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We consider ultracold atoms inside a ring optical cavity that supports a single plane-wave mode.
The cavity field, together with an external coherent laser field, drives a two-photon Raman transition
between two internal pseudo-spin states of the atom. This gives rise to an effective coupling between
atom’s pseudo-spin and external center-of-mass (COM) motion. For the case of a single atom inside
the cavity, We show how the spin-orbit coupling modifies the static and dynamic properties of
the Jaynes-Cummings (JC) model. In the case of many atoms in thermodynamic limit, we show
that the spin-orbit coupling modifies the Dicke superradiance phase transition boundary and the
non-superradiant normal phase may become reentrant in some regimes.

PACS numbers: 37.30.+i, 42.50.Pq, 03.75.Mn, 42.50.Nn

I. INTRODUCTION

The interaction between atomic internal pseudo-spin
degrees of freedom and quantized photon field supported
by an optical cavity has long been a focus of the field
of cavity quantum electrodynamics (CQED) [1]. One of
the simplest CQED systems is described by the Jaynes-
Cummings (JC) model [12] which concerns the interac-
tion of a single two-level atom and a single-mode cavity
field under the rotating wave approximation. Over the
past few decades, various techniques have been devel-
oped to realize such a system in experiment [2–11], and
both the static [5–7] and dynamic [8, 9] properties have
been explored. The corresponding model with N two-
level atoms coupled identically to the single-mode cavity
was considered by Dicke [13] and, later, by Tavis and
Cummings [14]. In the literature, the N -atom model
with and without the rotating wave approximation are
often referred to as the Tavis-Cummings (TC) model
and the Dicke model, respectively. It was Dicke who
first suggested to treat all atoms as a single quantum
system in the study of coherent spontaneous radiation
process [13] and proposed what is now called the Dicke
states which are a family of correlated N -atom states
whose spontaneous emission rate scales as N2. In the
context of CQED, both the TC and the Dicke model pre-
dict the superradiant phase transition which describes a
sudden emergence of macroscopic cavity photon number
when the atom-cavity coupling strength exceeds a criti-
cal value. Several recent experiments have explored this
phoenomenon [15–17]. Theoretically, the Dicke super-
radiant phase transition in both zero [18–21] and finite
[22] temperatures has been investigated, and the non-
equilibrium physics [23, 24] of the Dicke model has also
been considered.

The advent of cold atoms makes the atomic center-of-
mass (COM) motion no longer negligible, and hence the
coupling between the atomic external COM degrees of
freedom and the cavity photon field needs to be consid-
ered. The Bose-Einstein condensate in a CQED system
has been realized in experiments on various platforms

[25, 26]. In this system, the mutual influence between the
atomic COM motion and the cavity photon field modifies
the collective atomic motion [27, 28], the cavity transmis-
sion spectra [29], and can lead to matter wave bistability
[30] and multistability behaviors [31], the entanglement
generation [32], etc. In the experimental realization of
Dicke model in Ref. [15, 16], the two-level atomic system
is formed by two motional states of the atom.

Our purpose in this work is to understand the mutual
influence between three degrees of freedom, including the
atomic internal pseudo-spin states, the atomic COM mo-
tion, and the cavity photon field. Due to the fact that
the photon field influences both the internal and exter-
nal states of the atom, an effective spin-orbit coupling
(SOC) is realized. Our focus here is to investigate the
effects of the SOC on both the JC and the TC models.
In experimental setups for both Bose [33–36] and Fermi
[37, 38] gases, the SOC is generated by a pair of counter-
propagating coherent laser beams coupling two hyperfine
states of the atom via a two-photon Raman process [48].
Many-body [39–44] and few-body [45–47] theories have
been proposed to study the emergence of various quan-
tum phases, and the SOC-induced dynamics [38, 49, 50]
has been investigated. In our proposal, we replace one
of the Raman laser beams by the cavity field which is
dynamically coupled to the atoms, in the sense that the
atomic dynamics provides a back action to the cavity
field. Several previous studies have focused on the prop-
erties of quantum gases subjected to such dynamic SOC
[51–56]. In Ref. [13], Dicke already considered the effect
of the atomic COM motion on the superradiant emission,
although SOC was not explicitly mentioned.

The system we study here, schematically shown in
Fig. 1, is similar to the one we studied in our previ-
ous works [55, 56], where we have considered the case
with one single atom and investigated its energy spec-
trum, stability properties, and have compared the dif-
ferences between the semiclassical approach (where the
cavity field is treated as coherent field adiabatically fol-
lowing the atomic dynamics) and the full quantum ap-
proach. The motivation of the current work is to explore
how the atomic COM motion and the SOC modify the
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static and dynamic properties of the JC model and the
superradiant phase transition in the TC model. This
paper is organized as follows. In Sec. II we analytically
study the excitation number and the energy dispersion of
a single atom with cavity-assisted SOC in homogeneous
space, and compare these results to the JC model and the
classical-laser-induced SOC. In Sec. III we show that the
combination of SOC and a confining trapping potential
not only further modifies the excitation number of the
JC model, but also dramatically modifies the spin dy-
namics. In Sec. IV we investigate the Dicke superradiant
phase transition of a many-atom system in the thermo-
dynamic limit, and discuss how the cavity-assisted SOC
modifies the Dicke phase transition boundary. Finally we
conclude in Sec. V.

