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Stable self-trapped vortex annuli (VAs) with large values of topological charge S (giant VAs) are not only

a subject of fundamental interest, but are also sought for various applications, such as quantum information

processing and storage. However, in conventional atomic Bose-Einstein condensates (BECs) VAs with S > 1

are unstable. Here, we demonstrate that robust self-trapped fundamental solitons (with S = 0) and bright VAs

(with the stability checked up to S = 5), can be created in the free space by means of the local-field effect (the

feedback of the BEC on the propagation of electromagnetic waves) in a condensate of two-level atoms coupled

by a microwave (MW) field, as well as in a gas of MW-coupled fermions with spin 1/2. The fundamental

solitons and VAs remain stable in the presence of an arbitrarily strong repulsive contact interaction (in that case,

the solitons are constructed analytically by means of the Thomas-Fermi approximation). Under the action of the

attractive contact interaction with strength β, which, by itself, would lead to collapse, the fundamental solitons

and VAs exist and are stable, respectively, at β < βmax(S) and β < βst(S), with βst(S = 0) = βmax(S = 0) and

βst(S ≥ 1) < βmax(S ≥ 1). Accurate analytical approximations are found for both βst and βmax, with βst(S)
growing linearly with S. Thus, higher-order VAs are more robust than their lower-order couterparts, on the

contrary to what is known in other systems that may support stable self-trapped vortices. Conditions for the

experimental realizations of the VAs are discussed.

PACS numbers: 03.75.Lm, 05.45.Yv, 42.65.Tg

I. INTRODUCTION

Light and microwaves (MWs) are important tools for

controlling dynamics of atomic Bose-Einstein condensates

(BECs). In addition to creating traps and optical lattices [1],

various optical patterns, including vortices, have potential ap-

plication in the realm of quantum data processing, as the light

patterns can be stored in the form of intrinsic atomic states in

BEC, and released back in the optical form [2]. Furthermore,

light can generate entangled vortices in separated condensates

[3].

The BEC feedback on the light propagation, i.e., the local

field effect (LFE), may lead to the creation of hybrid light-

matter states [4–9]. The electric LFE explains asymmetric

matter-wave diffraction [4, 10] and predicts polaritonic soli-

tons in soft optical lattices [5]. Further, the magnetic LFE cou-

ples MWs to a pseudo-spinor (two-component) BEC of two-

level atoms, thus opening the way to the creation of hybrid

microwave-matter-wave solitons [6]. On the other hand, in

current experiments with the pseudo-spinor BECs, atoms are

first transferred to an intermediate level using a MW field, and

then further driven to a target level using a radiation-frequency

fields, which would not allow one to observe manifestations of

the magnetic LFE. This should become possible if the exper-

iments can be performed with the MW field directly transfer-

ring the atoms between the two relevant states.

The LFE plays an increasingly important role in BEC with

the increase of the number of atoms, which can exceed 108,

as predicted theoretically [11] and demonstrated experimen-

tally [12], allowing the LFE-induced long-range interactions

between atoms [5, 6] to produce new manifestations of non-

local physics. Actually, the long-range interaction may cover

the whole gas, in contrast with fast-decaying nonlocal inter-

actions in optics [13] and in dipolar BEC [14–19]. Unlike the

species-dependent dipolar forces [14–17], the LFE-induced

interaction can be realized in any ultracold atomic or molecu-

lar gas [6].

The LFE was not previously explored in two- and three-

dimensional (2D and 3D) settings, where it may give rise to

new phenomenology in comparison with the recently investi-

gated 1D case [4–6], as the LFE-induced interaction is deter-

mined by the underlying Green’s function, which has differ-

ent forms in effectively 1D, 2D, and 3D geometries (note that

the above-mentioned “massive” BEC, with a large number of

atoms & 108, can be readily morphed into a low-dimensional

shape [12]). In particular, we demonstrate here that soli-

tary vortices, alias vortex annuli (VAs), readily self-trap in

the 2D setting. Vortices in BEC are essential for simulating

various effects from condensed matter [20], and as building

blocks of quantum turbulence [21]. They also help to emu-

late gravitational physics [22], and find applications, such as

phase qubits [23] and matter-wave Sagnac interferometers for

testing the rotational-equivalence principle [25, 26]. As men-

tioned above, atomic-matter vortices can store and release in-

formation delivered by optical vortex beams [2].

