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We demonstrate that Ramsey spectroscopy can be used to observe Rydberg-dressed interactions in
a many-body system well within experimentally measured lifetimes, in contrast to previous research,
which either focused on interactions near Förster resonances or on few atom systems. We build a
spin-1/2 from one level that is Rydberg-dressed and another that is not. These levels may be
hyperfine or long-lived electronic states. An Ising spin model governs the Ramsey dynamics, which
we demonstrate can be used to characterize the Rydberg-dressed interactions. Furthermore, the
dynamics can differ significantly from that observed in other spin systems. As one example, spin
echo can increase the rate at which coherence decays. The results also apply to bare (undressed)
Rydberg states as a special case, for which we quantitatively reproduce recent ultrafast experiments
without fitting.

PACS numbers: 32.80.Ee, 67.85.-d, 37.10.Jk

I. INTRODUCTION

Ultracold Rydberg atoms allow one to process quan-
tum information [1–7], study interacting many-body sys-
tems [8–18], and engineer nonlinear quantum optics [19–
31]. These applications stem from the enormous van der
Waals interactions between Rydberg atoms excited to
large principal quantum number n ∼ 50−70. Since these
interactions are proportional to n11, they are enhanced
by many orders of magnitude compared to ground state
atoms [32, 33]. These interactions inhibit the simultane-
ous excitation of neighboring atoms to Rydberg states;
this is known as the “blockade effect” [34–38]. Experi-
ments have measured Rydberg interactions using Ramsey
spectroscopy [39–41], and their dramatic consequences,
such as the formation of Rydberg crystals [42, 43], and
suppressed excitation number fluctuations in the block-
ade region [44, 45, 47]. These experiments were fo-
cused on interactions between bare Rydberg atoms, ei-
ther through van der Waals interactions or Förster reso-
nances.

Dressed Rydberg atoms, in which a small amount of
Rydberg state is superposed with the ground state, en-
large the possible range of many-body physics by allowing
further control of the interaction potential. The strength,
shape, and state lifetime can be controlled by choosing
the amount of Rydberg character in the dressed super-
position of ground and Rydberg states. (We note that
alternative methods exist to tune strength and shape,
for example utilizing Förster resonances [46].) In partic-
ular, the reduced Rydberg character extends the dressed
state’s lifetime relative to the bare Rydberg state, since a
dominant contribution to the lifetime is often the decay
due to spontaneous emission from the Rydberg state [48–
50]. Interactions between Rydberg-dressed atoms have
been predicted to lead to interesting phases of mat-
ter [51–57], exciton transport [60, 61], stabilize three
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FIG. 1. (color online) Probing dressed Rydberg interac-
tions with Ramsey spectroscopy. (a) Atoms (green balls) are
dressed and probed with two lasers. One laser (Ω2, purple)
weakly mixes the Rydberg state |R〉 into |G2〉 to form the
dressed state |D〉. This state is probed with strong pulses
(Ω1, red) that couple |G1〉 and |G2〉. (b) The Rydberg-dressed
interaction for the ∆2/C6 < 0 case considered herein has a
height of V0 and soft-core radius rc. (c) Ramsey scheme:
An initial Ω1 pulse with area θ superposes |↓〉 = |G1〉 and
|↑〉 = |D〉 states. Dressed atoms interact between pulses. The
final pulse allows one to measure the spin vector. One can
apply a π echo pulse to eliminate single particle imperfec-
tions. This also effectively “turns on” the interactions be-
tween atoms that were initially in the ground state for the
second half of the dynamics.

dimensional solitons [58], enable phase imprinting of a
BEC [59], and serve as a resource for quantum metrol-
ogy and quantum information [62–64]. An exciting recent
breakthrough is the measurement of Rydberg-dressed in-
teractions between two atoms [65], but observing these
interactions in a many-body system remains a major out-
standing goal.