II. SINGLE ATOM WITHOUT TRAP

We consider a single atom with two internal pseudo-
spin states, denoted as |↑〉 and |↓〉, inside a ring cavity,
as shown in Fig. 1(a). The ring cavity supports a single
mode travelling wave with frequency ωC , and an external
light source produces an additional classical laser beam
with frequency ωR. These two counter-propagating light
beams induce a two-photon Raman transition between
the |↑〉 and |↓〉 states, and simultaneously transfer a re-
coil momentum of ±2qr to the atom along the cavity
axis which we denote as the z-axis. In the lab frame,
this cavity-assisted SOC model with the rotating wave
approximation is governed by the following Hamiltonian,

hlab =
k̂2lab
2m

+
ω0

2
σ̂z+

Ωe2iqrz

2
σ̂+c+

Ωe−2iqrz

2
σ̂−c†+ωLc

†c,

(1)

where m is the atomic mass, k̂lab denotes the atomic
COM momentum operator along the cavity axis, ω0 rep-
resents the energy difference between |↑〉 and |↓〉, c and c†

are the cavity photon annihilation and creation operator,
respectively, ωL = ωC−ωR describes the frequency differ-
ence between two light beams, and Ω is the single-photon
Raman coupling strength. Note that Hamiltonian (1) is
written in a frame rotating with the classical laser fre-
quency ωR. We will always assume ωL > 0 in this work,
as, otherwise, Hamiltonian (1) supports no ground state.
We have set ~ equal to unity for convenience and will
choose ω0 as the energy unit. Here σ̂z, σ̂

+, and σ̂− are
defined as

σ̂z = |↑〉 〈↑| − |↓〉 〈↓| ; (2)

σ̂+ = |↑〉 〈↓| ; σ̂− = |↓〉 〈↑| .
Note that for simplicity, we have ignored the atomic
COM motion along the two transverse directions per-
pendicular to the cavity axis, as they are not coupled to
the cavity field. It is often more convenient to work in a
quasi-momentum frame where the Hamiltonian reads

h =
k̂2

2m
+
qrk̂

m
σ̂z+

ω0

2
σ̂z+

Ω

2

(

σ̂+c+ σ̂−c†
)

+ωLc
†c . (3)

|
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FIG. 1: (a) Schematic diagram of the spin-orbit coupled sys-
tem in a ring cavity. (b) Effective two level model for the
scheme in (a), where a photon field with frequency ωL in-
duces a transition from |n, ↓, k〉 to |n− 1, ↑, k〉, during which

the actual atomic COM momentum k̂lab = k̂ + σ̂zqr changes
from k − qr to k + qr.

Here the quasi-momentum frame and the lab frame are
connected by a gauge transformation h = UhlabU

† with

U ≡ e−iqrz |↑〉 〈↑|+ eiqrz |↓〉 〈↓| . (4)

Note that in the quasi-momentum frame, k̂ = −i∂/∂z
represents the COM quasi-momentum operator, which is

related to actual atomic momentum k̂lab as k̂lab = k̂ +
σ̂zqr. In the following, our discussion will be in the quasi-
momentum frame if not otherwise specified.

In this homogeneous system, both the quasi-

momentum k̂ and the excitation number

n̂ = c+c+ |↑〉 〈↑| , (5)

are conserved. Our model, as described by Hamiltonian
(3), can also be effectively viewed as a two level atom
coupled by a photon field with frequency ωL as shown
in Fig. 1(b). A coupling is present between the states
|n, ↓, k〉 and |n− 1, ↑, k〉, where |np, σ, k〉 denotes a state
with np cavity photons, and the atom in spin-σ with
quasi-momentum k. This spin flipping transition con-

serves k, but the actual atomic COM momentum k̂lab
changes from k − qr to k + qr as its spin changes from
| ↓〉 to | ↑〉 by absorbing a cavity photon. Note that if the
photon recoil momentum vanishes, i.e., qr = 0, (which
occurs when the cavity field and the external laser beam
are co-propagating), the SOC term (the second term on
the r.h.s. of Hamiltonian (3)) is absent, thus the atomic
COM motion is completely decoupled from the cavity
field. Under this situation, our system is reduced to the
conventional JC model after the irrelevant kinetic energy

term k̂2/(2m) in Hamiltonian (3) is ignored. In this sec-
tion, we investigate the ground state excitation number,
and clarify how the SOC modifies the JC model. We also
discuss how the quantization of the cavity photon field
modifies the SOC induced by two classical lasers.

We choose |np, σ, k〉 as the basis states. As the excita-
tion number n and atomic quasi-momentum k are good
quantum numbers, we can consider the two-dimensional
subspace characterized by n ≥ 1 and atomic momentum
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k which is spanned by two basis states |n− 1, ↑, k〉 and
|n, ↓, k〉. The Hamiltonian for this subspace is given by
(the subspace for n = 0 contains only one state |0, ↓, k〉):

hn (k) =

[

h↑n(k)
√
nΩ
2√

nΩ
2 h↓n(k)

]

, (6)

with

h↑n(k) =
k2

2m
+
qrk

m
+
ω0

2
+ (n− 1)ωL ; (7)

h↓n(k) =
k2

2m
− qrk

m
− ω0

2
+ nωL .