The stabilization of VAs with large values of the topolog-
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ical charge (vorticity) S, which is required for deterministic

creation of vortices [28] and for applications (in particular,

the storage of higher-order optical vortices in the form of their

atomic counterparts), is a challenging issue [27]. Under repul-

sive interactions, vortices supported by a nonzero background

are stable solely for S = 1, while vortices with S ≥ 2 split into

ones with S = 1 [27]. For the above-mentioned applications,

most relevant are bright VAs in BEC with attractive nonlin-

earity. Unlike nonlinear optics, where VAs can be stabilized

by non-Kerr nonlinearities [29], in BEC with attractive inter-

actions the only setting which gives rise to stable 2D [30] and

3D [31] semi-vortices (with S↑ = 1 and S↓ = 0 in their two

components) in the free space is provided by the spin-orbit

coupling. However, all higher-order states, with S↑ = 1+ s,

S↓ = s ≥ 1, are unstable. The family of single-component

modes with S= 1 may be partly stabilized by a trapping poten-

tial, but all the higher-order VAs with S ≥ 2 remain unstable

in this case too [32]. Partly stable VAs with S ≥ 2 were pre-

dicted only in “exotic” settings, with the local strength of the

repulsive nonlinearity in the space of dimension D growing

with distance r from the center faster than rD [33], or making

use of a combination of a trapping potential and a spatially

localized attractive interaction [34].

In this work, we introduce a 2D hybrid system consisting

of a pseudo-spinor BEC whose two components are coupled

by a MW field through a magnetic-dipole transition. The sys-

tem gives rise to stable giant VAs, i.e., ones with arbitrarily

high values of S (the stability checked up to S = 5). This is as

well possible in the presence of additional contact repulsive

interactions. On the other hand, under the action of an at-

tractive contact interaction, with strength β, which drives the

critical collapse in the 2D geometry [35], the VAs exist and

are stable, respectively, for β < βmax and β < βst ≤ βmax. We

demonstrate, by means of analytical and numerical considera-

tions, that βst linearly grows with S, thus making higher-order

vortices more robust than lower-order ones, opposite to what

is known in few other models capable to support stable higher-

order VAs [33, 34]. It is relevant to mention that the concept

of giant vortices is known in the usual BEC settings with the

contact repulsion [36], where they are not self-trapped objects,

i.e., they are not VAs.

The rest of the paper is organized as follows. The model is

introduced in Section II, numerical and analytical results are

collected in Section III, and the paper is concluded by Section

IV.

II. THE MODEL

As schematically shown in Fig. 1, we consider a nearly-

2D (pancake-shaped) binary BEC composed of two differ-

ent hyperfine states of the same atomic species, which is de-

scribed by the two-component (pseudo-spinor) wave function,

|Ψ〉 =
(

Ψ↓,Ψ↑
)T

, with each component emulating “spin-up”

and “spin-down” states. The corresponding Hamiltonian is

H = p̂2/2mat − (~δ/2)σ3 −m ·B [6], where mat, p̂, and m

are the atomic mass, 2D momentum, and magnetic moment,

~δ an energy difference between atomic states |↑〉 and |↓〉, σ3

Microwave

FIG. 1: Two hyperfine atomic states coupled by the MW (mi-

crowave) field in a pancake-shaped BEC. The MW field is polarized

in the direction perpendicular to the pancake’s plane.

the Pauli matrix, and B = µ0(H+M) is the magnetic induc-

tion, with magnetic field H and magnetization M= 〈Ψ|m |Ψ〉.
In the rotating-wave approximation, the atomic wave function,

|ψ〉 ≡ |φ〉e±iωt/2 ≡
(

φ↓,φ↑
)T

, is governed by coupled Gross-

Pitaevskii equations (GPEs), with ∗ standing for the complex

conjugate:

i~∂φ↓/∂t =
(

p̂2/2mat +~∆/2−µ0m↑↓·m↓↑
∣

∣φ↑
∣

∣

2
)

φ↓

−µ0m↓↑ ·H∗φ↑,

i~∂φ↑/∂t =
(

p̂2/2mat −~∆/2−µ0m↑↓·m↓↑
∣

∣φ↓
∣

∣

2
)

φ↑

−µ0m↑↓ ·Hφ↓, (1)

with detuning ∆ = ω− δ of the MW from the atomic transi-

tion, and matrix elements of the magnetic moment, m↑↓ and

m↓↑ (m↑↑ = m↓↓ = 0 due to the symmetry).

