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We present a comprehensive theoretical and computational study on harmonic generation (HG)
of Li atoms in one- and two-photon Rabi-flopping regimes where the population transfer from the
ground 2s state to the excited 2p, 3s, and 3d states is substantial. Our all-electron approach is based
on the time-dependent density-functional theory and takes into account polarization of the core and
dynamic response of the electrons to the laser field. We show that the population oscillations in
the time domain with the Rabi frequency Ω are reflected in the fine structure of the HG spectra in
the frequency domain on the scale of 2Ω. Our results also manifest that even finer structures of the
harmonic peaks on the smaller frequency scale originate from the pulse-shape-related interference
effects. These features are clearly seen in one-photon Rabi-flopping regime between the 2s and
2p states. The pattern in the HG spectra becomes more complex in the two-photon Rabi-flopping
regime involving 3s and 3d states. Our findings can be used for developing coherent control methods
for HG in the Rabi-flopping regime.

PACS numbers: 42.65.Ky,42.50.Hz,32.80.Rm8

I. INTRODUCTION9

High-order-harmonic generation (HHG) is a funda-10

mental atomic and molecular process in strong laser fields11

that continues attracting much interest in recent years12

both experimentally and theoretically [1]. With tunable13

long-wavelength lasers available, sufficiently high inten-14

sities without saturation of ionization can be used for15

probing both valence and core electrons. HHG processes16

have a capability of imaging of atomic and molecular17

structures with high resolution in spatial and temporal18

domains [2, 3]. The multielectron structural information19

can be retrieved by means of the HHG interferometry20

which is established as an effective approach to resolving21

multielectron dynamics. With laser pulses as short as22

a few femtoseconds, HHG spectroscopy can also become23

a possible tool for probing chemical reactions on a fem-24

tosecond time scale. Recently the emphasis is more and25

more shifted from observation of atoms and molecules in-26

teracting with laser fields towards their control. Coherent27

control of photon emission [4] and transient absorption [5]28

are promising directions in further advancements of ul-29

trafast laser spectroscopy and other related applications.30

Since the pioneering work of Rabi [6], coherent popu-31

lation transfer among different energy states has been a32

powerful technique in controlling quantum systems [7, 8].33

In a two-level atomic system interacting with a resonant34

radiation field, the dynamics of the electronic popula-35

tion presents well-known periodic Rabi oscillations. The36

phase of Rabi oscillations is associated with the so-called37
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“pulse area”. When the latter reaches the value of π (π38

pulse), the population transfer between the two quantum39

states is complete. Rabi oscillations play an important40

role in measuring the pulse area and excited-state popu-41

lation. This is directly incorporated with the pulse du-42

ration, intensity, detuning from resonance, and the tran-43

sition dipole moment. Robust coherent control methods44

based on the concept of Rabi oscillations are utilized in45

various recent applications such as ultrafast manipulation46

of Rydberg states [9–11], quantum information process-47

ing [12], ensembles of cold atoms [13–15] etc.48

Rabi flopping in multiphoton regime also became fea-49

sible with advancements in laser technology and pulse50

shaping techniques [16–18]. However, this regime re-51

quires stronger radiation fields resulting in sloppy pop-52

ulation transfer to the target state. The process may53

become out of control when large a.c. Stark shifts detune54

the system from the resonance [19]. It should be noted55

that the origin and dynamics of the population transfer56

and oscillations are qualitatively different for weak and57

strong radiation fields [20, 21]. In the one-photon transi-58

tion, the underlying mechanism of population oscillations59

is different from that in the two-photon transition since60

in the latter case the resonant intermediate states are af-61

fected. For the same pulse area, complications get more62

serious as the length of the pulse decreases and the peak63

intensity becomes higher.64

Alkali atoms are of particular interest in both exper-65

imental and theoretical studies of light-matter interac-66

tion. For the theoretical description, it is important that67

alkali atoms have a single electron outside the closed shell68

and can be quite accurately represented by single-active-69

electron (SAE) models [22, 23]. A recent theoretical work70

[23] revealed signatures of the carrier-wave Rabi flopping71

(CWRF) in the harmonic generation spectra of potas-72
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sium atoms. The CWRF regime [24] is reached when73

