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Abstract

The computational cost of performing a configuration interaction (CI) calculation for treating

electron-electron correlation is directly proportional to the number of terms in the CI expan-

sion. In this work, we present a diagrammatic projection approach for a priori identification of

non-contributing terms in a CI expansion. This method known as the geminal-projected con-

figuration interaction (GP-CI) method is based on using a two-body R12 geminal operator for

describing electron-electron correlation in a reference many-electron wave function. The diagram-

matic projection procedure was performed by first deriving the Hugenholtz diagrams of the energy

expression of the R12 reference wave function and then performing diagrammatic factorization of

effective particle-hole creation operators. The projection operation, which is a functional of the

geminal function, was defined and used for the construction of the geminal-projected particle-hole

creation operators. The form of the two-body R12 geminal operator was derived analytically by

imposing an approximate Kato cusp condition. A linear combination of the geminal-projected one-

particle one-hole and two-particle two-hole operators were used for the construction of the GP-CI

wave function. The applicability and implementation of the diagrammatic projection method was

demonstrated by performing proof-of-concept calculations on an isoelectronic series of 10 electron

systems: CH4,NH3,H2O,HF,Ne. The results from the calculations show that, as compared to

conventional CI calculations, the GP-CI method was able to substantially reduce the size of the

CI space (by a factor of 6-9) while maintaining an accuracy of 10−5 Hartrees for the ground state

energies. These results demonstrate the ability of the diagrammatic projection procedure to iden-

tify non-contributing states using an analytical form of the R12 geminal correlator operator. The

geminal-projection method was also applied to second order Moller-Plesset perturbation theory

(GP-MP2) giving similar results to the GP-CI method in terms of reduction of the double ex-

citation space and accuracy to the ground state energy. This work also extends the analytical

derivation of the geminal-projected particle-hole creation operators that were used for the con-

struction of the CI wave function to coupled-cluster theory (GP-CCSD). This general derivation

can also be applied to other many-electron theories and multi-determinant quantum Monte Carlo

calculations.

PACS numbers: 31.15.V,31.15.-p,31.15.xt
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I. INTRODUCTION

An accurate description of correlation energy is needed in order to describe a chemical

system. In recovering this correlation energy, the method of configuration interaction[1] (CI)

is one of the most successful methods due to the simplicity of its underlying mathematics

and its variational properties. Also, it is well known that in the limit of infinite basis, full

configuration interaction will solve the Schrödinger equation exactly which makes FCI an

important benchmark for any method that treats electron correlation.

One of the challenges in performing CI calculations is the rapid increase in the size of

the CI space. However, post calculation analysis of the converged CI vector reveals that a

large number of configurations in the CI expansion are non-contributing in the sense that

if these configurations were removed, the CI energy of the system would remain essentially

the same. Therefore, to reduce the size of the CI space and decrease the computation cost

of the CI calculation, it is important to identify the contributing configurations before the

start of the CI calculation and to select only important configurations in the CI expansion.

Extensive research has been done to effectively truncate the CI space to reduce computa-

tional time. A method widely used to select only the important configurations is based on

many-body perturbation theory.[2–10] In such studies, the configurations are chosen based

either on their energy[2, 4, 10] or their coefficients in the first order wave function.[3, 5] From

these criteria, states will either be accepted or rejected based on a given threshold.[11–13]

Examples of these approaches include the MRD-CI method[4, 14] and the CIPSI (config-

uration interaction perturbing a multi-configurational zeroth-order wave function selected

iteratively) method.[3, 5, 7] In related work, Roth et al. introduced an iterative importance

truncation (IT-CI) scheme that aims at reducing the dimensions of the model space of config-

uration interaction approaches by an a priori selection of the physically most relevant basis

states. Using an importance measure derived from multiconfigurational perturbation theory

in combination with an importance threshold, they construct a model space optimized for

the description of individual eigenstates of a given Hamiltonian.[8, 9] Another method to

reduce the cost of the CI calculation is with integral-direct CI approach. The Saebø-Almlöf

algorithm is a direct integral transformation method with low memory requirements.[15]

Efficient integral screening was shown in the framework of local-correlation methods [16–21]

and also for truncation of virtual orbitals.[22–24]
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Determinants can also be selected based on monte-carlo methods.[25–30] Greer proposed

a Monte Carlo CI method (MCCI)[25–27] to estimate the correlation energies. In this

method, a configuration is generated by randomly branching to new configurations in the

expansion space. Then the configuration is kept or discarded based on its weight in the wave

function. This process is repeated until a desired convergence in the variational energy is

achieved. Greer’s method is an integral direct method in which the matrix elements, HAB,

are calculated directly during each iteration of the matrix diagonalization step. Sambataro

et al. presented a variational subspace diagonalization method[31] that finds the relevant

configurations by means of iterative sequences of diagonalizations of spaces of reduced size.

