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Abstract

Using a TDDFT method that incorporates the exact exchange, we reproduce the measured

ionization suppression for vanadium in 1500 nm lasers of 1.4 to 2.8×1013 W/cm2. The calculated

ionization yields are 0.07 to 0.5 in 100 fs sin2 pulses. For weaker laser intensities a method with more

configurations is needed to properly describe the multiphoton, rather than tunneling, ionization

of a transition metal atom. Our calculations show that the isotropic component of the induced

potential increases the binding energy of the electron while the dipole component elevates the

potential barrier of tunneling ionization. Both effects suppress the tunneling ionization.

PACS numbers: 33.80.Rv,42.50.Hz,33.80.Eh,33.90.+h
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I. INTRODUCTION

The rapid advance in attosecond science [1, 2] offers the possibility of probing or even

controlling the electronic structure with subfemtosecond and sub-̊angström resolution using

intense pulsed lasers. Ionization is a prominent phenomenon in intense laser fields and its

understanding has been mostly based on the single active electron (SAE) approximation.

The ADK approximation [3] is a widely adopted SAE model for tunneling ionization. Ex-

periments showed, however, that the tunneling ionization yields for transition metal atoms

V, Ni, Pd, Ta, and Nb are significantly lower than the ADK predictions [4, 5]. It was pro-

posed that the multielectron response exerts an additional barrier for tunneling ionization

[5]. Core polarization was subsequently included into a tunneling model [6–8]. The induced

dipole moment of the ion was considered to increase the ionization barrier. However, as the

electrons move away from the nucleus in a laser field, an attractive potential is expected at

the core. It reduces, rather than increases, the potential barrier of the ionization. The role

of this induced attractive potential has not been discussed.

Solutions of time dependent (TD) Schrödinger equations would provide a rigorous de-

scription of the relation between multielectron effects and the ionization suppression. Such

solutions for transition metal atoms, however, remain challenging. For similar reasons, mod-

eling transition metal chemistry has largely relied on density functional theory (DFT), even

though the ground state wave function of an open shell atom may not be represented by

a single determinant. Using DFT one must find a reference single determinant that ren-

ders the electron density of the ground state. In this study on the strong field ionization

of vanadium, we will demonstrate that TDDFT calculations can reproduce the measured

ionization yields for a range of laser intensity, using which we will analyze the main cause

of the ionization suppression.

The electronic configuration and term symbol for the neutral vanadium are 3d34s2 and

4F 3/2, respectively. There are four degenerate states with total angular momentum projec-

tion quantum numbers MJ = ±1/2 or ±3/2, none of which is representable by a single

determinant. The fine structure level 4F 9/2 is 0.068 558 eV above the ground state [9] and

the states withMJ = ±9/2 can both be presented by a single determinant. We will calculate

the ionization rate for these states and use it as an approximate of the rate for the electronic

configuration 3d34s2.
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Similar approximations were made for determining the polarizability and its anisotropy

for transition metals [10, 11] and rare earth metals [12] by a linear response TDDFT. In

these studies reasonable accuracy was achieved for open shell atoms that have partially filled

d or f sub-shells. Our nonperturbative version of TDDFT was benchmarked for strong field

ionization of diatomic molecules [13]. It also describes two electron processes in the HHG

of H2 [14] and N2 [15, 16]. Here, using vanadium as an example, we extend the TDDFT

method to treat open-shell atoms nonperturbatively.