In this paper, we show how current experiments can
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observe and characterize dressed Rydberg interactions
by using Ramsey spectroscopy, where one probes a spin-
1/2 created from two long-lived atomic states, one of
which is Rydberg dressed. This Ramsey protocol di-
rectly accesses a regime where superpositions are crucial
and can give rise to non-classical correlations. Although
similar to the Ramsey protocol that has been fruitfully
applied to other many-body atomic and molecular sys-
tems [66–68, 71–76], we find that the Rydberg atoms be-
have in qualitatively different ways because of the shape
of the potential and because the ground-Rydberg and
ground-ground interactions are negligible compared to
the Rydberg-Rydberg interactions. The unique charac-
ter of the Rydberg-dressed interaction also manifests it-
self in the dependence of the dynamics on atom density,
dressed state excitation fraction, spin echo, and Rydberg
state. Just one example of this distinct behavior is that
the contrast decay of the Ramsey fringe is faster with
an echo than without in several regimes, including low
density, large dissipation, and small excitation fraction
of dressed states.

The proposed Ramsey protocol offers two advantages
for observing and characterizing the Rydberg-dressed in-
teractions. The first is that the dynamics occurs rapidly,
on timescales set directly by the Rydberg-dressed inter-
action. In contrast, alternative schemes that rely on
detecting the influence of the Rydberg-dressed interac-
tions on the motion of the atoms can require much longer
timescales associated with the atomic motion in the trap.
A second fundamental advantage is that the dynamics
admits – as we show – exact analytic solutions. This is
extremely rare in an interacting many-body system, and
will allow for rigorous comparisons between theory and
experiment without uncontrolled approximations.

The rest of our paper is structured as follows. Sec-
tion II discusses the physical setup of Rydberg dress-
ing, forming a spin-1/2 and performing Ramsey spec-
troscopy. Section III presents the equations for Ram-
sey fringe contrast as a function of time, and Section IV
shows how the shape of this function characterizes the
interaction between Rydberg-dressed atoms in a many-
body gas. Section V demonstrates that correlations de-
velop during the Ramsey dynamics on the same time
scale that the contrast decays, considering the case of
atoms in a lattice for simplicity and experimental rel-
evance. Section VI applies our results to a special case
that was recently realized in experiments, where one uses
bare Rydberg states instead of Rydberg-dressed states.
Good theory-experiment agreement in this special case
provides a proof-of-principle for our proposed methods.
Finally, Section VII concludes.

II. SETUP: RYDBERG DRESSING,
INTERACTIONS, AND SPECTROSCOPY

We consider an atom with two long-lived levels |G1〉
and |G2〉 as shown in Fig. 1(a). These could, for ex-

ample, be two hyperfine states or the ground state and
another sufficiently long-lived electronic state. A laser
with Rabi frequency Ω2 and detuning ∆2 from resonance
admixes a small fraction of the Rydberg state |R〉 to the
|G2〉 level. The eigenstate in the presence of this mix-
ing is a Rydberg-dressed state |D〉 ≈ |G2〉 + ε|R〉 with
ε = (Ω2/2∆2) � 1. The Rydberg-dressed state can de-
cay to |G1〉 via either spontaneous emission from either
|R〉 or |G2〉. The contribution to the decay rate of |D〉
from the Rydberg state is ε2ΓR where ΓR is the spon-
taneous emission rate for the Rydberg state, while the
contribution to |D〉’s decay from the |G2〉 state is ΓG2 ,
the spontaneous emission rate of |G2〉. Which of these
processes is important will depend on what states are
chosen for |G2〉 and |R〉. For example, if we use hyperfine
ground states of Rb for |G1〉 and |G2〉, the spontaneous
emission from |G2〉 is negligible and the decay rate of |D〉
is ε2ΓR.