Each diagonalization provides an energy-based importance measure that governs the selec-

tion of the configurations to be included in the states. Similar to Greer’s method which uses

Monte-Carlo, Booth et al. and Petruzeilo et al. presented a new stochastic method called

full configuration interaction quantum Monte Carlo (FCIQMC).[28–30, 32, 33] While Greer’s

method[25–27] is a subspace diagonalization method, the FCIQMC method takes a different

approach in that it represents the wave function in terms of a set of discretized ”walkers”.

The walkers carry a positive or negative sign which inhabit Slater determinant space, and

evolve according to a set of rules which include spawning, death and annihilation processes.

This method is capable of converging onto the FCI energy and wave function of the prob-

lem, without any a priori information regarding the nodal structure of the wave function.

Bytautas et al. found that a good approximation to the FCI expansion can be obtained

based on seniority, or the number of unpaired electrons in a determinant.[34] For example, if

there are no unpaired electrons in a determinant, the seniority will be zero, if there are two

unpaired electrons in a determinant, the seniority will be two, and so on. Another interest-

ing technique for reducing the CI space is known as Löwdin partitioning.[35–37] Ten-no also

presented a novel quantum Monte Carlo method in configuration space, which stochastically

samples the contribution from a large secondary space to the effective Hamiltonian in the

energy dependent partitioning of Löwdin.[38]

Earlier studies showed that the slow convergence of the CI expansion with respect to

the size of the 1-particle basis is related to poor treatment of the electron-electron cusp

condition.[39] As a consequence, a better description of electron-electron correlation can be

obtained by including explicit electron-electron distance dependent terms in the form of the

many-electron wave function. There have been very important results from methods such
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as quantum Monte Carlo,[33, 40–49] transcorrelated methods,[50] and R12/F12 methods

which show that the inclusion of the r12 term in the form of the wavefunction, results in a

faster convergence of the CI energies. In the VMC method, the Jastrow function is used

for including the explicit r12 terms in the wave function.[40, 41] The Jastrow function can

also be augmented by a linear combination of determinants.[51–65] In the transcorrelated

method, a similarity transformation is performed on the Hamiltonian using an explicitly

correlated function.[50, 66, 67] Explicit dependence on r12 term in the wave function has

been implemented in other methods such as MP2-R12,[68–71] and coupled cluster,[72–77]

and geminal augmented MCSCF.[78] The applicability of geminal operator approach for

treating electron correlation [79–81] has also been demonstrated by Rassolov et al. in a

series articles for various chemical systems. [82–88] A congruent-transformed approach using

an explicitly-correlated geminal operator has also been developed by Elward et al.[89] and

Bayne et al.[90]

The goal of this work is to use an explicitly correlated reference function to project out

non-contributing terms in a CI expansion before the start of the CI calculation. Start-

ing with an ansätz for the explicitly correlated wave function and using many-body dia-

grammatic techniques, we derive effective particle-hole excitation operators that project out

low-amplitude excitations. The key difference between the method presented here and other

approaches described above is that the present method does not use an energy-based scheme

or perturbation-theory based criteria to eliminate configurations from the CI expansion. The

elimination of configurations is solely based on particle-hole excitation amplitudes derived

from an underlying explicitly correlated wave function. The derivation of the method and

construction of the explicitly correlated wave function are presented in Sec. II A and II B.

The method has been applied to many-electron systems and proof-of-concept calculations

of isoelectronic series of 2nd row molecules are presented in Sec. III.

II. THEORY AND COMPUTATIONAL DETAILS

A. Diagrammatic factorization of particle-hole excitation operators

The derivation relies on the existence of an explicitly correlated wave function for the

many-electron system. In this work, we assumed the following general form for the R12
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operator,

|ΨG〉 = G|Φ0〉 (1)

where G is assumed to be a two-body operator of the following form,

G =
∑
i<j

g(i, j) ≡
∑
i<j

g(rij). (2)

In the above expression, the function g depends on the electron-electron separation distance

r12. The following derivation does not depend on the specific functional form of g and its

discussion is postponed until section II B. The ground state energy is obtained by performing

minimization over function g.

EG = min
g

〈0|G†HG|0〉
〈0|G†G|0〉 (3)

The energy expression can be expressed by performing congruent transformation on the

many-electron Hamiltonian.