As in the earlier work, we implement the TDDFT as a set of TD Kohn-Sham equations,

which in principle includes many-body effects through a local TD exchange-correlation (XC)

potential. We consider a quantum action integral [17–19],

A[Ψ] =

∫ t1

t0

dt

〈

Ψ(t)|i ∂
∂t

− Ĥ(t)|Ψ(t)

〉

, (1)

where Ψ(t) is the total N -electron wave function and it is represented by the determinant,

Ψ(t) =
1√
N !

det [ψ1σ(t)ψ2σ(t) · · ·ψNσ(t)] , (2)

where σ is the spin index. The electron spin density at time t is determined by the set of

occupied orbitals {ψiσ} as

ρσ(r, t) =
Nσ
∑

i=1

ψ∗
iσ(r, t)ψiσ(r, t), (3)

where i is the orbital index. The quantum action A[Ψ] has a stationary point at the TD

density of the system, and hence from the Euler equation we get the working equations

[20, 21].

When we project Eq. (2) onto a determinant of field free orbitals we find contributions of

single, double, triple, and higher excitations. Such multiple excitations/de-excitations are

needed for simulating transition metals.

The exchange and correlation potential is crucial for the accuracy of a TDDFT method.

To correctly account for the long range singularity and the anisotropy of an open shell atom,

we implement an optimized effective potential formalism.
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II. KOHN-SHAM EQUATIONS WITH AN OPTIMIZED EFFECTIVE POTEN-

TIAL FOR OPEN SHELL ATOMS

The optimized effective potential (OEP) approach of Sharp and Horton [22] consists a

set of one-electron equations, in atomic units,

[

−1

2
∇2 + V OEP

σ (r)

]

φiσ(r) = εiσφiσ(r),

(i = 1, 2, ..., Nσ), (4)

in which Nσ is the number of electrons for the σ spin, and V OEP
σ (r) minimizes the total

energy E[{φi↑,φj↓}], i.e.

δE

δV OEP
σ

= 0. (5)

Krieger, Li, and Iafrate developed a semianalyic transform of the OEP equations [23]. Adopt-

ing a similar seminanalytic form of the OEP equations, we incorporate the exact exchange

energy

Ex = −1

2

∑

σ

∑

i,j

∫ ∫ ∫

d3r

∫ ∫ ∫

d3r′
φ∗
iσ(r

′)φ∗
jσ(r)φjσ(r

′)φiσ(r)

|r− r′| (6)

into the KS equations,

Ĥ0
σ(r)φiσ(r) = εiσφiσ(r), (7)

where

Ĥ0
σ(r) = −1

2
∇2 − Z

r
+

∫ ∫ ∫

ρ(r′)

|r− r′|d
3r′ + Vxc,σ(r), (8)

ρ(r) = ρ↑(r) + ρ↓(r), (9)

in which Z is the nuclear charge, r is the radial distance to the nucleus, and

ρσ(r) =
Nσ
∑

i

|φiσ(r)|2. (10)

The orbital independent local exchange-correlation potential is approximated by

Vxc,σ(r) =
δExc[ρ↑, ρ↓]

δρσ(r)
≈ 1

ρσ(r)

∑

i

|φiσ(r)|2[vx,iσ(r) + vc,iσ(r) + V̄ i
xc,σ], (11)

where the orbital dependent exchange potential is

vx,iσ(r) =
1

φ∗
iσ(r)

δEx

δφiσ(r)
(12)

4



and vc,iσ = 1
φ∗

iσ
(r)

δEcs
c

δφiσ(r)
is the correlation potential derived from the energy functional for-

mulated by Colle and Salvetti [24]. The constant is obtained as

V̄ i
xc,σ = 〈ψiσ|Vxc,σ(r)− vx,iσ(r)− vcsc,iσ(r)|ψiσ〉 (13)

for occupied orbitals other than the highest. For the highest occupied orbitals, we replace

V̄ i
xc,σ by a function of r, which is set to be zero at infinity, so that the negative of the orbital

energy reproduces the ionization potential (IP).

To solve Eq. (7), we use the generalized pseudospectral method [25] that puts more

grid points near the nucleus and fewer near the cutoff, which is at 1000 a0. An absorbing

boundary is placed at 75 a0. There are five adjustable parameters in the static OEP code, the

maximum radial distance, the absorbing boundary, the number of grid points, the number of

partial waves, and a mapping parameter. We obtained convergence with respect to all five.