Diagonalizing hn (k), we obtain two energy dispersions in
this subspace

E±
n>1 (k) =

k2

2m
± 1

2

√

(

δeffk
)2

+ nΩ2 +

(

n− 1

2

)

ωL ,

(8)

where

δeffk = δ + 2qrk/m , (9)

with δ = ω0−ωL being the bare two-photon detuning for
the Raman transition, and the effect of the SOC can be
regarded as producing a momentum-dependent effective
two-photon detuning δeffk . To complete the spectrum,
we should also include the single dispersion curve in the
n = 0 sector which is given by

E−
n=0 (k) =

k2

2m
− qrk

m
− ω0

2
. (10)

A. Ground-State Excitation Number

In the following, we will first consider the ground state
excitation number in this subsection, and then discuss
the energy dispersion curve in the next subsection.

The case with δ = 0 — By taking the deriva-
tive of E−

n (k), we analytically obtain one minimum for
E−

0 (k) at k = qr, two minima for E−
16n<nc

(k) at k =

±qr
√

1− nΩ2/ (16E2
r ), and one minimum for E−

n>nc
(k)

at k = 0, where nc = (4Er/Ω)
2, and Er = q2r/ (2m)

is the photon recoil energy which also characterizes the
strength of the SOC. Hence, the energy minimum E (n)
in each n subspace can be written into two pieces

E (n) = n
(

ω0 − Ω2

16Er

)

− ω0

2 − Er, n < nc (11)

E (n) = ω0

(√
n− Ω

4ω0

)2

− Ω2

16ω0
− ω0

2 , n > nc

Finally we obtain the ground state energy and the corre-
sponding excitation number by identifying the smallest
E (n) among all n’s.

Figure 2(a) presents the ground-state excitation num-
ber ngs as a function of the Raman coupling strength Ω
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FIG. 2: (color online) (a) Ground-state excitation number
ngs of a single atom in a homogeneous space, as a function
of Raman coupling strength Ω and recoil energy Er, with
ωL = ω0. (b) Ground-state excitation numbers for Er = 2ω0

and Er = 0 (Jaynes-Cummings model) as step functions of Ω
with ωL = ω0. (c) The critical Raman coupling strength at
which ngs jumps from 0 to finite value as a function of ωL/ω0.
The red solid line corresponds to ΩSOC

c with Er = 2ω0, and
the black dashed line to ΩJC

c obtained at Er = 0.

and the recoil energy or SOC strength Er. For Er = 0,
we recover the result for the JC model, where as Ω in-
creases from zero, ngs starts from 0 and increases with
steps of one at succeeding critical values of Ω. This is
plotted as the black dashed line in Fig. 2(b). The critical
values Ωn at which ngs jumps from n to n + 1 can be
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straightforwardly obtained as

Ωn=0 ≡ ΩJC

c = 2ω0 ; (12)

Ωn>1 = 2ω0

[

(2n+ 1) + 2
(

n2 + n
)

1
2

]
1
2

,

where we have denoted the first critical value as ΩJC
c .

In the presence of SOC (i.e., Er 6= 0), ngs still increases
in steps at critical values of Ω. However, in comparison
to the JC model, there are some key differences. First
the parameter regime for ngs = 0 is enlarged, i.e., the
first jump where ngs changes from 0 to finite occurs at a
critical Raman coupling strength Ω = ΩSOC

c > ΩJC
c . This

is due to the fact that, as can be seen from Eqs. (11) and
(10), finite Er (or qr) reduces the value of E−

n=0 more
than that of E−

n>1, which helps to enlarge the n = 0

regime. Here the value of ΩSOC
c can be obtained from

Eq. (11) as

ΩSOC

c =

{

2 (ω0 + Er) , for Er 6 ω0

4
√
ω0Er , for Er > ω0

. (13)

Second, at Ω = ΩSOC
c , ngs jumps from 0 to a finite value

that is not necessarily equal to 1. An example is shown in
Fig. 2(b) as the red solid line. Third, as Ω keeps increas-
ing from ΩSOC

c , ngs will jump with steps of 1 at exactly
the same critical values as in the JC model, because for
Ω > ΩSOC

c , the ground state always occurs at k = 0 and
hn (k = 0) in Eq. (11) takes exactly the same form as
that in the JC model.

The case with δ 6= 0 — We can proceed in a similar
way to obtain results with δ 6= 0. Critical values of Ω
at which ngs jumps can still be found analytically, but
the results are too cumbersome to write down explicitly.
The main features are not qualitatively different from the
previous case with δ = 0. In particular, the parameter
regime with ngs = 0 is always enlarged in comparison to
the JC model. In other words, we always have ΩSOC

c >
ΩJC

c at any value of δ, as can be seen in Fig. 2(c).

B. Energy Dispersion and Degeneracy

We now discuss the energy dispersion curve and ground
state degeneracy, which are determined by Eqs. (8) and
(10). For the Raman spin-orbit coupling induced by two
classical laser beams whose Hamiltonian is given by

hcl =
k̂2

2m
+
qrk̂

m
σ̂z +

δ

2
σ̂z +

Ωcl

2
σ̂+ +

Ωcl

2
σ̂− , (14)

it is well known [44] that, for δ = 0, the energy dispersion
exhibits a single minimum when Er 6 Ωcl/4, and two
double minima when Er > Ωcl/4.

