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We calculate the reflection and transmission probabilities in a one-dimensional Fermi gas with
an equal mixing of the Rashba and Dresselhaus spin-orbit coupling (RD-SOC) produced by an
external Raman laser field. These probabilities are computed over multiple relevant energy ranges
within the pseudo-potential approximation. Strong scattering resonances are found whenever the
incident energy approaches either a scattering threshold or a quasi-bound state attached to one of
the energetically closed higher dispersion branches. A striking difference is demonstrated between
two very different regimes set by the Raman laser intensity, namely between scattering for the single-
minimum dispersion versus the double-minimum dispersion at the lowest threshold. The presence of
RD-SOC together with the Raman field fundamentally changes the scattering behavior and enables
the realization of very different one-dimensional theoretical models in a single experimental setup
when combined with a confinement-induced resonance.

PACS numbers:

Scattering constitutes the fundamental process used to
probe countless physical systems, ranging from ultracold
dilute gases to energetic quark-gluon plasmas. Rich, in-
triguing phenomena are found already in one-dimensional
quantum scattering processes. For instance, a quantum
particle can tunnel through a double-barrier structure
as if no potential exists when the particle energy (even
when classically forbidden inside the barrier regions) is
resonant with a quasi-bound state supported by the po-
tential. In ultracold atomic systems, a scattering res-
onance coupling relative motion of two atoms in one or
more open channels and bound molecular states in closed
channel(s) forms the basis of tunable Fano-Feshbach res-
onances [1], now extensively used to tune the scatter-
ing lengths and enabling many studies in the unitary
regime [2].

Interactions between two particles can be significantly
modified by their external conditions. A recent experi-
ment [3] on ultracold atomic collisions in an 87Rb conden-
sate in the presence of a two-photon Raman field has ob-
served non-spherical scattering halos at very low temper-
ature, where normally only spherically symmetric s-wave
scattering is expected. The existence of effective higher-
partial waves was attributed to the effects of Raman laser
dressing. In short, the presence of laser fields modifies
collisions between two dressed atoms, and creates effec-
tive higher partial wave scattering. Similar experimen-
tal setups were used to create spin-orbit coupled Bose-
Einstein condensates (BECs) [4] and degenerate Fermi
gases (DFGs) [5][6] with an equal mixing of the Rashba
and the Dresselhaus spin-orbit coupling. Although SOC
appears as a single-particle term in the Hamiltonian, the
non-trivial coupling between the internal (spin) with the
external (linear momentum) alters the dispersion relation
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in a fundamental way and thereby changes the intrinsic
two-body scattering process.
Of particular interest is the binary collision regime oc-

curring when the scattering energy approaches two cross-
ing points on the positive and negative sides of the lowest
SO band. This paper describes the multi-channel scat-
tering resonances in 1D spin-orbit coupled systems con-
trolled by Raman laser fields of moderate strength. In
a strong Raman field, the energy band will experience a
double-minimum (DM) to single-minimum (SM) transi-
tion [7]. These two regimes of physics are found to exhibit
qualitatively different 1D models when explored near a
confinement-induced resonance [8] [9].
Consider a binary collision as it arises in the experi-

mental protocol of the Zhang group [5]. The two-body
Hamiltonian is

H1D =
~
2k21
2m

+
~
2λ

m
k1σ1x +

~Ω

2
σ1z +

~δ

2
σ1x+

~
2k22
2m

+
~
2λ

m
k2σ2x +

~Ω

2
σ2z +

~δ

2
σ2x + V (x),

(1)

where σi=x,y,z are Pauli matrices for spin-1/2 particles, λ
is the SOC strength, Ω is the Raman coupling strength, δ
is the two-photon detuning, and V (x) is the two-body in-
teraction. Because the 1D Rashba-Dresselhaus spin-orbit
coupling can be gauged away with a unitary transforma-
tion, the RD-SOC term simply causes a constant energy
shift for different spin states in the absence of the Ra-
man field and thus does not grant an interesting result.
Therefore, the effective magnetic field from the Raman
coupling, which is perpendicular to the SOC field, is cru-
cial in our discussions below because it opens a gap be-
tween the energy bands, visible in Fig. 1(a) and 2(a).
This is very different from the Rashba SOC in 2D or the
Weyl SOC in 3D, where the non-abelian nature of the
vector potentials alone makes their effects nontrivial.
After defining the relative momentum and the total

momentum as k = (k2 − k1)/2 and K = k1 + k2, we can
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recast the Hamiltonian in Eq. (1) as:

H1D =
~
2K2

2M
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where the matrix is written in the singlet and triplet
basis: {|S〉 = (| ↑↓〉 − | ↓↑〉)/

√
2, |T1〉 = | ↑↑〉, |T2〉 =

| ↓↓〉, |T3〉 = (| ↑↓〉 + | ↓↑〉)/
√
2}. These vectors form

a complete basis for the Hilbert space of two spin-1/2
particles. Morover, if we move into the center of mass
frame of the two colliding atoms, the triplet channel, |T3〉,
is decoupled from the other spin channels in the case
of zero detuning. Therefore, the dimension of the spin
Hilbert space is reduced into three. The corresponding
eigenstates and eigenvalues from top to bottom along the
energy axis are
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Eu = ~
2(k2 +

√

4k2λ2 +m2Ω2/~2)/m, (6)

Em = ~
2k2/m, (7)

Eb = ~
2(k2 −

√

4k2λ2 +m2Ω2/~2)/m. (8)

In the following, we denote the different curves in these
computed dispersion relations as ”states” or ”branches”.
The channel structure of the multichannel scattering

in the presence of RD-SOC and the Raman field is de-
termined by (1) the incoming scattering energy, E, of
the relative motion and (2) the relative strength be-
tween (~k/m)λ and Ω. When the Raman coupling
strength is stronger than Ωc = 2~λ2/m, the energy bands
are in the single-minimum regime. In this regime, for
−~Ω < E < 0, there are one open channel and two
closed channels. For 0 < E < ~Ω, there are two open
channels and one closed channel. For E > ~Ω, all chan-
nels are open. The channel structure becomes more com-
plex when the Raman strength is weaker than Ωc (or

stated alternatively, when the RD-SOC strength is sig-
nificant). In this double-minimum regime, the channel
structure is the same as in the single-minimum regime
for E > −~Ω. However, the double-minimum scattering

threshold, EDM
t = −~

2λ2

m
− mΩ2

4λ2 , moves below the sin-

gle minimum threshold, ESM
t = −~Ω. Therefore, when

EDM
t < E < −~Ω, the double-minimum structure in-

creases the number of open channels into two. The extra
open channel indeed comes from the nonexistence of solu-
tion in the upper band. The combined fourth-order equa-
tion of the most upper and lowest band always gives four
algebraic solutions at any given real energy. The descrip-
tion depends on how these four solutions are distributed
among these two bands. In a more general description,
when the branch point, Ebr = −mΩ2/(4λ2), which ap-
pears due to the square root in the non-quadratic en-
ergy branches, is located at a higher energy than the
lowest threshold, all the four solutions are associated
with the lowest branch. Fig. 1(a) and Fig. 2(a) show
all possible states living in different branches in the
SM and DM regimes respectively. For a fixed energy,
there are six states available, which are labeled by ki for
i = 1, 2, ..., 6. The colors are carefully drawn to reflect
the origin of branches for each state. For instance, when
EDM

t < E < Ebr, the two states in thin blue come from
the analytical continuation of the thick blue branch in
Fig. 2(a).

In 1D low-energy collisions, the binary interaction can
be well approximated by a contact potential with an
effective coupling strength, g1D. Assuming a 1D s-

FIG. 1: (a) The total spectrum of states (the relative energy,
E, versus the wave vector, k, where k′ is the real part and k′′

is the imaginary part of k) in the single-minimum regime of
the center-of-mass frame, i.e. obtained by setting K = 0. The
parameters used are ~Ω = 5~2λ2/(2µ) and ~δ = 0~2λ2/(2µ).
The thick curves represent the real wave vector solutions in
different dispersion branches shown in thick red, thick green
and thick blue (with solid circles on top of it). When en-
ergy goes below the scattering thresholds, application of the
analytical continuation gives us the thin curves, which stand
for either the purely imaginary wave vectors (thin red, thin
green, and thin blue with solid circles) or the complex ones
(thin purple with diamonds). (b) A companion to plot (a).
The solid (dashed) lines represent the real (imaginary) part
of the wave vector, k.
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wave Fermi pseudo-potential, V (x) = g1Dδ(x)|S〉〈S|,
the equations that determine the scattering ampli-
tudes can be derived analytically by matching the so-
lutions to the asymptotic boundary conditions with the
given channel structures along with the condition of
the continuity of the wave function and its derivative.
This must be modified in the singlet component, of
course, because the contact interaction causes a first
derivative discontinuity. Assuming the scattering so-
lutions are ΨR(x) =