Table I shows the calculated orbital energies together with the measured IPs for removing

an electron from the orbital.

III. IONIZATION YIELDS

To obtain the ionization yields, we solve the time-dependent equations

i
∂

∂t
ψiσ(r, t) = Ĥσ(r)ψiσ(r, t) =

[

Ĥ0
σ(r) + ∆V̂σ(r, t)

]

ψiσ(r, t),

i = 1, 2, . . . , Nσ, (14)

where

∆V̂σ(r, t) =

∫ ∫ ∫

∆ρ(r′, t)

|r− r′| d
3
r
′ +∆Vxc,σ(r, t)−E(t) · z (15)

and E(t) = E(t)ẑ is the electric field of the laser, |ẑ|=1. ∆ρ is the change of the electron

density at time t relative to time 0, i.e.,

∆ρ(r, t) = ρ↑(r, t) + ρ↓(r, t)− ρ(r), (16)

in which ρσ(r, t) and ρ(r) are given in Eqs. (3) and (9) respectively. The change in the

exchange-correlation potential, ∆Vxc, is

∆Vxc,σ(r, t) = Vxc,σ(r, t)− Vxc,σ(r), (17)
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where Vxc,σ(r) is given in Eq. (11) and Vxc,σ(r, t) is obtained by using the adiabatic approx-

imation [27, 28], vxc,σ(r, t) = vxc,σ [ρσ(r, t)], i.e. replacing ρσ, and subsequently φiσ, by the

corresponding time-dependent quantities in Eq. (11).

While the rates for peak intensities are very different than the rates for the average

intensity over the pulse, the total yields and their trends when plotted against the peak

intensity vary only slightly with respect to the pulse duration and shape. A sin2 pulse shape

of 20 optical cycles is assumed in our calculations.

We use the time-dependent generalized pseudospectral method to solve Eq. (14). For

comparison with the measurements by Smits et al. [5], we first calculate the survival prob-

ability for each spin orbital as

niσ =

∫ ∫ ∫

ψ∗
iσ(r, T )ψiσ(r, T )d

3r, (18)

where T is the pulse length and the ionization probability for each spin orbital as

γiσ = 1− niσ. (19)

We have verified that the pulse length and pulse shape have little influence on the ionization

yield P ,

P = 1−
∏

iσ

niσ + 2
∑

iσ1 6=jσ2

γiσ1
γjσ2

kσ3 6=jσ2
∏

kσ3 6=iσ1

nkσ3
, (20)

in which both the single and double ionization is included.

IV. RESULTS AND DISCUSSION

The electronic configurations for the neutral and cationic vanadium are 3d34s2 and 3d4,

respectively. As such, the ground state configuration of the ion cannot be reached through

a single electron process. Table I shows that the energy for removing a single active electron

while keeping other electrons in their atomic orbitals is higher than 6.75 eV, the IP for

reaching the ground state of the ion.

To estimate the effect of a higher ionic state, we first calculate the ADK tunneling yields

for different ionization potentials. Figure 1 shows ADK curves for three IPs. Corresponding

electronic configurations of the ion are give in Table I. For comparison, we also adopted

an independent electron method, for which we replace Eq. (15) by its last term only and

solve Eq. (14). The electrons are subject to the electric field of the laser and the attractive
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potential of the ion, which is held constant in the propagation. Even though we include all

the occupied spin orbitals in the propagation, only the highest contributes significantly to

ionization. Since it is assumed that the potential from the ion does not change with time, it

is a form of the SAE approximation and it is labeled as such in Fig. 1. When the intensity

is greater than 1.26 ×1013 W/cm2, the ionization yields predicted by this approximation are

remarkably close to the ADK predictions with the ionization potential set to be 6.99 eV.