The system we will often employ for numerical exam-
ples is Sr with |G2〉 chosen to be the 3P1 state with a
21 µs lifetime, the same scheme employed in Ref. [63].
The 3P0 clock state in Sr would be another interesting
choice for |G2〉, with a 159s lifetime. In case of Sr, the
typical lifetimes for the Rydberg state (n = 40s-70s) is
in the order of 5 µs [69, 70] and we will typically choose
ε ∼ 0.1. The contribution to the spontaneous emission
of the dressed state from the Rydberg state is therefore
ε2ΓR ≈ .01 × 1/(5µs) ≈ 2ms−1. This is negligible com-
pared to the γ = 1/(21µs) decay rate of 3P1, and we
may take γ as the sole contribution to the spontaneous
emission from the |D〉 state.

Our spin-1/2 system is then formed from | ↓〉 = |G1〉
and | ↑〉 = |D〉. Here we assume that the positions of
the atoms are fixed, which is an excellent approxima-
tion for ultracold systems over the timescales we consider.
The interaction Hamiltonian for such a gas of atoms pro-
jected onto the spin-1/2 states is, up to a irrelevant con-
stant [63],

Ĥ = (1/2)
∑
j 6=k

[
(Vjk/4) σzjσ

z
k + (Vjk/2) σzk

]
(1)

where σzk = (| ↑〉k〈↑ |k − | ↓〉k〈↓ |k), and we set ~ = 1.
The interaction between dressed atoms j and k with
inter-atomic distance rjk is Vjk = V (rjk) = V0/(1 +

(rjk/rc)
6) where rc = |C6/2∆2|1/6 is the soft-core radius,

and V0 = ε4(2∆2) is the height of the dressed potential
as shown in Fig. 1(b). C6 is the van der Waals coefficient,
which depends on the Rydberg state used. This Hamilto-
nian is nothing more that rewriting the Rydberg-dressed
interactions Hamiltonian – in which D-state atoms inter-
act, while G1-D and G1-G1 interactions are negligible –
in terms of spin-1/2 operators. This structure is unique
to Rydberg atoms, and it is the reason that the coeffi-
cients of the Ising term and the single particle term are
linked through their dependence on the Vjk.

Figure 1(c) shows the Ramsey protocols studied here.
The first strong, resonant pulse, (Ω1/2)(| ↓〉k〈↑ |k+h.c.),
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FIG. 2. (color online) Ramsey contrast versus time for a gas
of ground state Sr atoms with density ρ = 1012/cm3 dressed
with 40s triplet states with a dressing amplitude of ε = 0.1.
Panels (a) and (b) show θ = π/2 and π/20, respectively. Indi-
vidual curves are the dynamics in the absence of decoherence
with and without spin echo (γ = 0 curves), compared to that
of non-interacting atoms spontaneously emitting from only
|G2〉 with γ = (21 µs)−1.

rotates the spins by θ around the y-axis. The wave func-
tion immediately after this pulse is

|ψ(t = 0)〉 =
⊗
k

(
cos(θ/2)| ↓〉k + sin(θ/2)| ↑〉k

)
(2)

where θ is proportional to the pulse area. During the
Ramsey dark time t (the time where Ω1 = 0) [77], the
system evolves by Eq. (1), developing correlations. The
pulse Ω2 can either be applied just during the Ramsey
dark preiod or left on during the entire experiment: As
long as the Ω1 pulses are chosen to be strong and short
enough, the effects of the Ω2 laser will be negligible dur-
ing the short Ω1 pulses. After the dark time t, a sec-
ond pulse rotates the spin component σα=x,yk into the z
axis, where it can be measured as the population dif-
ference of | ↑〉 and | ↓〉. Here σxk = (| ↓〉k〈↑ |k + h.c.),
σyk = i (| ↓〉k〈↑ |k − h.c.). The incoherent emission from
|G2〉 is described in a master equation by including the
jump operator σ− with rate γ [see Fig. 1(c)]. It is conve-
nient to measure and analyze the contrast of the Ramsey
fringe [78],