∑

α=2,4,6 cαΨα(x) and ΨL(x) =
∑

α=1,3,5 cαΨα(x), where the states Ψα=even (odd) are

chosen to be either right(left)-moving states or decay-
ing states at x → +∞ (x → −∞). The coefficients can
then be found by matching to the following conditions,
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where the superscript, i, labels the component in the
spinor wave functions. Moreover, due to the existence
of spin-orbit coupling, all of the non-interacting states
carry a singlet component. Although the states in the
closed channel become evanescent (i.e. the wave vectors
have an imaginary part) when the scattering energy goes
below any channel threshold, the interaction influences
the scattering of the propagating states through their
coupling to the singlet contact potential.

The probability fluxes for the three stationary state

FIG. 2: (a) The total spectrum of states in the double-
minimum regime in the center-of-mass frame. Parameters
used are ~Ω = 1~2λ2/(2µ) and ~δ = 0~2λ2/(2µ). The thick
curves represent real wave vector solutions (thick red, thick
green and thick blue with solid circles). Besides the thin green
curve, which is identical to the one in Fig. 1(a), the purely
imaginary solutions (thin red and thin blue with solid circles)
now live between the real solutions. The complex solutions
are represented by the thin purple lines with diamonds. (b)
A companion to figure (a). The solid (dashed) lines represent
the real (imaginary) part of the wave vector, k.

components are

vu =
2~k

m
+

4~2λ2k/m√
m2Ω2 + 4~2λ2k2

, (12)

vm =
2~k

m
, (13)

vb =
2~k

m
− 4~2λ2k/m√

m2Ω2 + 4~2λ2k2
. (14)

Under the assumption that the initial state is always one
of the non-interacting eigenstates with a positive flux,
we can recast the scattering information into reflection
probabilities and transmission probabilities characteris-
tic for 1D scattering. For multi-channel scattering, the
reflection probability, Rif , is defined as the ratio of the
reflected flux in the outgoing channel, f , to the incom-
ing flux in channel, i. The transmission probability, Tif ,
is found by evaluating the transmitted flux in outgoing
channel, f , divided by the incoming flux in channel, i.
The flux conservation guarantees

∑

f (Rif + Tif ) = 1
for a given incoming channel, i. The reflection proba-
bilities are plotted versus the relative scattering energy
in the single-minimum and double-minimum regimes re-
spectively in Fig. 3-5 and Fig. 6.
When the incident energy increases all the way up

to the highest scattering threshold, E = ~Ω, the state
in the highest branch has a vanishing wave vector (i.e.
k4 = 0) and a zero singlet component. If this state consti-
tutes the incoming state, then the system can be viewed
as a non-interacting system since the effective couplings
among all scattering states vanish. Therefore, the incom-
ing atoms simply transmit freely through each other and
the transmission is 100% as in the red curve of Fig. 5 at
E = 5~2λ2/2µ. In 40K experiments [5], the energy unit,
~
2λ2/2µ, is about 0.80µK. If the incoming state is any

other state with a non-zero wave vector, then the prop-
erty of the zero probability flux of the state |k4〉 causes
the vanishing reflection probabilities of channel |k4〉 in
Fig. 3, 4, and 6 at the highest threshold even under the
condition of a non-zero coupling between these scattering
states. Above the highest threshold energy, the reflection
probability increases with increasing energy because the
singlet component of the state |k4〉 increases.
Moving down to the next scattering region, where 0 <

E < ~Ω, the wave vector of the state |k2〉 is again zero at
E = 0. The zero value of the wave vector leads to similar
threshold behaviors except for the case with the incoming
wave composed of the state |k2〉. Since the state with a
zero wave vector is a pure singlet state, the middle branch
with a normal quadratic dispersion relation scatters as
if there is no SOC. Therefore, a total reflection in the
incoming channel |k2〉 is expected because the incident
energy is too weak for particles to pass through, which
matches our classical intuition, see the green curve in
Fig. 4 at E = 0.
The more interesting reflection resonances happen

when only one open channel exists. Therefore, we ex-
tract the resonance position as a function of the interac-
tion strength, g1D, in the energy range between [−~Ω, 0]
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FIG. 3: The reflection probability/occupation probability as a function of the relative energy, E, given the initial state in
the blue dispersion branch (i = 6). The gray dashed vertical lines label the scattering thresholds. When energy goes below a
scattering threshold, one branch becomes a closed channel. Therefore, the state becomes evanescent and the amplitude modulus
is interpreted as a measure of the occupation probability in the closed channel, which is represented by the dashed curve. Some
curves have been rescaled to make them more clearly visible. The multiplication factors are labeled above those curves. The
parameters for these calculations are ~Ω = 5~2λ2/2µ, δ = 0 and g1D = −~λ/m.