The magnetic field and magnetization, which are polarized

perpendicular to the pancake’s plane, are each represented by

a single component, H and M, which obey the Helmholtz

equation,

∇2H + k2H =−k2M, (2)

where k is the MW wavenumber. As the wavelength of the

MW field, λ = 2π/k, is always much greater than an experi-

mentally relevant size of the BEC, the second term in Eq. (2)

may be omitted in comparison with the first term (see also

Ref. [6]), reducing Eq. (2) to the Poisson equation for the

scalar field:

∇2H =−k2M. (3)

Because the medium’s magnetization, which is the source of

the magnetic field, is concentrated in the pancake, the Poisson

equation may be treated as one in the 2D plane. Them using

the Green’s function of the 2D Poisson equation, the magnetic

field is given by

H = H0 −Nk2
∣

∣m↓↑
∣

∣/(2πl⊥)
∫

ln
(
∣

∣r− r′
∣

∣

)

φ∗↓
(

r′
)

φ↑
(

r′
)

dr′,

(4)
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where H0 is a background magnetic field of the MW, N

is the number of atoms, and r is the set of 2D coordinates

normalized by the transverse confinement size l⊥. Then,

the GPEs for the wave function, subject to normalization∫ (∣
∣φ↑

∣

∣

2
+
∣

∣φ↓
∣

∣

2
)

dr = 1, takes the form of

i
∂φ↓
∂τ

=

(

−1

2
∇2 +η+H0−β

∣

∣φ↑
∣

∣

2

)

φ↓

+
γφ↑
2π

∫
ln
(∣

∣r− r′
∣

∣

)

φ↓
(

r′
)

φ∗↑
(

r′
)

dr′, (5)

i
∂φ↑
∂τ

=

(

−1

2
∇2 −η+H0−β

∣

∣φ↓
∣

∣

2

)

φ↑

+
γφ↓
2π

∫
ln
(∣

∣r− r′
∣

∣

)

φ∗↓
(

r′
)

φ↑
(

r′
)

dr′, (6)

where rescaling is defined by φ↑,↓ =
√

N/l⊥ψ↑,↓, τ = t/t0

with t0 = ~/Ec and Ec = ~
2/(matl

2
⊥), η ≡ t0∆/2, and scaled

strengths of the LFE and contact interactions (if any) are

γ = matl⊥k2Nµ0

∣

∣m↓↑
∣

∣

2
/~2, β ≡ Nµ0m↑↓ ·m↓↑/

(

~l3
⊥Ec

)

.
(7)

To describe experimental conditions, three-dimensional

should also include the trapping potential,
(

Ω2/2
)

r2φ↑,↓. It

has been checked that, after the creation of the trapped modes,

the potential may be switched off, leading to smooth transfor-

mation of the modes into their self-trapped counterparts ob-

tained directly found in the free space (Ω = 0). The vorticity

may be imparted to the trapped condensate by a vortical opti-

cal beam [2].

If collisions between atoms belonging to the two compo-

nents are considered (with the corresponding strength of the

contact interaction tunable by dint of the Feshbach resonance

[37]), the additional cross-cubic terms can be absorbed into

rescaled coefficient β. Collisions may also give rise to self-

interaction terms, −β̃
∣

∣φ↓
∣

∣

2
and β̃

∣

∣φ↑
∣

∣

2
, in the parentheses of

Eqs. (5) and (6), respectively. On the other hand, the same

equations with β̃ = 0 apply as well to a different physical set-

ting, viz., a degenerate Fermi gas with spin 1/2, in which φ↓
and φ↑ represent two spin components, coupled by the MW

magnetic field [6, 38].

The following analysis is chiefly dealing with the zero-

detuning (symmetric) system, η = 0. In this case, Eqs.

