

− κc(ω)

∫ T

t

ds e−iω(t−s)Cb(s), (A.13)

yielding instead,

Ċb(t) =

N∑
n=1

(G∗nCen(t)) +
κ

2
Cb(t)−

√
κβout(t), (A.14)

where βout(t) = 1√
2π

∫
dω e−iω(t−T ) φc(ω, T ) thus repre-

sents the output cavity field.
Subtracting Eqs. (A.12) and Eqs. (A.14), we obtain

βout(t) = βin(t) +
√
κCb(t). (A.15)

which provides a relation between the input and output
field amplitudes. Note that Eq.(A.15) is equivalent to the
corresponding relation between annihilation operators in
the input-output theory formalism [21].

All the relevant amplitudes solve a coupled set of lin-
ear, first order differential equations. By introducing the
Fourier transform, we obtain for each frequency ω a lin-
ear set of equations which can be solved analytically. The
output field βout(ω) can be expressed as

βout(ω) = R(ω)βin(ω), (A.16)
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where the complex reflection coefficient,

R(ω) = 1− κ

κ2 − iω +

N∑
n=1

|Gn|2
Γe

2
− iω

+
|Ω|2

Γr

2 − iω + |Vn|2
Γp
2 +i(δ−ω)

−1

−1

.

(A.17)

readily generalizes to Eq. (1) in the main text (lifting the
single atom assumption, {j} = 1).

[1] H. J. Kimble, “The quantum internet,” Nature 453,
1023–1030 (2008).

[2] L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, “Long-
distance quantum communication with atomic ensembles
and linear optics,” Nature 414, 413–418 (2001).

[3] L.-M. Duan and H. J. Kimble, Phys. Rev. Lett. 92,
127902 (2004).

[4] A. Reiserer, S. Ritter and G. Rempe, Science 342,
13491351 (2013).

[5] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quan-
tum gate between a flying optical photon and a single
trapped atom,” Nature 508, 237 (2014).

[6] K. M. Beck, M. Hosseini, Y. Duan, and V. Vuletić,
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