the Rabi frequency becomes comparable with the carrier74

frequency and characterized by breakdown of the pulse75

area theorem. In Ref. [23], it was found that the third76

harmonic in the harmonic generation spectra of K atoms77

exhibits a complex structure in the CWRF regime. Pre-78

viously, a similar pattern was reported for the third har-79

monic generated in narrow-band semiconductors [25].80

In the present work, we study the influence of the81

coherent population transfer in Li atoms on the har-82

monic generation (HG) spectra in the one- and two-83

photon Rabi-flopping regimes. Lithium is the lightest84

alkali atom and has a single s valence electron. On the85

other hand, it is the simplest atom that exhibits inter-86

shell electron correlation which can provide a richer test-87

ing ground for the theoretical investigation of the inter-88

action of the atom with intense laser fields. While SAE89

models with the state-of-the-art effective potentials and90

pseudopotentials may appear very accurate in descrip-91

tion of alkali atoms (see, for example, the review article92

[26] and references therein), they still lack the dynamic93

multielectron response of the atomic core to the laser94

fields, which may be significant and affect the outer elec-95

tron even when the inner electrons are tightly bound.96

Our theoretical approach goes beyond the SAE approx-97

imation and is based on the self-interaction-free time-98

dependent density-functional theory (TDDFT), which99

takes into account the electron exchange and correla-100

tion through the exchange-correlation functional. Here101

we use it specifically to study HG of Li atoms driven by102

strong near-resonant laser fields with realistic parameters103

such as carrier frequency, peak intensity, and pulse dura-104

tion that can be used to control the shape and structure105

of the harmonic peaks. It should be noted that recent106

TDDFT studies [27–29] revealed failures to describe the107

Rabi dynamics in two-electron model systems initially in108

the ground singlet states. Such systems, when treated by109

TDDFT with adiabatic exchange-correlation functionals110

(where the potential at any time is a functional of the111

density at that time), featured incomplete population112

transfer to the excited states and detuned Rabi oscil-113

lations [28]. The system is driven out of resonance when114

the density changes significantly due to the population115

transfer to the excited states thus causing a change in the116

adiabatic Kohn-Sham potential. A conclusion was made117

[28, 29] that non-adiabaticity of the exchange-correlation118

functional is crucial to properly capture the physics of119

Rabi oscillations, and adiabatic functionals would fail to120

do so. However, as our calculations show, this problem is121

not severe for the Li atom, which has only one 2s electron122

outside the closed 1s shell. The transitions of the valence123

electron do not affect too much the tightly bound core124

electrons. That is why the Kohn-Sham mean field experi-125

enced by the valence electron does not manifest dramatic126

changes when the population transfer occurs between the127

2s and excited states, and the system does not go off the128

resonance.129

For the one-photon Rabi-flopping case, we choose the130

carrier frequency tuned into the resonance with the tran-131

sition between the ground 2s and the first excited 2p132

states (D-line in the radiation spectrum of Li; the exper-133

imental wavelength is 671 nm). The two-photon Rabi-134

flopping regime can be reached when the carrier fre-135

quency of the laser pulse is tuned into the two-photon136

resonance between the ground 2s state and excited 3s137

or 3d states. In the HG spectra, we observe character-138

istic oscillatory structures and explain their relations to139

the Rabi flopping and pulse-shape-induced interferences.140

We also discuss systematic shifts of the harmonic peaks141

when the carrier frequency has a small detuning from the142

resonance. Our findings can be used for the purpose of143

coherent control of HG in the Rabi-flopping regime.144

The paper is organized as follows. In Sec. II, we pro-145

vide a detailed description of our theoretical approach in146

the framework of TDDFT and computational method.147

In Sec. III, we discuss the results of the calculations and148

give necessary theoretical explanations. Sec. IV contains149

concluding remarks.150

II. METHOD151

We use TDDFT to study harmonic generation of152

Li atoms driven by strong near-resonant laser fields.153

The single-particle potential is constructed by means154

of the Krieger-Li-Iafrate (KLI) procedure [30] with155

self-interaction correction (SIC) extended to the time-156

dependent (TD) problems [31]. For the TD-KLI-SIC pro-157

cedure [31] adopted here, we extend Perdew and Zunger’s158

SIC form [32] to the time domain. It has been shown [31]159

that the TDKLI procedure [33] can be simplified consid-160

erably without the need of using the nonlocal Hartree-161

Fock energy functional, in the construction of the time-162

dependent optimized effective potential. Thus the TD-163

KLI-SIC procedure [31] is computationally more efficient164

and yet maintains high accuracy in the calculation of165

the ground state energies, ionization potentials, excited166

autoionizing resonances [34], as well as multiphoton ion-167

ization dynamics [31, 35]. Within the adiabatic approx-168

imation, well justified in the case of low-frequency laser169

fields [36], the TD-KLI-SIC single-particle potential can170

be expressed as follows:171

V s
σ (r, t) =

Nσ∑

j=1

ρjσ(r, t)

ρσ(r, t)

[
vjσ(r, t) + V̄ s

σj − v̄jσ
]
. (1)

Here indices j and σ enumerate spin-orbitals (σ corre-172

sponds to the spin projection, Nσ is the total number of173

electrons with the spin σ); ρjσ and ρσ are the spin-orbital174

density and the total spin-density, respectively:175

ρjσ(r, t) = |ψjσ(r, t)|
2,

ρσ(r, t) =

Nσ∑

j=1

ρjσ(r, t) (2)
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(ψjσ(r, t) is the Kohn-Sham spin-orbital). The orbital-176

dependent potential vjσ(r, t) includes the Hartree and177

exchange-correlation parts as well as self-interaction cor-178

rections. The mean values V̄ s
σj , v̄jσ are calculated with179

the spin-densities ρjσ(r, t):180

V̄ s
σj =

∫
d3rρjσ(r, t)V

s
σ (r, t),

v̄jσ =

∫
d3rρjσ(r, t)vjσ(r, t). (3)

Eq. (1) defines the potential V s
σ (r, t) up to an arbitrary181

constant. However, since the exchange-correlation po-182

tential vanishes at infinity in the space domain, its ex-183

pectation value with the highest-occupied spin-orbital184

ψmσ(r, t) must be equal to that of the orbital-dependent185

potential vmσ(r, t) [30]:186

V̄ s
σm = v̄mσ. (4)

The constraint (4) makes the potential (1) unique, and all187

unknown constants V̄ s
σj (j < m) can be obtained solving188

a set of linear equations [30].189

For Li atoms, the procedure is particularly straightfor-190

ward since Nσ does not exceed 2. For the open-shell Li191

atom (the electronic structure 1s22s), the TD-KLI-SIC192

potential is spin-dependent and can be explicitly writ-193

ten as follows, for the spin up (↑) and spin down (↓),194

respectively [37]:195

V s
↑ (r, t) =

ρ1↑(r, t)

ρ↑(r, t)

{
v1↑(r, t)

+

[∫
d3r

ρ2↑(r, t)ρ1↑(r, t)

ρ↑(r, t)

]−1

×

∫
d3r

ρ2↑(r, t)ρ1↑(r, t)

ρ↑(r, t))
[v2↑(r, t)− v1↑(r, t)]

}

+
ρ2↑(r, t)

ρ↑(r, t)
v2↑(r, t), (5)

V s
↓ (r, t) = v1↓(r, t). (6)

For the orbital-dependent potentials vjσ(r, t), we use196

the exchange-only approximation in the local spin-197

density (LSD) form, and include Perdew-Zunger [32] self-198

interaction corrections:199

vjσ(r, t) = vH[ρ↑ + ρ↓](r, t) + vLSDx [ρσ](r, t)

− vH[ρjσ](r, t)− vLSDx [ρjσ ](r, t)
(7)

where vH[ρ](r, t) and vLSDx [ρ](r, t) are the Hartree and200

LSD exchange potentials, respectively:201

vH[ρ](r, t) =

∫
d3r′

ρ(r, t)

|r − r′|
,

vLSDx [ρ](r, t) = −

[
6

π
ρ(r, t)

]1/3
. (8)

The spin-orbital energies computed by the time-202

independent DFT using these potentials are listed in Ta-203

ble I. The highest-occupied orbital energy is in a good204

TABLE I. Absolute values of spin-orbital energies of Li. (A)
Present calculations (a.u.). (B) Experimental ionization en-
ergy of Li [38] (a.u.).