(5) and (6) coalesce into a single equation for φ↓ = φ↑ ≡
φexp(−iH0τ), subject to normalization

∫ |φ(r)|2 dr = 1/2:

i
∂φ

∂τ
=

[

−1

2
∇2 −β |φ|2 + γ

2π

∫
ln
(
∣

∣r− r′
∣

∣

)
∣

∣φ
(

r′
)
∣

∣

2
dr′

]

φ,

(8)

and the above-mentioned self-interaction coefficient, β̃, may

be absorbed into β. This equation and the normalization con-

dition are invariant with respect to the self-similarity trans-

formation: φ(r,τ) =
√

γ0φ̃ (r̃,τ)exp{−i [γ(lnγ0)/8π]τ} , τ =

γ−1
0 τ̃, r = γ

−1/2

0 r̃, γ = γ0γ̃, β ≡ β̃ , which allows one to replace

γ by γ/γ0 with arbitrary factor γ0. We use this option to to fix

γ = π in the numerical analysis of the symmetric configura-

tion. In physical units, for alkali atoms transversely confined
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FIG. 2: Radial profiles of the magnetic filed and wave functions in

fundamental solitons (top) and vortices with S= 1 (middle) and S= 5

(bottom) at indicated values of β.

with l⊥ = 1 µm and irradiated by a MW with wavelength 1

mm, the above definition yields γ ∼ 10−7N. Thus, γ ∼ 10

for the experimentally available “massive” BEC with N ∼ 108

[11, 12], while a typical VA radius can be estimated as ∼ 10

µm (see Figs. 2 and 5 below), and a characteristic range of the

magnetic-field amplitudes may reach a few gauss.

III. THE RESULTS

Stationary solutions to Eq. (8) with chemical potential µ

and vorticity S are looked for, in polar coordinates (r,θ), as

φ = e−iµτ−iSθΦS (r) , (9)

where ΦS(r) is a real radial wave function. Typical examples

of solutions for ΦS (r), produced by the imaginary-time evolu-

tion method [39], are plotted in Fig. (2), for different values of

S and β ≥ 0. Numerical results demonstrate that fundamental

solitons (which correspond to S = 0) and VAs are destroyed

by the collapse at β > βmax(S), see Table I. This critical value

can be found by considering the energy corresponding to Eqs.

(5) and (6) with φ↑ = φ↓,

E = 2π

∫ ∞

0
rdr

[

(Φ′
S)

2 + r−2S2Φ2
S −βΦ4

S

]

+
γ

2π

∫ ∫
dr1dr2 ln(|r1 − r2|)Φ2

S(r1)Φ
2
S(r2). (10)

The numerical findings displayed in Figs. 2 and 5 suggest

that, for S ≥ 2 and β large enough, the vortex takes the shape
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S βmax β
(an)
max βst S βmax β

(an)
max βst

0 11.8 n/a ≡ βmax 3 132.5 130.6 41

1 48.3 43.5 11 4 175.5 174.1 57

2 89.7 87.0 28 5 218.5 217.7 70

TABLE I: βmax and β
(an)
max: numerically obtained and analytically pre-

dicted values of the contact-interaction strength, β, up to which the

fundamental solitons and vortex annuli exist. βst: the numerically

identified stability boundary of the vortex annuli.

of a narrow annulus, which may be approximated by the usual

quasi-1D soliton shape in the radial direction, with regard to

the adopted normalization, cf. Ref. [49]:

ΦS(r) =
√

β/(8πR)sech[β(r−R)/(8πR)], (11)

where R is the VA’s radius. The substitution of this approxi-

mation in Eq. (10) yields

E(R) =

[

S2 − β2

3(8π)2

]

1

2R2
+

γ

8π
lnR. (12)

Next, the annulus’ radius R is to be selected as a point cor-

responding to the energy minimum: dE/dR = 0, i.e., R2
min =

(8π/γ)
[

S2 − (1/3)(β/8π)2
]

(comparison with numerical re-

sults demonstrates that Rmin provides a reasonable approxima-

tion for the radius of narrow VAs). Then, βmax is predicted as

the value at which R2
min vanishes, i.e., the annulus collapses to

the center,

β
(an)
max = 8

√
3πS. (13)

As seen in Table I, this analytical prediction is virtually iden-

tical to its numerically found counterparts at S ≥ 2.