The electronic configuration of the ion is 3d34s for this potential. At 1.26 ×1013 W/cm2,

the Keldysh parameter is 1.15 for the 1500 nm lasers. It indicates that the ionization is not

tunneling dominant at this intensity or lower, which explains the difference with the ADK

tunneling model.

In Fig. 1 we also plot the experimental values from Ref. [5]. At larger intensities, they

are significantly lower than the ADK values with 6.99 eV being the ionization potential.

It is also lower than our SAE values. This comparison confirms that the slightly increased

ionization potential associated with the SAE approximation does not cause the ionization

suppression.

Using our TDDFT method, which includes the dynamics of the ion, the ionization yields

become reasonably close to the experimental values. It shows that the many electron dy-

namics according to the TDDFT formalism reproduces the suppression of ionization for

intensities greater than 1.4×1013 W/cm2. Due to the limitation of the local adiabatic XC

potential [26], the atom cannot be too far away from the ground state [29]. We therefore

focus on yields that are less than 0.5, which should be most reliable.

To analyze the many electron effects, we re-write Eq. (15) as

∆V̂σ(r, t) = −E(t) · z +
∞
∑

l=0

∆vσ,l(r, t)Pl(z/r), (21)

where Pl is l-th order Legendre function and z is the z coordinate. Induced potentials

∆vσ,lPl, l = 0, 1, ...,∞ contain all the dynamic many electron effects. The zeroth order term

∆vσ,0 is isotropic. The first order term (l = 1) is associated with the induced dipole moment

for larger radial distances, and the second order term with the induced quadrupole moment.

In Fig. 2 we plot ∆v↓,lPl along the z axis for l = 0, 1, and 2, when the laser intensity is

1.54×1013 W/cm2 and the field strength is maximized, i.e. t = T/2. We choose the spin

↓, because 4s↓ is the highest spin orbital according to our convention (see Table I). The

ionization yield predicted by TDDFT agrees well with the measurement for this intensity
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(see Fig. 1).

Figure 2 shows that the second order contribution, i.e. ∆v↓,2P2, is small and the contri-

bution of higher orders are even smaller since they require more photons. The first order

induced potential peaks at 2.6 bohr and 0.07 hartree. It elevates the ionization barrier and

reduces the tunneling ionization rate. The zeroth order induced potential is attractive as

a result of the electrons moving away from the nucleus in the electric field of the laser. It

lowers the energy of the highest electron dynamically and creates a larger time-dependent

ionization potential. This effect is demonstrated in Fig. 3.

The red (gray) and back lines in Fig. 3 show the energy level and potentials with and

without considering the many body effects, respectively. The black dashed dotted line is the

field free electronic potential expressed as the sum of the last three terms in Eq. (8). These

three terms are added to the potential from the electric field of the laser −E(T/2) · z and

plotted as the black dotted line. The black solid line is the energy of the highest occupied

spin orbital. It is above the potential barrier, therefore the ionization yield would be high if

the many electron effect is excluded.

With the isotropic induced potential added to the field free electronic potential (dashed

red [gray] line in Fig. 3), the energy level is shifted to the red (gray) solid line. The double

dotted red (gray) dashed line shows the electronic potential at T/2 along the z axis with all

terms of the induced potential included. Comparing the energy level and potential, we see

tunneling ionization, whose rate turns out to be much lower than over the barrier ionization

rates. We found similar features as shown in Fig. 3 for intensities up to 3× 1013 W/cm2.