Spin-orbital A B

1s ↑ 1.993
1s ↓ 2.476
2s ↑ 0.196 0.198

agreement with the experimental data for the ionization205

potential [38]. In Table II, we list the one-electron exci-206207

tation energies (2s→ nl) calculated as differences of the208

corresponding eigenvalues of the time-independent DFT209

Hamiltonian. For comparison, experimental excitation210

energies are also shown. As one can see, the agreement211

is fairly good (within 2%). Of course, the differences212

of the Kohn-Sham orbital energies are only a zero-order213

approximation to the actual excitation energies of the214

multielectron atom. A better approximation, including215

the dynamical exchange-correlation effects, can be ob-216

tained in the framework of the linear-response TDDFT217

[39, 40]. For the Li atom, however, the Kohn-Sham level218

of accuracy is quite good and sufficient to determine the219

laser frequencies for near-resonant excitations. The same220

is true for the transition dipole matrix elements calcu-221

lated between the one-electron Kohn-Sham states with222

the principal quantum numbers n = 2 and n = 3 and223

listed in Table III. Accuracy of these matrix elements224

is important for correct description of the excitation dy-225

namics in near-resonant laser fields. As one can see, the226

quality of the calculated transition dipoles is rather good227

even on the one-electron Kohn-Sham level; they agree228

well with the matrix elements obtained by the precision229

linearized coupled-cluster method [41].230

To obtain the time-dependent electron densities and231

calculate the harmonic spectra, one has to solve a set232

of the the time-dependent Kohn-Sham equations for the233

spin-orbitals ψjσ(r, t):234

i
∂

∂t
ψjσ(r, t) =

[
−

1

2
∇2 −

Z

r
+ V s

σ (r, t)

+vext(r, t)
]
ψjσ(r, t), j = 1, ..., Nσ.

(9)

Besides the discussed single-particle potential V s
σ , the235

right-hand side of Eq. (9) contains the Coulomb inter-236

action with the nucleus (Z is the nucleus charge) and237

interaction with the external laser field vext(r, t). In our238

calculations we use a linearly polarized laser pulse; the239

envelope has a sine-squared shape and contains 20 optical240

cycles (o.c.):241

vext(r, t) = (F (t) · r), (10)

F (t) = F0 sin
2 πt

T
sinω0t, T =

40π

ω0
. (11)

242243

To solve the set (9), we apply the time-dependent gen-244

eralized pseudospectral (TDGPS) method which proved245
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TABLE II. 2s → nl excitation energies of Li. (A) Present
calculations (a.u.). (B) Experimental results [42] (a.u.).

nl A B

2p 0.0673 0.0679
3s 0.1219 0.1240
3p 0.1389 0.1409
3d 0.1401 0.1425

TABLE III. Transition dipole matrix elements 〈n′l′0|z|nl0〉 of
Li. (A) Present calculations (a.u.). (B) Ref. [41] (a.u.).

Transition A B

2s → 2p 2.38 2.35
2s → 3p 0.113 0.129
2p → 3s 1.77 1.72
2p → 3d 2.33 2.27

accurate and efficient in our previous atomic TDDFT cal-246

culations (see, e. g., Refs. [37, 43–45]). For the TDGPS247

discretization in the present calculations, we use 80 radial248

and 32 angular grid points, and 4096 time steps per op-249

tical cycle. The equations (9) are solved in space within250

a sphere with the radius 60 a.u.; between 40 a.u. and251

60 a.u. we place an absorber. Absorbed parts of the252

wave packet localized beyond 40 a.u. describe unbound253

states populated during the ionization process. We note254

that the absorber is located far enough from the nucleus,255

so its influence on the excitation and ionization dynamics256

is negligible. Because of the absorber, the normalization257

integrals of the spin-orbital densities ρjσ(r, t) decrease in258

time. The ionization probabilities Pjσ for each spin or-259

bital are determined by the densities calculated after the260

pulse:261

Pjσ = 1−

∫
d3rρjσ(r, T ). (12)

We note that for the moderate peak intensities used in262

the calculations (up to 2×1012 W/cm2) only the highest-263

occupied 2s orbital of Li contributes to ionization while264

the tightly bound inner shell 1s electrons do not leave265

the core. Then the ionization probability of Li P reads266

as267

P = P2↑. (13)

268269

To calculate the HG spectra, we use a semiclassical ap-270

proach, where the basic expressions come from the clas-271

sical electrodynamics but the classical quantities such as272

dipole moment and its acceleration are replaced with the273

corresponding quantum expectation values. The spec-274

tral density of radiation energy can be expressed through275

the Fourier transforms of the dipole acceleration a(t) or276

dipole moment d(t) [46]:277

S(ω) =
2

3πc3
|ã(ω)|2 =

2ω4

3πc3
|d̃(ω)|2; (14)

ã(ω) =

∫ ∞

−∞

dt a(t) exp(iωt), (15)

d̃(ω) =

∫ ∞

−∞

dt d(t) exp(iωt), (16)

(c is the speed of light) and the expectation values of the278

dipole moment and its acceleration are defined as follows:279

d(t) =

∫
d3r r [ρ↑(r, t) + ρ↓(r, t)]; (17)

a(t) = −

∫
d3r [ρ↑(r, t) + ρ↓(r, t)]

× ∇[−
Z

r
+ vext(r, t)]. (18)

They satisfy the same relation as the corresponding clas-280

sical quantities:281

d2

dt2
d(t) = a(t). (19)