C(t) = |σ+(t)| =
√
〈σx(t)〉2 + 〈σy(t)〉2, (3)

and the phase, φ(t) = arctan(σy(t)/σx(t)). We define
σα =

∑
k σ

α
k . We study the dynamics both with and

without a spin-echo pulse, illustrated in Fig. 1(b). A π
spin-echo pulse around the y axis (i.e. in phase with the
first pulse) leaves the spin-model interactions invariant
while removing single particle terms from the Hamilto-
nian Eq. (1), as well as any additional single-particle in-
homogeneities in σzi . The resulting dynamics are equiv-
alent to evolution for time t without an echo but with
effective Hamiltonian, Ĥecho = (1/2)

∑
j 6=k(Vjk/4)σzjσ

z
k

as shown in Appendix A. The spin-echo has rather un-
usual effects in the system of Rydberg atoms, as it effec-
tively turns on interactions between the | ↓〉 states, as
illustrated in Fig. 1(c).

III. CALCULATING THE RAMSEY
CONTRAST AND PHASE

The spin dynamics of Eq. (1) together with the non-
trivial effects of the dissipation has been obtained by solv-
ing the corresponding master equation in Refs. [79, 80]
(generalizing Refs. [81–83]), to obtain

〈σ+(t)〉 = sin θe−2γt
∑
k

∏
j 6=k

f(Vjkt) (4)

where

f(X) = e(iβX−γt)/2
{

cos[(X − iγt)/2]

+ [(γt− iX cos θ)/2] sinc[(X − iγt)/2]
}
. (5)

Here β = 0 is for the dynamics with a spin echo while
β = 1 is for no-echo dynamics. The function f(X) often
simplifies; for example, f(X) = cos(X/2) for θ = π/2,
β = 0, and γ = 0.

Although Eq. (3) allows us to calculate the dynamics
once we know the atom positions, it often is impossible
to measure the positions of all of the atoms. However, in
a large enough system, the dynamics is expected to “self-
average”: C(t) for a single configuration in a large system
is equal to its average over all configurations, and there-
fore it is independent of the specific configuration. We
model the atoms to be independently distributed with
a uniform density ρ for simplicity. The assumption is
quantitatively justified for an initially weakly interact-
ing, not-too-degenerate gas. Rather remarkably, we are
able to analytically perform this disorder average in the
thermodynamic limit: we find that Eq. (4) simplifies to
evaluating a one dimensional integral (see Appendix B),

〈σ+(t)〉 = exp

(
−ρ
∫

4πr2dr [1− f(V (r)t)]

)
. (6)

We note that Eqs. (4) and (6) neglect losses due to
ionization or molecular resonances. One way to avoid
resonances is to confine atoms in a lattice with appro-
priate lattice spacings [88, 89]. Recently it has also been
shown that for large number of atoms, losses to other
dipole-allowed Rydberg states can be significant [85–87].
Another relevant decoherence is a dephasing of the |G2〉
level at rate γd as could result from laser noise; this can
be included simply by multiplying 〈σ+〉 by e−γdt. Includ-
ing these effects is beyond the scope of this paper, but
often they should be relevant only on timescales beyond
those of interest here.

IV. CHARACTERIZING RYDBERG-DRESSED
INTERACTIONS USING RAMSEY

In the absence of dissipation, Eq. (6) implies that the
dimensionless parameters, NR = 4πρr3c/3 and V0t en-
capsulate the dependence of the dynamics on density ρ,
van der Waals coefficient C6, and optical parameters (Ω2,
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FIG. 3. (color online) (a-b) Contrast dynamics with θ = π/2
and γ = 0 obtained from Eq. (7) takes a dramatically different
shape in the NR � 1 and NR � 1 limits. Interestingly, for
NR � 1 the contrast dynamics is faster with echo than with-
out, except at exceptionally short times (inset). The dashed
lines are the analytic predictions of Eq. (6) for these limits.
(c) Characteristic timescale for the dynamics as a function of
NR. The top x -axis represents the average number of Ryd-
berg excitations inside rc.