in Fig. 8(a) and Fig. 8(b). The total reflection shows
up as a result of resonance when the scattering energy
coincides with the energy of the quasi-bound states sup-
ported by the energetically closed bands. Quasi-bound
states are possible for the two higher energy bands since
their stationary solutions all have singlet components due

FIG. 4: The reflection probability/occupation probability is
plotted as a function of the relative energy, E, given the ini-
tial state in the green dispersion branch (i = 2). The gray
dashed vertical lines label the scattering thresholds. When
energy decreases below a scattering threshold, one branch
becomes energetically closed. Therefore, the state becomes
evanescent and the amplitude modulus is interpreted as the
occupation probability in the closed channel, which is repre-
sented by the dashed curve. Some curves are scaled to be
clearly visible. The multiplication factors are labeled above
those curves. The parameters used here are ~Ω = 5~2λ2/2µ,
δ = 0, and g1D = −~λ/m.

to the spin-momentum coupling, except at zero momen-
tum. The fact that the evanescent modes have a peaked
probability at the same energy position is a strong evi-
dence for the existence of a quasi-bound state [10]; see the
red and green dashed lines around E = −0.22~2λ2/2µ in
Fig. 3.

Conventional wisdom suggests that no matter how
weak the short-range attraction is, there is always a
bound state in 1D quantum physics. This explains the
existence of a resonance in Fig. 8(a) for the weakly-
interacting region. For instance, it is located between
−2.7~λ/m < g1D < 0 in the case of ~Ω = 4~2λ2/2µ.
When the value of g1D is increased, a second resonance
peak appears when −3.1~λ/m < g1D < −2.7~λ/m for
~Ω = 4~2λ2/2µ; see the green curve of Fig. 8(a) in the
intermediate interaction strength range. The resonance
structure reflects the anomalous dispersion of the evanes-

FIG. 5: The reflection probability is shown as a function of the
relative energy, E, for an initial state indicated by the green
dispersion branch (i = 4). The parameters for this example
are ~Ω = 5~2λ2/2µ, δ = 0, and g1D = −~λ/m.
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FIG. 6: The reflection probability/occupation probability as a function of the relative energy, E, given the initial state in the
blue dispersion branch (i = 6). The occupation probabilities diverge at the branch point, which is labeled by the dotdashed
purple line. The gray dashed vertical lines label the scattering thresholds. When energy goes below a scattering threshold, one
branch becomes closed. Therefore, the state becomes evanescent and the amplitude modulus is interpreted as the occupation
probability, which is represented by the dashed curve. Some curves are scaled to be clearly visible. The multiplication factors
are labeled near those curves. The parameters used here are ~Ω = 1~2λ2/2µ, δ = 0, and g1D = −~λ/m.

cent modes living between [−~
2λ2/m−mΩ2/(4λ2),−~Ω].

When the attraction is strong enough, the scattering pro-
cess starts to probe the more negative region of the to-
tal spectrum, where the double-minimum structure from
the evanescent modes contributes to the double peaks in
the reflection resonance. The thin blue curve between
[−7.25~2λ2/(2µ),−5~2λ2/(2µ)] in Fig. 1(a) gives a good
demonstration of the double-minimum dispersion from
the evanescent modes. However, if we increase further
the Raman coupling strength, before the attraction is
large enough to explore the double-minimum structure
of the evanescent branch, the energy of the quasi-bound
state has already fallen outside the scattering regime of
interest. Therefore, only one peak in the reflection reso-
nance is observed in the blue curve of Fig. 8(a).
Switching to the double-minimum regime, see

Fig. 2(a), the evanescent modes from the upper and

FIG. 7: The reflection probability in the double-minimum
regime when the incoming state has a negative wave vector
but a positive flux current (i = 4). The parameters used in
this example are ~Ω = ~