The expression for a(t) can be derived from that for d(t)282

with the help of the Ehrenfest theorem. We note that283

only the nuclear and external field potentials are present284

in Eq. (18). When multielectron targets are treated285

exactly, the electron-electron interaction does not con-286

tribute to the expectation value of the dipole acceleration287

due to Newton’s third law since the electrons are identi-288

cal and have the same masses and charges. In TDDFT,289

that means the exact exchange-correlation potential (as290

well as the Hartree potential) does not contribute to the291

expectation value of acceleration (the zero-force theorem292

[47]). For approximate exchange-correlation potentials,293

this is not always true. Consequently, the length and294

acceleration forms of the HG spectra (14) with the ex-295

pectation values defined in Eqs. (17) and (18) are not296

necessarily identical in TDDFT. This is specifically the297

case for the TD-KLI-SIC approximation, which is known298

to violate the zero-force theorem [48]. In this study, we299

adopt the length form of the HG spectra as defined by300

equations (14), (16), and (17).301

III. RESULTS AND DISCUSSION302

A. One-photon Rabi flopping303

In order to have an efficient control over the coher-304

ent population transfer in the one-photon Rabi-flopping305

regime, we set the carrier wavelength to 676 nm (ω0 =306

0.0674 a.u.) corresponding to a resonance one-photon307

transition between the ground 2s and the first excited 2p308

states (D line in the radiation spectrum of Li; the exper-309

imental wavelength is 671 nm). Several peak intensities310

in the range 2× 1011 to 2× 1012 W/cm2 have been used311
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TABLE IV. Ionization probabilities (P), Rabi frequencies (Ω),
and pulse areas (Θ) for the resonant 20 o.c. sin2 laser pulses
with the carrier wavelength 676 nm.

Peak intensity (W/cm2) P Ω (a.u.) Θ/π

2.0× 1011 0.019 0.00568 1.69
2.8× 1011 0.031 0.00672 2.00
3.0× 1011 0.035 0.00696 2.07
3.2× 1011 0.038 0.00719 2.13
5.0× 1011 0.069 0.00899 2.67
1.0× 1012 0.135 0.01271 3.77
1.3× 1012 0.170 0.01449 4.30
2.0× 1012 0.268 0.01797 5.33

in the calculations. Since the excitation dynamics in the312

resonant field is closely related to the Rabi oscillations313

and Rabi flopping, let us introduce the Rabi frequency314

and pulse area. The Rabi frequency Ω is defined as a315

product of the peak value of the laser electric field F0 and316

transition dipole D between the resonant atomic states:317

Ω = F0D. (20)

Then the pulse area Θ is a product of the Rabi frequency318

Ω and the full width at the half maximum (FWHM) of319

the laser pulse τ [for the sin2 pulse, the latter is just one320

half of the total pulse duration T , see Eq. (11)]:321

Θ = Ωτ. (21)

In the Rabi-flopping regime, the population inversion af-322

ter the pulse occurs if the pulse area is equal to an odd323

integer in units of π. For the simplified two-level system,324

it corresponds to the total depletion of the initial ground325

state and full population of the excited state. For more326

realistic multilevel system, this is not the case because327

a part of the initial population of the ground state may328

go to other (non-resonant) excited states. Still, the pop-329

ulation of the resonant excited state at the end of the330

pulse can be very significant. If the pulse area is equal331

to an even integer in units of π, then the most of the332

population returns to the initial ground state after the333

pulse.334

In Table IV, we present ionization probabilities, Rabi335

frequencies, and pulse areas for different peak intensities336

used in the calculations (our laser pulse always has a sin2337

envelope and duration of 20 o.c.). Note that the Rabi fre-338

quency is much less than the laser carrier frequency for339

all intensities in the range. As one can see, at the highest340

intensity 2.0 × 1012 W/cm2 ionization of the Li atom is341

substantial. Using even higher intensities may result in342

full ionization on the leading edge of the laser pulse and343

suppression of harmonic generation. Based on the pulse344

area calculated according to Eq. (21), one may expect345

the largest ground state population after the 2π-pulse346

with the peak intensity 2.8× 1011 W/cm2. However, the347

pulse area analysis is an approximate tool coming from348
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FIG. 1. Time-dependent populations of the ground and sev-
eral excited states of Li. The laser pulse has a sin2 shape,
duration of 20 o.c., and peak intensity is 3.2 × 1011 W/cm2.
The carrier wavelength 676 nm corresponds to a one-photon
resonance between 2s and 2p states.

the adiabatic two-level system theory. Our numerical cal-349

culations show that the largest ground state population350

after the pulse actually corresponds to the peak intensity351

3.2 × 1011 W/cm2 and pulse area 2.13π. In Fig. 1, the352

time-dependent populations of the ground (2s) and sev-353

eral excited Kohn-Sham states are shown. Similar to the354

above discussion of the excitation energies and transition355

dipoles, we should note here that for the Li atom the356

Kohn-Sham populations are a good approximation for357

the populations of the ground and singly-excited multi-358

electron states. Besides the resonant 2p state, significant359

populations in the central part of the laser pulse are ac-360

quired by the 3s and 3d states; this happens because361

these two states are strongly coupled to the 2p state (see362

transition dipoles in Table III), and their excitation en-363

ergies (Table II) are not far away from the two-photon364

resonance with the ground state. On the contrary, the365

population of the 3p state is very low (does not exceed366

0.005) because this state is not accessible from the 2p367

state through a one-photon process, and transitions from368

either 2s, 3s, and 3d states are far from resonance.369

The time-dependent dipole moment for the same laser370

pulse with the peak intensity 3.2× 1011 W/cm2 is shown371

in Fig. 2. The induced dipole moment features a deep372

low-frequency modulation with the minimum of the en-373

velope at the center of the laser pulse. The modulation374

frequency is just the Rabi frequency; for this particular375

laser pulse it is approximately equal to one tenth of the376

carrier frequency: Ω ≈ 0.1ω0. The minimum in the in-377

duced dipole corresponds to almost full population trans-378

fer from the 2s state to the 2p state at half pulse duration.379

Note that the dipole moment does not vanish at the end380

of the laser pulse. It happens because some population381

still remains in the excited 2p state. The frequency of382

the dipole oscillations at the end of the pulse is not ac-383

tually the carrier frequency ω0 of the laser field but the384

excitation energy of the 2p state; the latter, however, is385
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FIG. 2. Time-dependent induced dipole moment in the res-
onant field. The laser pulse has a sin2 shape, duration of 20
o.c., and peak intensity is 3.2 × 1011 W/cm2. The carrier
wavelength 676 nm corresponds to a one-photon resonance
between 2s and 2p states.