In the introduction we explained that we performed calculations for the 4F9/2 fine struc-

ture level, which is 0.068 558 eV above the J = 3/2 ground state. The MJ = 9/2 state, with

orbital angular momentum quantum numbers L = 3,ML = 3 and electron spin quantum

numbers S = 3/2,MS = 3/2 can be represented by a single determinant, D1 = |3d0 3d1 3d2|,
where only the 3d spin-orbitals are included in the notation and spin-up and spin-down or-

bitals with magnetic quantum numbers m are written as 3dm and 3dm, respectively. In gen-

eral, the 4FJ,MJ
states are linear combinations of Russell-Saunders microstates |LMLSMS〉

with L = 3, S = 3/2, and MJ =ML +MS

|4FJ,MJ
〉 =

L
∑

ML=−L

S
∑

MS=−S

|LMLSMS〉〈LMLSMS|JMJ〉,

where the expansion coefficients are Clebsch-Gordan coefficients. The dominant microstate
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contributing to the 4F3/2,3/2 ground state has ML = 3 and MS = −3/2; its contribution

is |〈3, 3, 3/2,−3/2|3/2, 3/2〉|2 ≈ 57%. This microstate can be represented by a single de-

terminant, D2 = |3d0 3d1 3d2|. Since spin-orbit coupling is not included, the results of

the calculations are the same for states represented by D1 and D2. A better approxima-

tion of the ground state would require microstates with |MLMS〉 = |2,−1/2〉 (≈ 29%),

|MLMS〉 = |1, 1/2〉 (≈ 11%), and |MLMS〉 = |0, 3/2〉 ( ≈ 3%). We currently cannot use

multiple determinants in our method, but in a variational approach doing so would result in

stronger binding of the electron, which could improve the predicted ionization probability

for laser intensities lower than 1.3×1013 W/cm2. For higher intensities, we hypothesize that

similar shifts of energy levels and electronic potentials as shown in Fig. 3 cause the sup-

pression of ionization of the 4F3/2 level. We used a few of the determinants that contribute

to |MLMS〉 = |2,−1/2〉 and |MLMS〉 = |1, 1/2〉 as initial input for the TD equations with

laser parameters specified for Fig. 3. Each calculation results in curves slightly different

than those shown in Fig. 3, but all show downward shifted energy levels and upward shifted

energy barriers due to many electron interactions. We will further study the relationship

between the initial configuration and strong field ionization of transition metals with this

method.

V. CONCLUSIONS

We developed a TDDFT method that incorporates the exact exchange and use it to in-

vestigate the ionization of vanadium in intense 1500 nm lasers. The experimental results are

reproduced in the intensity range of 1.3 to 2.8 ×1013 W/cm2. The corresponding ionization

yields are 0.07 to 0.55 in 20 optical cycle pulses.

For intensities lower than 1.3 ×1013 W/cm2, the measured values appear to be higher

than our predictions. It suggests that properly describing the electron correlation may be

particular important for calculating ionization rates at lower intensities, because electron

correlation reduces the ionization potential for vanadium and thus enhances the ionization.

A method that includes more than one configuration may be needed.

Dynamic many electron interactions substantially lower the ionization yields. Our cal-

culations show that as the electrons move away from the nucleus in an intense laser field of

1.3 to 2.8 ×1013 W/cm2, the induced isotropic potential is attractive and hence increases
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the spontaneous ionization potential and reduces the ionization rate. The induced dipole

moment elevates the ionization barrier and reduces the ionization rate. Both effects make

substantial contributions.
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Figure 1: Ionization yield of vanadium in 1500 nm lasers as a function of the laser intensity.
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Figure 2: Induced potential, ∆v↓,lPl, l = 0, 1, 2, at the peak intensity of 1.54×1013 W/cm2, 1500

nm laser.
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Figure 3: Energy diagram for vanadium in a 1500 nm laser of 1.54×1013 W/cm2. Dotted dashed

black line: the field free electronic potential along the z axis. Solid black line: the field free energy

level for the highest occupied spin orbital. Black dotted line: the potential of the electric field at the

peak intensity plus the field free electronic potential. Red (gray) dashed line: the shifted electronic

potential due to the even order responses of the electrons at the peak intensity. Red (gray) solid

line: the lowered energy level corresponding to the red (gray) dashed line. Dashed double dotted

red (gray) line: the electronic potential at the peak intensity according to our TDDFT formalism.
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