2λ2/2µ, δ = 0, and g1D = −~λ/m.
Dashed gray lines are the scattering thresholds.

lower branches now live between energies of the prop-
agating modes which thus leads to very different scat-
tering physics. Because the upper band does not have a
solution (or become transparent) when the energy goes
below E24 = −mΩ2/(4λ), the thin red curve stops at
E24. Therefore, the occupation probability is replaced
by the blue color in Fig. 6 for E < E24. In Fig. 8(b), we
see that there is always only a resonance peak and the
peak position is asymptotically approaching E = −~Ω as
|g1D| is increased. Due to the completely different topol-
ogy of the dispersion relation of the evanescent mode,
no two resonance peaks at the same g1D could be found
simultaneously in the DM regime.

If one inspects the scattering behaviors when the inci-
dent energy is at the lowest scattering energy regime in
the SM and DM cases, a striking difference is found. For
the SM case, there exists a total transmission at the low-
est threshold in Fig. 3; however, for the DM case, there
is a partial reflection at E = EDM

t in Fig. 6. The single-
minimum regime shares the same threshold behavior as in
zero energy due to the decoupling of the incoming chan-
nel |k6〉 with the other states. In the double-minimum
regime, one extra channel is open as E < −~Ω. The
extra state carries a flux current, which is in the oppo-
site direction of the wave vector. In Fig. 6, the scattering
between |k4〉 and |k6〉 cancels out exactly the first deriva-
tive discontinuity of the wave function at the threshold,
and thus the reflection probability is robust against any
change in the interaction strength, g1D. A partial trans-
mission at threshold is explained by the existence of a
bound state near the continuum [11]. The bound state
spectrum has been calculated to support this claim, with
evidence shown in Fig. 8(c). A bound state is accessible
due to the enhancement of the density of states at the
lowest threshold energy in the double-minimum regime,
and it thus contributes to the partial reflection, which is
absent in the normal quadratic dispersion case. In Fig. 7,
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FIG. 8: Resonance position as a function of g1D in the en-
ergy range [−~Ω, 0], where only one channel is open. (a) The
dashed orange, green, and blue line label the lowest scattering
threshold for each case. Parameters used are ~Ω=2 (orange;
top), 4 (green; middle) and 8 (blue; bottom) in the unit of
~
2λ2/2µ. (b) Parameters used are ~Ω = 0.5 (green; top) and

1.0 (blue; bottom) in the unit of ~2λ2/2µ. (c) Bound state
spectra for ~Ω = 1 (blue; top) and 4 (green; bottom) in the
unit of ~2λ2/2µ.

the incoming channel becomes the state |k4〉 with a pos-
itive flux current but a negative wave vector, analogous
to the behavior of light in a metamaterial [12]. Partial
reflection is also observed at the lowest threshold of the
energy range of EDM

t < E < −~Ω as in Fig. 6. How-
ever, at E = ~Ω, the reflection disappears at Fig. 7 since

the channel |k4〉 soon becomes closed after crossing that
energy.

A quasi-1D system can be realized when the longitu-
dinal kinetic energy is small compared with 2~ω⊥, where
ω⊥ is the transverse trapping frequency. In this limit,
the low-energy scattering process has only a total reflec-
tion [8][13] at the scattering threshold as g1D → ∞ which
leads to the experimental realization of the theoretical 1D
Tonks-Girardeau gas [14][15] in a strongly repulsive Bose
gas. The confinement-induced resonances in the simul-
taneous presence of the Rashba-Dresselhaus spin-orbit
coupling and nonzero Raman coupling are predicted to
occur with a less stringent condition of the trapping fre-
quency than the case without RD-SOC upon increasing
the magnitude of the Raman coupling strength [9]. Our
new discoveries of the threshold behaviors in different
regimes of Raman coupling in the spin-orbit coupled sys-
tem extends the capability of using the cold atoms to
perform quantum simulations, where very different 1D
models could possibly be realized.

This work was supported in part by the National Sci-
ence Foundation PHY-1607180 and in part by funding
from the Purdue University EVPRP. Helpful discussions
with Panagiotis Giannakeas and Francis Robicheaux are
acknowledged.

Note: While preparing the manuscript, the authors
noticed that Ref. [16] developed a scattering framework
which is applicable all the way to the negative energies for
an isotropic spin-orbit coupling in 3D. Their treatment
should also be applicable to our 1D RD-SOC case and we
expect solutions from these two different methods should
agree.
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