equal to ω0 in the resonant field.386

To calculate the spectrum of radiation emitted dur-387

ing the interaction with the laser field, one has to per-388

form the Fourier transform of the induced dipole moment389

[see Eqs. (14) and (16)]. Since we do not propagate the390

Kohn-Sham orbitals beyond the end of the laser pulse,391

the temporal integration in Eq. (16) is restricted to the392

interval from 0 to T , that is the pulse duration. This ap-393

proach assumes that the dipole moment smoothly goes394

to zero at both beginning and end of the pulse, otherwise395

the Fourier transformmay contain spurious contributions396

and noise because of abrupt change of the integrand in397

Eq. (16). As one can see in Fig. 2, in the case of the reso-398

nant (or near-resonant) field, at the end of the pulse the399

dipole moment still oscillates with a quite large magni-400

tude and does not vanish. To avoid any unwanted effects401

in the Fourier transform, before taking the integral in402

Eq. (16), we multiply the dipole moment by the window403

function, which is equal to unity in the central part of the404

laser pulse and smoothly goes to zero at both t = 0 and405

t = T . In our calculations, we use the following window406

function W (t):407

W (t) =





sin2
(
ω0t

8

)
, 0 ≤ t <

4π

ω0
;

1,
4π

ω0
≤ t < T −

4π

ω0
;

sin2
(
ω0(T − t)

8

)
, T −

4π

ω0
≤ t ≤ T.

(22)

Defined in this way, the function W (t) gradually raises408

from 0 to 1 during the first two optical cycles, remain409

equal to unity for the next 16 optical cycles, and gradu-410

ally decreases to zero during the last two optical cycles.411

In Fig. 3, we show the HG spectrum obtained by the412

Fourier transform with the window function (22) for the413

same laser pulse with the carrier wavelength 676 nm and414

peak intensity 3.2× 1011 W/cm2. The spectrum consists415

of distinct odd harmonic peaks manifesting fine oscilla-416

tory structures. We note that at the laser wavelength417

676 nm the third harmonic already corresponds to the418

photon energy slightly above the ionization threshold, so419

all generated harmonics are above-threshold, and their420

frequency profiles are rather broad. The most prominent421

feature of the spectrum is an oscillatory structure su-422

perimposed onto the conventional harmonic peaks. The423

spacing between the adjacent maxima of this structure424

is about 0.2ω0, that is twice the Rabi frequency. The425

origin of these fine oscillations in the frequency domain426

can be understood from the analysis of the properties of427

the induced dipole moment in the time domain, which is428

strongly affected by the population transfer in the reso-429

nant field. In the two-level system, the dipole moment430

vanishes when does so the population of any of the two431

states strongly coupled by the field. Although this ex-432

ample is oversimplified, it catches the physics of the pro-433

cess; we can see a deep minimum of the dipole moment434

induced by the field in the Li atom (Fig. 2) when the 2s435

state is almost depleted. The pattern in Fig. 2 exhibits436

two well-separated portions shifted from each other by 5437

o.c. or half the Rabi period, π/Ω. Then we can repre-438

sent the whole function d(t) as a sum of left and right439

contributions:440

d(t) = dL(t) + dR(t) (23)

and approximate the right contribution as the left one441

shifted by π/Ω:442

dR(t) = dL(t− π/Ω). (24)

Performing the Fourier transform of d(t), one obtains:443

d̃(ω) = 2 exp
(
i
πω

2Ω

)
cos

(πω
2Ω

)
d̃L(ω). (25)

The spectral density of emitted radiation energy will444

manifest an oscillatory structure with the adjacent max-445

ima separated by ∆ω = 2Ω:446

S(ω) =
8ω4

3πc3
cos2

(πω
2Ω

)
|d̃L(ω)|

2. (26)

447448

Although the above analysis is approximate, it reveals449

the origin of the oscillatory structure in the HG spectrum.450

This structure appears due to low-frequency modulation451

of the time-dependent dipole moment. The modulation,452

in turn, has its origin in the population oscillations with453

the Rabi frequency. We should note that the modulation454

affects not only the visible time evolution of the dipole455

moment (with the carrier frequency ω0) shown in Fig. 2.456

Higher harmonics also exhibit such a modulation. We457

can extract time profiles for higher harmonics perform-458

ing inverse Fourier transforms on the limited frequency459

range, corresponding to the specific harmonic. For ex-460

ample, taking the inverse Fourier transform of d̃(ω) re-461

stricted to the frequency range [2.5ω0, 3.5ω0], we obtain462

the time profile for the third harmonic, and similar for463
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FIG. 3. HG spectrum of Li. The laser pulse has a sin2 shape,
duration of 20 o.c., and peak intensity is 3.2 × 1011 W/cm2.
The carrier wavelength 676 nm corresponds to a one-photon
resonance between 2s and 2p states. The inset shows enlarged
structure of the 5th harmonic with the spacing between two
adjacent subpeaks equal to 2Ω.
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FIG. 4. Time profiles of the 3rd, 5th, and 7th harmonics.
The laser pulse has a sin2 shape, duration of 20 o.c., and
peak intensity is 3.2 × 1011 W/cm2. The carrier wavelength
676 nm corresponds to a one-photon resonance between 2s
and 2p states.