∆2). Thus, we present the contrast in Figs. 2- 3 as a func-
tion C(NR, V0t), from which one can easily extract the
dynamics for any experiment by using the appropriate
NR and V0. To show typical scales, we also show the dy-
namics for typical Sr experimental parameters [84] with
C6 coefficients from Ref. [70]. These figures show C(t)
divided by its t = 0 value, so that, for example, the result
is independent of the number of particles N in a homo-
geneous gas. Note, however, that the actual measured
signal will depend on N and θ.

Figure 2(a) demonstrates that the interaction-
driven dynamics occurs on an experimentally favorable
timescale, both with and without a spin echo. For ex-
ample, in Sr the contrast dynamics for γ = 0 happens
substantially faster than the spontaneous emission rate
γ = (21µs)−1 of the |G2〉 = |3P1〉 state. Interesting be-
haviors emerge in the echo and non-echo dynamics. In
a typical system, the dynamics without an echo pulse is
faster than with an echo pulse due to single particle in-
homogeneities. However, due to the unique structure of
the Rydberg interactions, this naive intuition sometimes
fails, as seen in Fig. 2(b) for θ � 1. In this case, the spin-
echo pulse increases the effective interactions since it con-
verts initially non-interacting |G1〉 atoms into strongly
interacting |D〉 states.

Figures 3(a-b) show that the contrast is sensitive to
the shape of the potential, with striking differences in the
low-density (NR � 1) and high-density (NR � 1) limits.
These differences arise because for NR � 1 the dynam-
ics probes the 1/r6 interaction tail, while for NR � 1 it
probes the interaction potential inside the soft-core ra-

dius rc. In these limits, the disorder-averaged contrast of
Eq. (6) simplifies to

C(NR, V0t) =

{
e−ANR

√
V0t (NR � 1)

e−BNR(1−cosβ+1(V0t)/2) (NR � 1)

(7)
with A =

√
π/21+β/2 where β = 0 is for echo dynam-

ics and β = 1 for non-echo dynamics. For NR � 1,
this contrast is the exact solution of Eq. (6), and is non-
analytic at t = 0; thus it is beyond all orders of per-
turbation theory. For NR � 1, Eq. (7) approximates
V (r) ≈ V0H(rc − r), where H(x) is the Heaviside func-
tion. As shown in Fig. 3(b), this simple model repro-
duces the exact contrast up to an overall shift of the
timescale: the naive B = 1 of the step function is re-
placed by B = 4.0 for the shown value of NR.

The contrast dynamics depends on many system pa-
rameters, such as Ω2, ∆2, C6, and ρ. One of the most im-
portant characteristics is the characteristic contrast de-
cay time τ1/2, defined as C(NR, V0τ1/2) = C(NR, 0)/2.
Its dependence on the system parameters follows directly
from Eq. (6) as

τ1/2 ∝ (NR)α/V0 ∝ Ω−42 ∆
3−α/2
2 C

α/2
6 ρα (8)

where α = −2 for NR � 1, while α = −1/2 for NR � 1.
This scaling is confirmed in Fig. 3(c). Also note that
Fig. 3(c)’s top axis shows ε2NR, which must be small in
order for Eq. (1) be valid.

Fig. 3(c) also shows results for Sr including simulta-
neously interactions and dissipation with γ = 1/(21µs)
(black diamonds). As in our previous results, this
interaction-driven dynamics is faster than the sponta-
neous emission-only dynamics that occurs on the 21µs
timescale. However, in light of this, it is somewhat sur-
prising that the dynamics in the presence of interactions
and spontaneous emission simultaneously is much faster
than for interactions alone. The reason is a a back action
of the emission events on the rest of the spins through
the interaction: Each emission event affects a single spin,
which through interactions causes a number of neighbor-
ing spins, ∼ NR, to precess significantly, thereby greatly
amplifying the contrast dynamics and correlation growth
beyond that caused by either interactions alone or spon-
taneous emission alone. This is analogous to the feedback
effect explained in Ref. [79].