Further, it is found that βmax is the same as in the “simpli-

fied” 2D GPE that contains solely the local-attraction term,

i∂φ/∂τ =−
[

(1/2)∇2 +β |φ|2
]

φ, (14)

for which the existence limit was found in Refs. [41], for

S = 0, and in Ref. [40] for 1 ≤ S ≤ 5 , i.e., βmax does not de-

pend of the LFE strength, γ. To explain this fact, we note that,

at the limit stage of the collapse, when the shrinking 2D annu-

lus becomes extremely narrow, the equation for the wave func-

tion becomes asymptotically tantamount to Eq. (14), therefore

the condition for the onset of the collapse is identical in both

equations. However, the solitons of Eq. (14) exist solely at

β = βmax, being completely unstable, while the LFE-induced

long-range interaction in Eqs. (5) and (6) creates stable soli-

tons and vortices for all S, as shown below. It is worthy to

stress too that the analytical result given by Eq. (13) provides

an explanation for the numerical findings that were first re-

ported in Ref. [40] and later considered in many works, but

never reproduced in an analytical form.

The stability of the self-trapped modes has been system-

atically tested by real-time simulations of Eqs. (5) and (6)
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soliton at β = 11.6 (for different perturbation amplitudes). (b) The

oscillation frequency vs. the squared oscillation amplitude, A2. The

top row displays profiles of the oscillating soliton.
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FIG. 4: Stable perturbed evolution of the fundamental soliton, with

S = 0 and β = 11. Note that this value of β is close to the existence

boundary, βmax(S = 0) = 11.8, see Table 1.

with random perturbations added to the stationary solutions

(independent perturbations were taken for φ↑ and φ↑, to verify

the stability against breaking the symmetry between them).

The fundamental solitons are stable in their entire existence

region, β < βmax ≈ 11.8. At β very close to βmax, the pertur-

bations lead to persistent oscillations, as shown in Fig. 3(a)

for β = 11.6, due to excitation of a soliton’s internal mode

[43–45]. It is seen in Fig. 3(b) that the oscillation frequency

is a nearly linear function of the squared amplitude of the os-

cillations, which is a typical feature of a nonlinear oscillatory

mode.

Systematic simulations of the evolution of the VA families

reveal an internal stability boundary, βst(S)< βmax(S) (see Ta-

ble 1), the vortices being stable at β< βst(S). In the interval of

βst(S)< β < βmax(0), they are broken by azimuthal perturba-

tions into rotating necklace-shaped sets of fragments, which

resembles the initial stage of the instability development of

localized vortices in usual models [29, 32, 46, 47]; however,

unlike those models, the necklace does not expand, remaining

confined under the action of the effective nonlocal interaction.

Typical examples of the stable and unstable evolution of fun-

damental solitons and VAs are displayed, respectively, in Figs.

4 and 5.
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subsequent evolution.

To address the stability of the VAs against azimuthal pertur-

bations in an analytical form, we approximate the wave func-

tion of a perturbed VA by A(θ)ΦS(r) and derive an evolution

equation for the modulation amplitude, A, by averaging Eqs.

(5)-(6) in the radial direction:

i
∂A

∂τ
=− 1

2R2

∂2A

∂θ2
+

[

γ lnR

4πR
− 2β2

3(8πR)2

]

|A|2A. (15)

A straightforward analysis of the modulational stability of the

solution with A = 1 against perturbations ∼ exp(ipθ) with in-

teger winding numbers p [50] shows that the stability is main-

tained under the threshold condition, p2 ≥ (8/3)(β/8π)2
, if

the term ∼ β2 dominates in Eq. (15). Further, the numerical

results demonstrate that, as in other models [51], the critical

instability corresponds to p2 = S2 (for instance, the appear-

ance of five fragments in the part of Fig. 5 corresponding

to S = 5,β = 85 demonstrates that, for S = 5, the dominant

splitting mode has p = 5). Thus, it is expected that the VAs

remain stable at β < β
(an)
st (S) = 2

√
6πS ≈ 15.4S. On the other

hand, the numerically found stability limits collected in Ta-

ble 1 obey an empirical formula, β
(num)
st (S) ≈ 15S− 4. Thus,

the analytical approximation is quite accurate for S ≥ 2. To

put this result in a physical context, we note that, in terms of

experimentally relevant parameters, the scaling adopted above

implies |β| ∼ (|as|/l⊥)N, where as < 0 is the scattering length

which accounts for the contact attraction. Thus, values of β
(actually, of either sign) may be relevant up to |β| ∼ 1000.