other harmonics. In Fig. 4, the time profiles for the har-464

monic orders 3, 5, and 7 are shown. As one can see, the465

5th and 7th harmonics exhibit a well-pronounced low-466

frequency modulation similar to that seen in Fig. 2. The467

time profile for the third harmonic is somewhat different;468

although the modulation is present, its frequency cannot469

be easily extracted from the time profile since there is470

only one dominant contribution from the time interval471

13 to 15 o.c. Nonetheless, the third harmonic also ex-472
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FIG. 5. Fine structures of the 5th and 7th harmonics. The
subpeak spacing is less than 2Ω. The laser pulse has a sin2

shape, duration of 20 o.c., and peak intensity is 1 × 1012

W/cm2. The carrier wavelength 676 nm corresponds to a
one-photon resonance between 2s and 2p states.

hibits a subpeak structure in the frequency domain (see473

Fig. 3) with the spacing between the subpeaks approxi-474

mately equal to 2Ω.475

B. Effect of the pulse shape: interference476

oscillatory structures in HG spectra477

At higher peak intensities of the laser pulse, fine oscilla-478

tory structures with the subpeak spacing less than 2Ω can479

be noticed in the harmonic peaks. In Fig. 5, such struc-480

tures contained within 2Ω frequency intervals are clearly481

seen in the 5th and 7th harmonics at the peak intensity482

1 × 1012 W/cm2. This phenomenon can be explained483

by interference of the contributions to the HG spectrum484

coming from the leading and trailing edges of the laser485

pulse. As early as in 1984, it was discovered [49] that the486

spectrum of resonance fluorescence of a two-level system487

has a multipeak structure. Similar structures were found488

in the spectra of resonance ionization [50], resonance au-489

toionization [51, 52] and multiphoton above-threshold de-490

tachment [53]. In Refs. [52, 53], a concept of adiabatic491

Floquet states [54, 55] was used to explain the multipeak492

structures in the spectra. The same approach is applica-493

ble for description of the HG spectra.494

For the sake of simplicity, let us consider the case when495

the carrier frequency is tuned into the exact resonance496

with the transition between the 2s and 2p states. In497

this case, the time-dependent wave function can be rep-498

resented by an equally weighted linear combination of499

two adiabatic Floquet states:500

ψ =
1

2

{
exp

[
−i

∫ t

0

εa(τ)dτ

]
ψa

+exp

[
−i

∫ t

0

εb(τ)dτ

]
ψb

}
,

(27)
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FIG. 6. Adiabatic quasienergies in the resonance field. The
time moments t1 and t2 denote the saddle points, and the
shaded areas represent the phase difference responsible for
the interference oscillations.

where ψa and ψb can be expanded in Fourier series:501

ψa =
∑

n

ψa,n exp(−inω0t), (28)

ψb =
∑

n

ψb,n exp(−inω0t). (29)

The quasienergies εa, εb and Fourier components ψa,n,502

ψb,n depend on time adiabatically through the pulse en-503

velope function. In the weak laser field limit, the adi-504

abatic quasienergies εa and εb become degenerate (and505

equal to the 2s orbital energy), and the wave functions506

have the following approximate expressions:507

ψa ≈
1

2
[ψ2s + exp(−iω0t)ψ2p] , (30)

ψb ≈
1

2
[ψ2s − exp(−iω0t)ψ2p] , (31)

where ψ2s and ψ2p denote unperturbed time-independent508

2s and 2p wave functions, respectively. Then only the509

2s state is populated at the beginning of the laser pulse510

(t = 0).511

With the wave function (27), the expectation value of512

the induced dipole moment is calculated as follows:513

d(t) =
1

4

{
〈ψa|z|ψa〉+ 〈ψb|z|ψb〉

+ exp

[
i

∫ t

0

(εa − εb)dτ

]
〈ψa|z|ψb〉

+ exp

[
i

∫ t

0

(εb − εa)dτ

]
〈ψb|z|ψa〉

}
.

(32)

Note that in the resonance field the difference of adiabatic514

quasienergies is equal to the adiabatic Rabi frequency515

defined for the the electric field peak value at time t:516

εb(t)− εa(t) = Ω(t). (33)

Expanding the right-hand side of Eq. (32) in Fourier se-517

ries, one obtains:518

D(t) =
1

4

{∑

n

exp(inω0t)
[
daan + dbbn

]

+ exp

[
i

∫ t

0

(εa − εb)dτ

]∑

n

exp(inω0t)d
ab
n

+ exp

[
i

∫ t

0

(εb − εa)dτ

]∑

n

exp(inω0t)
[
dab−n

]∗ }

(34)

where519

daan =
∑

m

〈ψa,m+n|z|ψa,m〉, (35)

dbbn =
∑

m

〈ψb,m+n|z|ψb,m〉, (36)

dabn =
∑

m

〈ψa,m+n|z|ψb,m〉. (37)

Due to parity restrictions, daan , daan , and dabn are non-zero520

for odd n only.521

For the laser field parameters used in the present cal-522

culations, the adiabatic Rabi frequency is much less than523

the carrier frequency at any time: Ω(t) ≪ ω0. Then the524

interference oscillatory structure is well localized within525

a single harmonic frequency profile. For the harmonic526

order 2n + 1, the time-dependent dipole moment is ap-527

proximately expressed as528

D2n+1(t) =
1

4

{
exp[i(2n+ 1)ω0t]

[
daa2n+1 + dbb2n+1

]

+ exp

[
i(2n+ 1)ω0t− i

∫ t

0

(εb − εa)dτ

]
dab2n+1

+ exp

[
i(2n+ 1)ω0t+ i

∫ t

0

(εb − εa)dτ

] [
dab−(2n+1)

]∗ }
.