V. CORRELATIONS ARISING FROM
RYDBERG-DRESSED INTERACTIONS IN A

LATTICE

In this section we show that making more detailed
measurements – in particular with spatial resolution –
after the final Ramsey pulse further extends our ability
to observe and characterize the Rydberg-dressed interac-
tion. So far our calculations have been for a gas where
both the excitation and measurement are done collec-
tively on the whole system; this is the typical and most
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surrounding atoms using G(i, j) as defined in the text.

straightforward case in current experiments. However,
it is also possible to spatially resolve 〈σxi 〉 [90–92]. The
extreme limit of this capability is the single atom res-
olution that has recently been achieved in microscope
experiments [42, 43, 93] for atoms in lattices. The im-
ages in these experiments reveal not only 〈σxi 〉, but also
correlations such as 〈σxi σxj 〉.

Motivated by these ongoing experiments, we study the
Ramsey dynamics with a spin-echo on a two-dimensional
square lattice with exactly one particle per site. For sim-
plicity we neglect spontaneous emission. Fig. 4 shows the
C(t) and snapshots of the connected correlation [79, 80]
G(i, j) = 〈σxi σxj 〉 − 〈σxi 〉〈σxj 〉, where i, j are two dimen-
sional vectors which define the lattice sites. We observe
that the shape and timescale of the contrast dynamics
is similar to the NR � 1 limit found in the gas. The
spatial structure of the Rydberg-dressed interactions is
manifested in the spatial correlations, allowing rather di-
rect characterization of the interactions.

Furthermore, Fig. 4 demonstrates that the decay of the
contrast is associated with a growth of strong spin cor-
relations within a radius rc. Our calculations show this
quite generally as long as decoherence is not too large.
In fact, this link can be made even more general and
rigorous without even relying on the specific Hamilto-
nian time-evolution of Eq. (1). The contrast of a sin-
gle spin i, Ci = | 〈σ+

i 〉 |, is identical for all uncorrelated
(product) states with a given 〈σzi 〉. Therefore any de-
cay of this single spin contrast Ci must occur due to the
growth of correlations. Of course, the collective contrast
C = |∑i 〈σ+

i 〉 | that we have focused on can decay due to
relative precessions of different spins without the single-
spin contrast Ci decaying; however, in the presence of
an echo, such effects are expected to be absent. Thus,
in the quite general situation of spin-echo dynamics in a
closed system, we expect collective contrast decay to be
associated with the growth of correlations.

VI. CHARACTERIZING BARE RYDBERG
INTERACTIONS USING ULTRAFAST LASERS

We now consider a special case of our results that has in
fact already been experimentally and theoretically stud-
ied in the literature, in which one utilizes bare Rydberg
rather than Rydberg-dressed states [94, 95]. In addition
to exemplifying the generality of our calculations, this
demonstrates a proof-of-principle of the ideas contained
herein. For this case, Vjk is a pure van der Waals po-
tential V (rjk) = C6/r

6
jk. We show that the experimental

data and much of the prior theoretical modeling can be
reproduced as a special case of our results.

Typically, due to strong blockade effects, it is hard to
excite atoms to superpositions of ground and bare Ryd-
berg states at a sufficiently large density. However, by
using strong, ultrafast lasers, Ref. [94] has overcome this
difficulty and couples Rb atoms from their ground state
|G〉 to the bare 42D5/2 Rydberg state |R〉.

Figure 5 shows our calculations of the contrast and
phase for this experiment, which did not apply a spin-
echo pulse. We used |C6| = 9.8 GHz-µm6, taken from
Ref. [96], and densities ρ taken from Ref. [94] with values
indicated in Fig. 5’s caption. Our results quantitatively
agree with experiment without any fitting. We emphasize
that the theoretical results of Ref. [94] agree equally well
with the data, and when our theory is applied to the same
potential it reduces to theirs. Our main point here is to
demonstrate that this bare Rydberg dynamics emerges
as a special case of our results.