In our system with quantized light field, things be-
come more complicated. An example is shown in Fig. 3.
In Fig. 3(a), whose parameter space corresponds to that
represented by the white box in Fig. 2(a), the background
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FIG. 3: (color online) (a) Degenerate-to-nondegenerate tran-
sition boundary and ground state excitation number ngs in the
parameter space corresponding to the white box in Fig. 2(a).
The region bounded by the red dash and the blue solid lines
features two-fold degenerate ground state. Outside this re-
gion, the ground state is non-degenerate. (b)-(e) Energy
dispersion relations for excitation number n = 3, 4 with
Ω = 7.3ω0 and Er = 3.27ω0 in (b), Ω = 7.3ω0 and Er = 3ω0

in (c), Ω = 7.55ω0 and Er = 3.53ω0 in (d), and Ω = 7.55ω0

and Er = 3.34ω0 in (e). These parameters correspond to
points (b)-(e) in (a).

color represents the value of ground state excitation num-
ber ngs. The region bounded by the red dashed and the
blue solid lines has two-fold degenerate ground state,
while the other region features nondegenerate ground
state. The two lowest dispersion curves of 4 points la-
belled by (b-e) in Fig. 3(a) are plotted in Fig. 3(b-e).

As Er decreases from point (b) to (c), the n = 3 dis-
persion transforms from two double minima to a single
minimum, and the ground state changes from degenerate
to non-degenerate. This process is similar to what hap-
pens in the classical-laser-induced SOC, since the ground
state always stays in n = 3 dispersion.

As Er decreases from point (d) to (e), the n = 3 dis-



5

persion curve always possess two minima, but the ground
state changes from degenerate to nondegenerate as the
ground state excitation number ngs jumps from 3 to 4.
Hence, this process is a unique feature of the cavity-
assisted SOC.

III. SINGLE ATOM IN HARMONIC TRAP

In the absence of the trapping potential, the atomic
quasi-momentum is conserved. For a fixed quasi-
momentum k, Hamiltonian (3) is the same as that for
the JC model, and the SOC term is to effectively shift
the atomic transition frequency ω0 by a momentum-
dependent amount of 2qrk/m, or equivalently to give
rise to a momentum-dependent detuning δeffk defined in
Eq. (9). When a trapping potential is present, k will
no longer be a good quantum number, and different
quasi-momentum components will therefore be coupled
together. This is the situation we are now going to in-
vestigate. Specifically, we will consider the presence of
a harmonic trap with trapping frequency ωt. The total
Hamiltonian is now

ht = h+
1

2
mω2

t z
2, (15)

where h is given in Eq. (3).

A. Ground-State Excitation Number

We first consider the ground state excitation number.
Note that, even in the presence of the trapping poten-
tial, the excitation number n, defined in Eq. (5), remains
a good quantum number. Note that Hamiltonian (15)
can be represented by ladder operators a and a† of the
harmonic oscillator as

ht =ωta
†a+ iqr

√

ωt

2m

(

a† − a
)

σz

+
ω0

2
σ̂z +

Ω

2

(

σ̂+c+ σ̂−c†
)

+ ωLc
†c,

(16)

where we have used k̂ = i
√

mωt/2
(

a† − a
)

and made
an energy shift of ωt/2. We obtain the ground state
through the exact diagonalization approach by expand-
ing the Hamiltonian (16) onto the basis states |np, σ, q〉,
where |np〉 is the photon Fock state, |σ〉 is the atomic spin
state, and |q〉 represents the phonon Fock state of the har-
monic oscillator defined by a†a |q〉 = q |q〉. A sufficiently
large cutoffs for np and q are chosen in the calculation.

Figure 4(a1) shows the ground-state excitation num-
ber ngs as a function of Raman coupling strength Ω and
recoil energy Er for δ = 0 in the presence of a relatively
weak harmonic trap with trap frequency ωt = 3ω0. Com-
pared to the previous result without the trap as shown
in Fig. 2(a), here the boundaries between different ngs

are bent curves instead of straight lines. Figure 4(a2)
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FIG. 4: (color online) (a1)(b1) Ground-state excitation num-
ber ngs of a single atom in harmonic trap with trap frequency
ωt = 3ω0, 300ω0, as a function of Raman coupling strength
Ω and recoil energy Er. (a2)(b2) The ngs for Er = 2ω0 and
Er = 0 (Jaynes-Cummings model) as step functions of Ω with
ωt = 3ω0, 300ω0. Here we consider ωL = ω0.

shows ngs as a function of Ω for two values of Er. The
case with Er = 0 corresponds to the absence of SOC and
our model is reduced to the JC model. At finite Er, the
SOC term shifts the values of the critical Raman coupling
strength at which ngs jumps. In addition, ΩSOC

c > ΩJC
c

is still satisfied for any ωL > 0 as in the previous case of
homogeneous space.