(38)

The Fourier transform of Eq. (38) gives the frequency529

profile of the (2n+1)th harmonic. An oscillatory pattern530

in this profile appears due to the contributions of the last531

two terms in the right-hand side of Eq. (38). To evaluate532

these two contributions to the Fourier integral, we apply533

the saddle-point method. The equations for the saddle534

points are as follows (ω being the frequency value where535

the HG spectrum is calculated):536

ω = (2n+ 1)ω0 + [εb − εa](t), (39)

ω = (2n+ 1)ω0 − [εb − εa](t). (40)

Obviously, real-valued t solutions of Eq. (39) exist only537

if the frequency ω falls into the interval between (2n +538

1)ω0 and (2n + 1)ω0 + Ω. Similarly, real solutions of539

Eq. (40) exist if the ω value is between (2n + 1)ω0 − Ω540

and (2n+1)ω0. Since the function [εb− εa](t) is even for541

symmetric laser pulses, Eqs. (39) and (40) each produce542

two saddle points, t1 and t2 = −t1, as shown in Fig. 6.543

The contributions from t1 (leading edge of the laser pulse)544



9

1 3 5 7 9 11 13 15 17
Harmonic order

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Sp
ec

tr
al

 d
en

si
ty

 o
f 

ra
di

at
io

n 
(a

.u
.)

FIG. 7. HG spectra of Li for the driving field wavelength
650 nm (dashed red line) and 700 nm (solid blue line). The
laser pulse has a sin2 shape, duration of 20 o.c., and peak
intensity is 3×1011 W/cm2. The 650 nm and 700 nm spectra
are red- and blue-shifted, respectively, from the conventional
harmonic positions corresponding to odd integer numbers.

and t2 (trailing edge of the laser pulse) interfere resulting545

in the oscillatory behavior of the Fourier transform as a546

function of the frequency ω:547

d̃(ω) ∼ dab2n+1(t2) cos

[
1

2
Θ(t2)

]
, (41)

where t2 is determined by ω according to the equation548

ω = (2n+ 1)ω0 + [εb − εa](t2) (42)

and549

d̃(ω) ∼
[
dab−(2n+1)(t2)

]∗
cos

[
1

2
Θ(t2)

]
, (43)

where t2 is determined by the equation550

ω = (2n+ 1)ω0 − [εb − εa](t2). (44)

Eqs. (41) and (43) describe oscillations in the frequency551

profile of the harmonic on the right and left of the central552

line (2n+ 1)ω0, respectively. The phase difference Θ(t2)553

is given by the shaded areas in Fig. 6 and represents the554

partial pulse area:555

Θ(t2) =

∫ t2

t1

dt[εb − εa](t)− (t2 − t1)[εb − εa](t2). (45)

The multipeak structure due to interference of the con-556

tributions from the leading and trailing edges of the laser557

pulse is contained within the interval of the width 2Ω and558

appears on both sides of the central line (2n+1)ω0. The559

highest subpeaks of this structure are shifted from the560

central line by the Rabi frequency Ω corresponding to the561

peak intensity of the laser pulse. The spectral density of562

the harmonic may exhibit a multipeak structure due to563

interference as described above if the peak intensity of the564
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FIG. 8. Time-dependent populations of the ground and sev-
eral excited states of Li. The laser pulse has a sin2 shape,
duration of 20 o.c., and peak intensity is 5 × 1011 W/cm2.
The carrier wavelength is 730 nm (upper panel) and 640 nm
(lower panel).

pulse is sufficiently high. For the first interference mini-565

mum in the harmonic frequency profile to show up, the566

pulse area must be greater or equal to π. Since only the567

central part of the laser pulse (where the field is strong568

enough) contributes to production of high harmonics, in569

reality the pulse area should be substantially larger than570

π to observe this multipeak structure. We should also571

note that the theoretical description given above is accu-572

rate for a two-level system but can be only approximate573

for real Li atoms. Even in the close vicinity of the 2s−2p574

resonance, population of the other excited states may be575

significant, especially at high intensities of the laser field,576

and the resonance approximation involving two adiabatic577

Floquet states may become invalid.578

C. Blue and red shifts of HG spectra near the579

resonance580

In the vicinity of the resonance, the spectrum of emit-581

ted radiation is enhanced and dominated by the transi-582

tion frequency between the 2s and 2p states, and its har-583

monics. When the carrier of the driving laser field has a584

small detuning from the resonance, the spectrum is still585

dominated by the harmonics of the transition frequency,586

and not the carrier frequency. Plotted on the scale of the587

carrier frequency, the harmonic peaks in the spectrum588

manifest a blue or red shift from odd integers, depending589

on the sign of the detuning. In Fig. 7, we show the HG590

spectra for sin2 laser pulses with the carrier wavelengths591

650 nm and 700 nm. For 650 nm, detuning from the res-592

onance (676 nm) is positive (in terms of the frequency),593

and for 700 nm, detuning is negative. As one can see,594
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FIG. 9. Time profiles of the 3rd, 5th, and 7th harmonics.
The laser pulse has a sin2 shape, duration of 20 o.c., and peak
intensity is 5× 1011 W/cm2. The carrier wavelength 730 nm
corresponds to a two-photon Rabi-flopping regime between 2s
and 3s states.
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FIG. 10. Time profiles of the 3rd, 5th, and 7th harmonics.
The laser pulse has a sin2 shape, duration of 20 o.c., and peak
intensity is 5× 1011 W/cm2. The carrier wavelength 640 nm
corresponds to a two-photon Rabi-flopping regime between 2s
and 3d states.
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FIG. 11. HG spectra of Li for the driving field wavelengths
730 nm (upper panel) and 640 nm (lower panel), correspond-
ing to two-photon Rabi flopping. The laser pulse has a sin2

shape, duration of 20 o.c., and peak intensity is 5 × 1011

W/cm2.