The agreement between theory and experiment con-
firms that the effects of Zeeman degeneracies [97] can be
neglected, possibly because at the low fraction of Ry-
dberg excitation studied the excitations are far enough
separated that short-range resonances are negligible. The
agreement provides a compelling proof of principle for
Ramsey spectroscopy as a method in future ultracold
Rydberg-dressed experiments.

VII. CONCLUSIONS

We have shown that the dynamics of the Ramsey fringe
contrast happens on experimentally favorable timescales,
and allows one to access and characterize Rydberg-
dressed interactions in a many-body system. Quite re-
markably for a many-body interacting system, we are
able to provide exact analytic solutions for the contrast
dynamics, despite the strongly correlated dynamics. (To
emphasize the strong correlations, note that for θ = π/2,
the dynamics is completely beyond mean-field theory,
which predicts a time-independent spin-echo contrast.)

The ability to solve the dynamics exactly contrasts
with many other types of dynamics and spectroscopy,
for which approximations must inevitably be made. For
example, if we were to consider Rabi spectroscopy rather
than Ramsey spectroscopy, no general procedure to solve
the dynamics – even numerically – would be available;
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FIG. 5. (color online) Calculated contrast decay and phase
shift for bare Rydberg atoms, which agrees with experimen-
tal measurements (which will be shown pending publication
of Ref. [94]). Left and right columns are for f = 3.1%
and f = 1.2% of particles excited to the Rydberg state, i.e.
f = 1 − cos θ, respectively. (a,b) Ratio of the contrast at
ρ = 1.3 × 1012cm−3 to the contrast at 4 × 1010cm−3. (c,d)
Corresponding Ramsey phase, shifted at t = 0 as in the anal-
ysis in Ref. [94].

similarly, no techniques exist to efficiently calculate the
Ramsey contrast dynamics of Rydberg atoms near a
Förster resonance. In contrast to our Ramsey dynam-
ics, calculating the dynamics in these other situations
inevitably involves approximations. For example, to
model dynamics near Förster resonances, Refs. [41, 100]
employed a model of the many-body dynamics as two
particle dynamics averaged over the expected nearest-
neigbhor interparticle separation in a homogeneous gas
(the Chandrasekhar distribution). While this is a useful
and potentially accurate approximation in some circum-
stances, it has limits to its applicability. For example, at
large NR in our system, it would predict the dynamics
decays at a rate V0 rather than

√
NRV0, a large error for

NR � 1.
The exact analytic solutions provided for the Ramsey

contrast dynamics will allow for systematic and rigor-
ous comparison between experiment and theory, without
uncertainties associated with approximate treatments.
Such comparisons are extremely beneficial for diagnos-
ing experimental complications. Discrepancies between
theory and experiment cannot be blamed on approxima-
tions, but instead directly implicate that an important
aspect of the experiment has been omitted from the the-
ory.

We showed, as a first step and proof of principle,
that our theory quantitatively agrees with recent ultra-
fast measurements of bare Rydberg atoms, a remarkable
demonstration of the universality of the dynamics over
six orders of magnitude, from µs to ps. We revealed

that the contrast dynamics is sensitive to the shape of
the interaction potential, as well as to density, principal
quantum number, and dressing laser properties.

Striking dynamics emerges for NR � 1: The contrast
displays a non-perturbative short time non-analyticity,

e−
√
t/τ0 , due to the 1/r6 character of Rydberg interac-

tions. Further interesting dynamical phenomena result
from the unique nature of Rydberg interactions. For ex-
ample, the spin echo pulse enhances the rate of contrast
dynamics for small excitation fraction θ or low densities.

Although previous experiments on coherent excitation
of Rydberg atoms in many-body systems have demon-
strated strong correlations, they have not established
their non-classicality. Although we do not show the non-
separability of the correlations, Ramsey spectroscopy di-
rectly creates and probes the superpositions necessary
for quantum correlations. Such quantum correlations are
expected to occur, despite the fact that Eq. (1) is “clas-
sical.” Although in equilibrium the fact that the Hamil-
tonian consists of commuting variables does imply that
correlations are classical (in the sense that entanglement
is absent), this is not true out of equilibrium: extremely
entangled states can be and generically are generated dy-
namically by such Hamiltonians.