In Fig. 4(b1) and (b2), we plot the ngs for a relatively
strong harmonic trap with ωt = 300ω0. In this case, we
find that the results for finite Er are not very different
from the JC model results as long as Er ≪ ωt. This can
be intuitively understood as follows. In the presence of a
very strong trapping potential, the effect of photon recoil,
and hence that of the SOC, becomes less important. This
is analogous to the Lamb-Dicke limit in the context of
ion trapping, in which the coupling between the ion’s
internal dynamics and its motional dynamics induced by
an external light field is suppressed by a strong confining
potential.

B. Spin Dynamics

In the JC model, when a cavity field with definite pho-
ton number (i.e., a cavity Fock state) is coupled to the
two-level atom, the ensuing spin dynamics is described
by the well-known Rabi oscillation, where the oscillation
frequency is determined by the coupling strength Ω and
the detuning δ. In our model, the trapping term cou-
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ples different quasi-momentum states, and each quasi-
momentum state experiences a momentum-dependent ef-
fective Raman detuning δeffk . The resulting spin dynamics
becomes much more complicated.

To investigate the spin dynamics in our model, we con-
sider a specific initial state |ψ(0)〉 = |np, ↓, q = 0〉 in the
lab frame, where the atom is prepared in the | ↓〉 state
and the ground state of the harmonic trap, and the cav-
ity field is in a Fock state with np photons. This confines
the system dynamics within the subspace characterized
by excitation number n = np. Within this subspace, the
Hamiltonian in Eq. (15) takes the form as (after neglect-
ing a dynamically irrelevant constant term)

ht (np) =
k̂2

2m
+
qrk̂

m
σ̂z+

δ

2
σ̂z+

Ωcl

2
σ̂++

Ωcl

2
σ̂−+

1

2
mω2

t z
2 ,

(17)
where Ωcl ≡ Ω

√
np, and σ̂z , σ̂

+, and σ̂− are re-defined as

σ̂z = |np − 1, ↑〉 〈np − 1, ↑| − |np, ↓〉 〈np, ↓| ; (18)

σ̂+ = |np − 1, ↑〉 〈np, ↓| ; σ̂− = |np, ↓〉 〈np − 1, ↑| .

Note that this Hamiltonian is mathematically equivalent
to the Hamiltonian describing a spin-orbit coupled atom
where the SOC is generated by two classical Raman laser
beams (see Eq. (14)) [33–35, 37, 38, 44]. As a conse-
quence, the result presented below is also valid in that
context. In the classical laser context, the correspond-
ing spin dynamics has been studied in [38, 50], whereas
we focus on the effects of the photon recoil on the Rabi
oscillation in cases of different trapping strengths.

We solve the time-dependent Schrödinger equation nu-
merically to find the state vector |ψ(t)〉 starting from the
initial state |ψ(0)〉, we then calculate the probability of
finding the atom in | ↑〉:

P↑ (t) ≡
∞
∑

q=0

|〈np − 1, ↑, q| ψ (t)〉|2 . (19)

Examples of spin dynamics are plotted in Fig. 5(a-c),
which represent the δ = 0 cases for a strong, an inter-
mediate, and a weak trap, respectively, where the trap
strength is measured against Er .

Strong Trap — As we discussed in the previous sub-
section, in the presence of a strong trap with ωt ≫ Er,
the system is in the Lamb-Dicke regime where the effect
of SOC may be regarded as a small perturbation. The
corresponding spin dynamics shown in Fig. 5(a) is accu-
rately described by a sinusoidal oscillation as

P↑ (t) = sin2
[

f (ωt)

2
t

]

, (20)

where f (ωt) denotes the oscillation frequency which de-
pends on the trap frequency ωt. In the limit of ωt → ∞,
the JC model result is recovered as the oscillation fre-
quency f (ωt → ∞) = Ωcl, with the Rabi frequency
Ωcl = 4Er in this example. For large but finite ωt, the os-
cillation frequency f (ωt) deviates away from this value.
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0.4

0.6

0.8

1

(a)

P t( )
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t = Er
(b)

P t( )

numerical

Eq. (24)

t = 0.03Er(c)

P t( )

tEr

numerical

perturbation

t / Er
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0.5

0 700 14000
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1
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1

FIG. 5: (color online) (a)-(c) Time evolution of the spin-up
probability P↑ (t) of a single atom in a harmonic trap with
ωt = 20Er, Er, and 0.03Er . The system is initially prepared
in the harmonic oscillator ground state with spin down. The
inset of (a) plots f (ωt), the oscillation frequency of P↑ (t), as
a function of ωt in the strong trap regime, where the black
solid line depicts the numerical result obtained by Fourier
analysis and the blue dashed line depicts the analytical result
from the perturbation theory [Eq. (21)], and a logarithmic
scale is used for the horizontal axis. In (c) for the weak trap
regime, the red solid line shows the numerical result, and the
blue dashed line shows the analytic result in Eq. (24) where
the coupling between different momentum spaces is neglected.
The corresponding long time evolutions of P↑ (t) are shown in
the inset of (c). Other parameters: Ωcl = 4Er, δ = 0.