It follows from these results that the giant VAs, with higher

values of S, are much more robust than their counterparts with

smaller S. This feature is opposite to what was previously

found in those (few) models which are able to produce sta-

ble VAs with S > 1 [29, 33, 34]. It is relevant to mention

that, at β < βst(S = 0), the fundamental soliton is the sys-

tem’s ground state, while, at β > βst(S = 0), the ground state

does not exist, due to the possibility of the collapse. The vor-

tices with βst(S) > β cannot represent the ground state, but,

0
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FIG. 6: Comparison of the Thomas-Fermi approximation, as given

by Eq. (16), for the fundamental soliton (the dashed line) and its

numerically found counterpart (the solid line), for β =−200.

nevertheless, they exist as metastable ones, cf. the spin-orbit-

coupled system, considered in Ref. [31], where self-trapped

three-dimensional modes of the semi-vortex type exist too as

metastable states, although the system does not have a ground

state, due to the presence of the supercritical collapse.

For the strong repulsive contact interaction (large β < 0),

fundamental solitons (with S = 0) can be constructed by

means of the Thomas-Fermi approximation (TFA), as shown

by straightforward consideration of the stationary version of

Eq. (8), with the substitution of the stationary wave form as

per Eq. (9). In this case, it is more convenient, instead of us-

ing the Green’s function, to explicitly combine the stationary

equation with Poisson equation (3). The result is

(

Φ2
0

)

TFA
(r) =

{

φ2
0J0 (ξr) at r < r1/ξ,

(

Φ2
0

)

TFA
(r) = 0 at r > r1/ξ ,

(16)

where ξ ≡
√

γ/ |β|, r1 ≈ 2.4 is the first zero of Bessel function

J0 (r), and φ0 is a normalization constant. Figure 6 shows that

the TFA agrees very well with the numerical solution.

Lastly, it is relevant to proceed from the symmetric system

[η = 0, φ↑ = φ↓ in Eqs. (5) and (6)] to a strongly asymmetric

one, with large η. The relevant solution has µ =−η+δµ with

|δµ| ≪ η and small component Φ↓ ≈ (H0/2η)Φ↑, while the

large one satisfies equation
(

∆µ+
H2

0

2η

)

Φ↑ =− 1
2
∇2Φ↑− βH2

0

4η2 Φ3
↑−

γH2
0

8πη2 Φ↑
∫

ln(|r− r′|)Φ2
↑(r

′)dr′. (17)

Up to obvious rescaling, Eq. (17) is identical to the equa-

tion for the stationary wave function in the symmetric case,

i.e., Eq. (8) with substitution of the wave function as per Eq.

(9), with any value of S. Thus, the strongly asymmetric solu-

tions can obtained by means of the rescaling of their symmet-

ric counterparts.

IV. CONCLUSION

In this work we have developed the analysis for the 2D fun-

damental solitons and VAs (vortex annuli) produced by the

LFE (local field effect) in the BEC composed of two-level

atoms, or, alternatively, a gas of fermions, in which two com-

ponents are coupled by the MW (microwave) field. The ef-

fective long-range interaction mediated by the field stabilizes
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the solitons and VAs, even in the presence of the attractive

contact interaction between the two components, which, by

itself, leads to the critical collapse. The solitons exists too

and are stable in the presence of the arbitrarily strong contact

repulsion. Nearly exact critical values of the local-attraction

strength, βmax, up to which the solitons and vortices exist,

have been found analytically. This result also provides an

analytical explanation to the well-known existence limits of

VAs in the 2D nonlinear Schrödinger/Gross-Pitaevskii equa-

tion with the cubic self-focusing term, which were previously

known solely in the numerical form. While the fundamental

solitons are stable up to β = βmax, the VAs remain stable in a

smaller interval, β ≤ βst < βmax, being vulnerable to the az-

imuthal instability at βst < β < βmax. The stability boundary,

βst, is found in an approximate analytical form too. On the

contrary to previously studied models [29, 33, 34], the (giant)

VAs with higher vorticities, such as S = 5, are more robust

than their counterparts with small S. In addition, a very accu-

rate TFA (Thomas-Fermi approximation) was developed for

the fundamental solitons, with S = 0. The results have been

obtained for both symmetric and strongly asymmetric two-

component systems.

The VAs obtained here can be further used to construct vor-

tex lattices [48]. Challenging possibilities are to consider in-

teraction between the self-trapped modes, and, eventually, to

extend the model to the fully 3D setting. Another direction

for the extension of the work is to explore the electric LFE in

a molecular condensate.
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