In the future, performing similar Ramsey experiments
but with local pulses applied to read out various spin
components would allow measurement of the quantum-
ness in the correlations, and would pave the way for
studying interesting many-body non-equilibrium spin
physics. After the submission of this paper, Ref. [101]
has used Ramsey spectroscopy to experimentally observe
Rydberg-dressed interactions of atoms in an optical lat-
tice using a quantum gas microscope with local read-
out capabilities, suggesting that measurement of genuine
non-classical correlations may be within reach. Another
interesting direction is to simply add a transverse field.
This prevents exact solution and the resulting rich many-
body dynamics will be an interesting testbed for theoret-
ical methods [102–105].
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Appendix A: Effective Hamiltonian for Ramsey
dynamics with an echo

In the non-echo dynamics protocol, the time evolu-
tion operator for the Ramsey dark period is given by

Unon−echo = e−iĤt, where Ĥ is given by Eq. (1). For the
spin echo dynamics, the time evolution operator is given

by Uecho = e−iĤt/2Rπe−iĤt/2 where Rπ is the π−pulse

evolution. The combined effect of Rπe
−iĤt/2 is that the

system evolves under a unitary transformation given by

e−iĤRt/2, where ĤR is same as Ĥ but with σzj → −σzj :

ĤR =
1

2

∑
j 6=k

[
(Vjk/4) σzjσ

z
k − (Vjk/2) σzk

]
, (A1)

so Uecho = e−iĤt/2e−iĤRt/2. Since Ĥ and ĤR commute,

the resulting time evolution operator is Uecho = e−iĤechot

where Ĥecho = (Ĥ + ĤR)/2. Physically this implies that
interactions between atoms initially in |G1〉 states start
interacting in the second half of the spin echo dynamics.
Additional contributions arising from interactions with
atoms in |G1〉 and |D〉 states are negligible.

Appendix B: Analytic expression of contrast for a
uniformly distributed gas of atoms

For the derivation of Eq. (6), consider a uniformly
distributed gas of N atoms with positions labeled by
j, k. Since the particles are independent, the probabil-
ity distribution in space factors as P (r1, r2, . . . rN ) =
P (r1)P (r1) . . . P (rN ). For a uniform distribution, we
have P (rj) = ρ/N where ρ is the uniform density of the
gas. Thus averaging Eq. (4) in the main text, we have

〈σ+
k (t)〉 =

∫
dr1 . . . drN−1

(
ρ

N − 1

)N−1 ∏
j 6=k

f(V (rjk)t)

=

(
ρ

N − 1

)N−1 ∏
j 6=k

[∫
drj f(V (rjk)t)

]

=

[(
ρ

N − 1

)∫
drj f(V (rjk)t)

]N−1
. (B1)

Although the remaining single integral diverges with the
system volume this divergence is canceled by the 1/(N −
1) factor. To evaluate the expression in Eq. (B1) it is
convenient to define the finite integral

I = ρ

∫
4πr2dr [1− f(V (r)t)], (B2)

in terms of which Eq. (B1) simplifies to

〈σ+
k (t)〉 =

[
1− I

N

]N−1
. (B3)

In the thermodynamic limit where N → ∞, the above
expression is

〈σ+(t)〉 = exp

(
−ρ
∫

4πr2dr [1− f(V (r)t)]

)
, (B4)

which is Eq. (6) in the main text. We emphasize that
no approximation or redefinition is made in our calcula-
tion to render it finite: the diverging integral in Eq. (B1)
simply cancels out in the final expression. Note that this
simplified expression depends on the function f , which in
turn depends on the exact dynamics (echo, non-echo, tip-
ping angle, dissipation). Our results coincide with those
of Ref. [94] in the special cases calculated there.
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