By treating the SOC term as a small perturbation, we
can analytically obtain the oscillation frequency as

f (ωt) = Ωcl −
2ErΩcl

ωt

− 2ErΩ
3
cl

ωt (ω2
t − Ω2

cl)
. (21)

Details of this derivation can be found in Appendix A.
In the inset of Fig. 5(a), we compare the spin oscillation
frequency obtained from the numerical calculation (black
solid line) and the analytic result of Eq. (21) (blue dashed
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line), and find excellent agreement for large ωt.
Weak Trap — An example of weak trap with ωt ≪ Er

is presented in Fig. 5(c), where the short- and long-time
behaviours are plotted in the main figure and the insets,
respectively. For short-time scale, the system exhibits
a damped oscillation. This damped oscillation can be
intuitively understood as follows. The initial COM wave
function of the atom is a Gaussian (the ground state of
the harmonic oscillator), which in the (quasi-)momentum
space can be written as

φ0 (k) = (πmωt)
− 1

4 e−
(k−qr )2

2mωt . (22)

For such a weak trap, and for short time scale, we can
neglect the trap-induced coupling between different mo-
mentum components. Then each momentum component
exhibits Rabi oscillation, such that for a given quasi-
momentum k we have

p↑(t, k) =
Ω2

cl

Ω2
cl +

(

δeffk
)2 sin2

(

1

2

√

Ω2
cl +

(

δeffk
)2
t

)

, (23)

where δeffk = 2qrk/m is the effective two-photon detuning
for the given momentum component k. Integrating over
all the momentum components, we have

P↑ (t) =

∫

dk |φ0(k)|2p↑(t, k) . (24)

In the main figure of Fig. 5(c), the red solid line repre-
sents the result obtained from the numerical calculation
and the blue dashed line the result based on Eq. (24).
Both results agree with each other very well. The damp-
ing of the oscillation arises from the dephasing effect,
as different momentum components oscillate at different
frequencies due to the momentum-dependent effective de-
tuning δeffk .

For time scales on the order of or longer than 1/ωt, the
assumption underlying Eq. (24) that different momentum
components behave independently is no longer valid. The
numerically obtained long-time result and the one based
on Eq. (24) are plotted in the insets of Fig. 5(c). Signif-
icant discrepancies can be seen. In particular, Eq. (24)
predicts a featureless flat line: once the dephasing oc-
curs, P↑ no longer oscillates and stays constant. But the
full numerical result shows that, due to the momentum
components coupling induced by the trapping potential,
the long-time behaviour of the system can be quite rich.

IV. SUPERRADIANCE IN THERMODYNAMIC

LIMIT

So far, we have been focusing on the properties of a
single atom. In this section, we consider a system where
the single mode cavity photon field is coupled to many
atoms in thermodynamic limit. We neglect the bare in-
teractions between atoms. However, as each atom in-
fluences the whole photon field which back acts on the

other atoms, the photon field induces an effective cou-
pling between atoms. When the atomic COM motion is
neglected, our model reduces to the TC model. One of
the most well-known many-body effects in this model is
the Dicke superradiant phase transition [18–22]. Here we
investigate how the COM degree of freedom and the SOC
affect the Dicke phase transition.

We consider a canonical ensemble where N atoms in-
side the cavity are confined within a box with volume V .
In the thermodynamic limit, both N and V are taken
to be infinity but the number density ρ = N/V is finite.
The Hamiltonian of this system is given by

H = ωLc
†c+

N
∑

j=1

ĥj , (25)

with the Hamiltonian for the jth atom

ĥj =
k̂
2
j

2m
+
qrk̂zj
m

σj
z+

ω0

2
σj
z+

Ω̃

2
√
N

(

σ+
j c+ σ−

j c
†) , (26)

where Ω̃ =
√
NΩ is the rescaled Raman coupling

strength, and k̂j is the three dimensional quasi-
momentum operator for the jth atom.

To investigate the thermodynamic phase transition at
temperature T , we take a similar approach as in Ref. [22]
in which the Dicke phase transition in the TC model
is investigated. The canonical partition function Z =
Tr
(

e−βH
)

with β = 1/ (kBT ) can be calculated as

Z =
V N

(2π)3N

∫

d2α

π

N
∏

j=1





∫

dkj

∑

σj=↑,↓



 〈Ψ| e−βH |Ψ〉 ,

(27)
where we have chosen the states

|Ψ〉 = |α〉
N
∏

j=1

|kj〉 |σj〉 (28)

as our basis states to evaluate the trace. Here |α〉 is
the photon coherent state, i.e., the eigenstate of photon
annihilation operator such that c|α〉 = α|α〉, |kj〉 is the
quasi-momentum eigenstate for the jth atom, and |σj〉
(σj =↑, ↓) is the eigenstate of σj

z for the jth atom. By
using the condition N → ∞, we obtain

〈α| e−βH |α〉 = exp



−β



ωL |α|2 +
N
∑

j=1

ĥαj







 , (29)

where

ĥαj =
k̂
2
j

2m
+
qrk̂zj
m

σj
z +

ω0

2
σj
z +

Ω̃

2
√
N

(

σ+
j α+ σ−

j α
∗) .