the 650 nm and 700 nm spectra have pronounced red595

and blue shifts, respectively. The shifts of the harmonic596

peaks are linearly increasing with the harmonic order.597

This pattern is well explained if it is understood that the598

positions of the peaks are determined by odd integers599

of the transition frequency. Then the very first peak is600

shifted by the negative value of the resonance detuning601

δ. For the harmonic of the order 2n+1, the shift is equal602

to −(2n+1)δ. We note that the systematic red and blue603

shifts of the harmonics can only be detected in the close604

vicinity of the resonance. Far from the resonance, the605

role of the transition frequency in the radiation spectra606

is not so important, and the harmonic peaks return to607

their conventional positions at odd integer multiples of608

the driving field frequency.609

D. Two-photon Rabi flopping610

The two-photon Rabi-flopping regime can be reached611

when the carrier frequency of the laser pulse is tuned612

into the two-photon resonance between the ground 2s613

state and excited 3s or 3d states. According to the data614

in Table II, the corresponding wavelengths must be 748615

and 650 nm. However, we have found that larger popu-616

lation transfers to the 3s and 3d states occur at slightly617

different carrier wavelengths, 730 and 640 nm, respec-618

tively. This may happen due to the interplay between619

the one-photon 2s−2p and two-photon resonance transi-620

tions, as well as because of slight difference between the621

one-electron Kohn-Sham and TDDFT excitation ener-622

gies. In Fig. 8, we show the time-dependent populations623

for the peak intensity of the laser pulse 5× 1011 W/cm2
624

and carrier wavelengths 730 and 640 nm. At the end625
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of the laser pulse, the population inversion is observed,626

with the largest population in the 3s state (730 nm) and627

3d state (640 nm). In the central part of the pulse, one628

can see a complex pattern with comparable populations629

of 2s, 2p, and 3s states at 730 nm and 2s, 2p, and 3d630

states at 640 nm. This population behavior is reflected631

in a more complex modulation of the dipole moments (see632

harmonic time profiles in Figs. 9 and 10) and additional633

fine structure of the harmonics in the frequency domain634

(Fig. 11) not seen in the case of one-photon Rabi flopping635

at the same peak intensity. At the carrier wavelength636

730 nm, the time profile of the 3rd harmonic has a domi-637

nant maximum in the center of the laser pulse, while the638

time profiles of the 5th and 7th harmonics exhibit sev-639

eral maxima and modulations with the frequency higher640

than the Rabi frequency for the 2s − 2p transition (see641

Fig. 9). Accordingly, in the HG spectrum (Fig. 11, upper642

panel) the 5th and 7th harmonics have complex multi-643

peak structures while the 3rd harmonic is dominated by644

a single peak. At the wavelength 640 nm, the pattern645

is somewhat different. Here the time profile of the 3rd646

harmonic displays a deep low-frequency modulation with647

four distinct maxima (Fig. 10). This modulation is re-648

flected in a clear multipeak structure of the 3rd harmonic649

in the frequency domain (Fig. 11, lower panel). The 5th650

harmonic in the time domain has two main maxima, cor-651

responding to the modulation with the Rabi frequency652

(similar to that in the one-photon Rabi-flopping regime,653

see Fig. 4). In the frequency domain, this harmonic ex-654

hibits two distinct peaks separated by 2Ω, although a655

fine higher-frequency oscillatory structure is also present.656

Similar structures in the time and frequency domains are657

also observed in the 7th harmonic.658

IV. CONCLUSION659

In this paper, we have studied harmonic generation of660

the lithium atoms in one- and two-photon Rabi-flopping661

regimes where the population transfer from the ground662

2s state to the excited 2p, 3s, and 3d states is substan-663

tial. The Li atoms interacting with strong laser fields664

are described in the framework of the self-interaction-free665

time-dependent density-functional theory, taking into ac-666

count dynamic multielectron response to the external667

field. Using the time-dependent generalized pseudospec-668

tral method with sufficient number of spatial grid points669

and time steps ensures the accuracy and efficiency of the670

computational procedure.671

In the one-photon Rabi-flopping regime, when the car-672

rier frequency of the driving field is tuned in the reso-673

nance between 2s and 2p states, the spectrum of emitted674

harmonic radiation exhibits a fine oscillatory structure,675

with the spacing between the adjacent subpeaks equal676

to twice the Rabi frequency. We have shown that this677

structure results from the low-frequency modulation of678

the time-dependent dipole moment. This modulation af-679

fects not only the fundamental frequency component of680

the dipole moment but also the higher frequency Fourier681

components. The low-frequency modulation of the dipole682

moment has its origin in the Rabi oscillations of the elec-683

tronic population between the 2s and 2p states. Minima684

in the envelope function of the dipole moment are ob-685

served when the 2s or 2p population becomes extremely686

small. The number of the minima and their position on687

the time scale depend on the laser pulse area, that is the688

peak intensity and pulse duration.689

When the peak intensity is increased, the pattern in690

the harmonic generation spectra becomes more compli-691

cated. First, since we study not a two-level system but692

a realistic multilevel atomic system, population transfer693

to other excited states becomes more significant with in-694

creasing intensity thus disrupting pure two-state Rabi os-695

cillations. Second, the pulse-shape-induced interference696

effects also become more important at higher intensities.697

Using the concept of adiabatic Floquet states, we have698

shown that interference of the contributions to the har-699

monic generation spectra from the leading and trailing700

edges of the laser pulse also leads to oscillatory struc-701

tures of the harmonic peaks but on a smaller frequency702

scale, well within the double Rabi frequency interval.703

Increasing the peak intensity and changing the carrier704

frequency of the laser field, we can reach the two-photon705

Rabi-flopping regime. With the electronic structure of Li706

atoms, detuning the frequency by ±10% off the 2s− 2p707

resonance, we can tune into 2s−3s or 2s−3d two-photon708

resonances. In this regime, depending on the frequency709

selected, the population transfer to the 3s or 3d states710

may be substantial. In the two-photon 2s−3s and 2s−3d711

transitions, the 2p energy level plays a role of an interme-712

diate state. Since the detuning from the 2s−2p resonance713

is not very large, population of the 2p state may be signif-714

icant, too. Then in the central part of the laser pulse the715

population is transferred among three different states (2s,716

2p, 3s or 2s, 2p, 3d), and all these states may have com-717

parable populations. Such a behavior of the electronic718

population is reflected in complex modulation patterns719

of the dipole moment and complex oscillatory structures720

of the harmonic peaks in the frequency domain.721

In conclusion, we should note that the multipeak os-722

cillatory pattern emerging in the harmonic generation723

spectra in the Rabi-flopping regime is not specific to724

the lithium atoms only. With appropriate adjustment of725

the laser pulse parameters, it can also show up in other726

atomic and molecular targets with a similar structure of727

electronic energy levels.728
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