(30)
As the summation over spin and integral over momen-
tum in Eq. (27) are independent for different atoms, the
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partition function can be simplified as

Z =

∫

d2α

π
e−βωL|α|2

[

V

(2π)
3

∫

dk
(

e−βǫ+ + e−βǫ−
)

]N

,

(31)
where

ǫ± =
k
2

2m
±

√

√

√

√

(

qrkz
m

+
ω0

2

)2

+

(

Ω̃

2

)2
|α|2
N

(32)

are the eigenvalues of ĥαj in Eq. (30). Integrating over the
complex angle of α and x, y components of k in (31), and

letting u = |α|2
N

, we can rewrite the partition function as

Z = C1

∫ ∞

0

du exp {N [F (u)]} , (33)

with constant C1 = N
(

mV
4π2β

)N

and

F (u) = −βωLu+ logS (u) , (34)

S (u) = 2

∫

dkz exp

(

−βk
2
z

2m

)

cosh ξ (kz , u) , (35)

ξ (kz, u) = β

√

√

√

√

(

qrkz
m

+
ω0

2

)2

+

(

Ω̃

2

)2

u . (36)

The Laplace’s method [22] is used to deal with the inte-
gral over u in Eq. (33). For N → ∞, this yields

Z = C2 max
u∈[0,∞)

exp {N [F (u)]} , (37)

where C2 is a constant and we denote that the maximum
of F (u) is reached at u = u0. We numerically obtain a
u0 > 0 by taking the first and second order derivatives of
F (u), and it is straightforward to show that u0 is actually
the normalized photon number

u0 =

〈

c†c
〉

N
, (38)

where
〈

c†c
〉

/N > 0 corresponds to the superradiant
phase with a macroscopic photon excitation appearing in
the thermodynamic limit; and

〈

c†c
〉

/N = 0 corresponds
to the normal phase.

Figure 6(a) shows
〈

c†c
〉

/N as a function of the tem-
perature T and the rescaled Raman coupling strength
Ω̃ with the SOC strength Er = 0.5ω0. The red solid
line in the figure represents the critical coupling strength
Ω̃c (i.e., the phase boundary): Above this line, we have
〈

c†c
〉

/N > 0 and the system is in the superradiant phase;

and below this line,
〈

c†c
〉

/N = 0 which corresponds to

the normal phase. In Fig. 6(b), we plot Ω̃c as a function
of T for several different values of Er. As in the pre-
vious single-atom case, we recover the usual TC model
when Er = 0 (bottom curve in Fig. 6(b)). For the TC
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FIG. 6: (color online) (a) Normalized photon number〈
c†c

〉
/N as a function of temperature T and effective Ra-

man coupling strength Ω̃ with Er = 0.5ω0, where
〈
c†c

〉

is the average photon number and N is the atom number.
Here

〈
c†c

〉
/N > 0 corresponds to the superradiant phase

and
〈
c†c

〉
/N = 0 corresponds to the normal phase. (b)

Normal-Superradiant Phase boundary in T − Ω̃ plane for
Er/ω0 = 0, 0.2, 0.5, 0.8, 1. (c)

〈
c†c

〉
/N as a function of T

for Ω̃ = 2.9ω0 with Er/ω0 = 0, 0.5. We take ωL = 0.8ω0 in
these figures.
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model, Ω̃c is a monotonically increasing function of T ,
and Ω̃c = 2

√
ω0ωL at T = 0. For finite Er, Ω̃c is larger

than the corresponding value in the TC model. In other
words, in the presence of the SOC, the regime of normal
phase is enlarged, which is consistent with the single-
atom property that the SOC enlarges the n = 0 regime
with no photons, as shown in Eqs. (12) and (13), and

Fig. 2. The upward shift of Ω̃c at finite Er is more pro-
nounced at lower temperature. This may not be surpris-
ing as, at lower temperature, the average atomic COM
kinetic energy is lower and hence the photon recoil plays
a more significant role. This temperature dependent shift
leads to another important feature brought by the SOC:
Ω̃c is no longer a monotonic function of T , as can be eas-
ily seen in Fig. 6(b), and reaches the minimum value at
a finite temperature.

A consequence of the nonmonotonic behaviour of Ω̃c

is that the normal phase may become reentrant as the
temperature varies. This is depicted in Fig. 6(c), where

we plot
〈

c†c
〉

/N as a function of T with Ω̃ = 2.9ω0 for
Er = 0.5ω0 (red solid line) and Er = 0 (blue dashed
line). For the TC model (Er = 0), the system is in
the superradiant phase at sufficiently low temperature
when Ω̃ > 2

√
ω0ωL (as is the case shown in Fig. 6(c))

with finite
〈

c†c
〉

/N . As temperature increases,
〈

c†c
〉

/N
decreases monotonically until it reaches 0 at the critical
temperature Tc which is given by

4ω0ωL

Ω̃2
= tanh

(

ω0

2ωLkBTc

)

. (39)

For the example shown in Fig. 6(c) with finite Er, the
system is in the normal phase with

〈

c†c
〉

/N = 0 at both
the low and the high temperature ends, and is in the su-
perradiant phase in an intermediate temperature window

between T
(1)
c and T

(2)
c .

A remark is in order. In our derivation of the partition
function Z in Eq. (27), we have treated the N atoms as
distinguishable particles which obey the Boltzmann dis-
tribution. In other words, we have ignored the quantum
statistics of atoms. This should be a good assumption
at high temperature. We may estimate the temperature
regime in which this assumption is valid as follows. Let
us assume that the atoms are ideal bosons. The critical
temperature for the bosons to form Bose-Einstein con-
densate is given by

TBEC = 3.31
~
2ρ

2
3

mkB
≈ 3× 10−4

(

~ω0

kB

)

, (40)

where we have taken typical values such that the atomic
number density ρ = 1013cm−3, m the mass of 87Rb atom,
and energy splitting between two ground state hyperfine
states ω0 = 2π × 4.81MHz. When T ≫ TBEC, quantum
statistics is not important, and the bosons can in prac-
tice be treated as distinguishable particles. As TBEC is
very small in our unit system, our results as presented in
Fig. 6 should largely remain valid for typical experimen-
tal situations. Note that as TBEC is roughly the same as

Fermi degenerate temperature, this estimate is also valid
for a system of Fermi gas. How to properly incorporate
quantum statistics of atoms in the calculation for tem-
peratures within the quantum degenerate regime remains
a challenge and will be investigated in the future.

V. CONCLUSION

In conclusion, we have studied the Raman spin-orbit
coupling induced by one cavity photon field and one
classical Raman laser beam, where all three degrees of
freedom including the atomic internal pseudo-spin, the
atomic external COM motion, and the cavity photon
field are coupled and treated self-consistently. For the
single-atom case, we show that the SOC stabilizes the
n = 0 sector which contains no photons. Furthermore,
the SOC combined with a trapping potential gives rise
to rich spin dynamics. For the many-atom case in ther-
modynamic limit, we focused on the physics of the Dicke
superradiance phase transition. In comparison to the TC
model where the atomic COM motion is neglected, the
SOC modifies the phase transition boundary by increas-
ing the critical atom-cavity coupling strength at which
the system becomes superradiant. Furthermore, the non-
monotonic behavior of the critical coupling strength can
lead to the reentrant of the non-superradiant normal
phase as the temperature varies.

Acknowledgment — This research is supported by the
NSF (Grant No. PHY-1505590) and the Welch Founda-
tion (Grant No. C-1669).

Appendix A: Perturbation Theory for Oscillation

Frequency Shift of P↑ (t)

In this Appendix, we provide a detailed derivation of
Eq. (21) using a perturbation calculation. It is more
convenient to carry out the calculation in the lab frame,
in which the Hamiltonian reads

hlabt =
k̂2

2m
+
1

2
mω2

t x
2+

δ

2
σ̂z+

Ωcle
2iqrx

2
σ̂++

Ωcle
−2iqrx

2
σ̂− ,

(A1)
which is the counterpart of Hamiltonian (17).

In the limit of large trapping frequency ωt ≫ Er, the
atoms are tightly confined within a spatial region much
smaller than 1/qr. Hence we may Taylor expand the two
exponentials in Hamiltonian (A1) to second order in qr,
and write

hlabt = h0 + V, (A2)

where

h0 =
k2

2m
+

1

2
mω2

t x
2 +

δ

2
σ̂z +

Ωcl

2
σ̂+ +

Ωcl

2
σ̂−; (A3)

V =
(

iqrx− q2rx
2
)

Ωclσ̂
+ −

(

iqrx+ q2rx
2
)

Ωclσ̂
−. (A4)
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We shall treat V as a perturbation to h0, and focus on
the case with δ = 0.

The eigenenergies and eigenstates of the unperturbed
Hamiltonian h0 are given by

E
(0)
q± =

(

1

2
+ q

)

ωt ±
Ωcl

2
; (A5)

|q±〉 = 1√
2
(|↑〉 ± |↓〉) |q〉 , (A6)

where q is the harmonic oscillator quantum number. Our
initial state has the atom in | ↓〉 and harmonic oscillator
ground state |q = 0〉, which can be written as

|ψ(0)〉 = 1√
2
(|0+〉 − |0−〉) . (A7)

Neglecting V , the ensuing dynamics will lead to Rabi
oscillation with frequency Ωcl, i.e., the energy difference
between the two eigenstates |0±〉. This is the result for
the JC model.

To find the oscillation frequency when V is included,
we shall calculate the energy shift to the states |0±〉 to
second order in qr. The corresponding oscillation fre-
quency will then be

f =
(

E
(0)
0+ + E

(1)
0+ + E

(2)
0+

)

−
(

E
(0)
0− + E

(1)
0− + E

(2)
0−

)

(A8)

with E
(1)
0± and E

(2)
0± being the 1st and 2nd order energy

shift due to the perturbation V , respectively. Through
the standard time independent perturbation theory, we
obtain

E
(1)
0± = 〈0±|V |0±〉 = ∓ErΩcl

ωt

; (A9)

and

E
(2)
0± =

|〈1∓|V |0±〉|2

E
(0)
0− − E

(0)
1∓

+
|〈2±|V |0±〉|2

E
(0)
0− − E

(0)
2±

(A10)

= − ErΩ
2
cl

ωt (ωt ∓ Ωcl)
−
(

ErΩcl

ωt

)2
1

ωt

.

Substituting Eqs. (A5)(A9)(A10) into Eq. (A8), we ob-
tain the oscillation frequency of P↑ (t)

f (ωt) = Ωcl −
2ErΩcl

ωt

− 2ErΩ
3
cl

ωt (ω2
t − Ω2

cl)
, (A11)

as given in Eq. (21) in the main text.
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