G†HG =

[∑
i<j

g(i, j)

][∑
i

h1(i) +
∑
i<j

h2(i, j)

][∑
i<j

g(i, j)

]
(4)

The transformed operator can be expressed as a sum of the two, three, four, five, and six

body operators as shown in the following equation,

G†HG =
∑
i1<i2

w2(i1, i2) +
∑

i1<i2<i3

w3(i1, i2, i3) +
∑

i1<i2<i3<i4

w4(i1, i2, i3, i4) (5)

+
∑

i1<i2<i3<i4<i5

w5(i1, i2, i3, i4, i5) +
∑

i1<i2<i3<i4<i5<i6

w6(i1, i2, i3, i4, i5, i6).

The expectation value of the congruent-transformed Hamiltonian with respect to the Fermi

vacuum state is given by the following expression,

〈0|G†HG|0〉 =
1

2

N∑
i1i2

〈i1i2|w2(1, 2)|i1i2〉A (6)

+
1

3!

N∑
i1i2i3

〈i1i2i3|w3(1, 2, 3)|i1i2i3〉A

+
1

4!

N∑
i1i2i3i4

〈i1i2i3i4|w4(1, 2, 3, 4)|i1i2i3i4〉A

+
1

5!

N∑
i1i2i3i4i5

〈i1i2i3i4i5|w5(1, 2, 3, 4, 5)|i1i2i3i4i5〉A
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+
1

6!

N∑
i1i2i3i4i5i6

〈i1i2i3i4i5i6|w6(1, 2, 3, 4, 5, 6)|i1i2i3i4i5i6〉A.

In the above expression, we follow the convention that indices i, j, k, l correspond to occupied

molecular orbitals, a, b, c, d corresponds to unoccupied molecular orbitals, and p, q, r, s refer

to general molecular orbitals. As expected, the energy expression depends only on the occu-

pied orbitals. In the next step, the components of the energy expression are expressed using

diagrammatic notation. Generally, diagrammatic analysis in many-electron systems is per-

formed using antisymmetrized Goldstone diagrams. However, in this work we used the much

more compact Hugenholtz diagrams to keep the number of diagrams tractable. The dia-

grammatic representation of the energy terms is given by diagrams labeled as D1, D2, D3, D4

and D5 in Fig. 1. The vertex of each diagram represents the corresponding wk operator in

Eq. (6). In the next step, the vertex of each diagram is split in to two vertices. This is done

by analyzing the action of operator g on the occupied orbitals. Specifically, without loss of

any generality, the action of the g on the occupied space is given by the following expression,

g(1, 2)|i1i2〉 =
∞∑
p1p2

〈p1p2|g|i1i2〉|p1p2〉 (7)

where the orbitals p1 and p2 span both occupied and unoccupied space and i1 and i2 span

occupied space. It is important to note that Eq. (7) is not the definition of the g operator

because the above equation does not define its action on unoccupied orbitals. The above

expansion allows us to split the vertices of each diagram shown in Fig. 1 and the resulting

diagrams of this transformation are shown in Fig. 2. Algebraically, this is achieved by par-

titioning the one-particle space, into occupied (denoted by i, j, k, l indices) and unoccupied

space (denoted by a, b, c, d indices)

∑
p

=
N∑
i=1

+
∑

a=N+1

. (8)

A detailed description of the algebraic form of the various matrix elements associated with

the diagrams are presented in Appendix A. Analysis of the resulting diagrams reveals that a

subset of diagrams can be simplified by factoring out common particle-hole (p-h) excitation

operators which are show in Fig. 3. Specifically, diagrams in Fig. 2 can be factorized as

2p-2h (Fig. 4) and 1p-1h operators (Fig. 5). It is important to note that this factorization

is performed for all orders of many-particle operators (w2, . . . , w6). From Fig. 3, the 2p-2h
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excitation has the following form,

W2 =
1

4

∑
i1i2a1a2

gA
i1i2a1a2

{a†1a†2i2i1} (9)

where,

gA
i1i2a1a2

= 〈i1i2|g(1, 2)(1− P12)|a1a2〉 (10)

and indices i and a represent occupied and unoccupied states, respectively. Similarly, the

1p-1h excitation operator is defined as,

W1 =
∑
i1a1

gi1a1{a†1i1} (11)

where,

gi1a1 =
N∑
k2

gA
i1k2a1k2

(12)

and k2 represents the occupied states. We note that the strength of the particle-hole excita-

tion operator depends on the value of the amplitude, which is functional of g. In this work

we are interested in using g to project out weak excitations. We achieve this by defining the

following 1p-1h and 2p-2h operators,

T θ1 [η] =
∑
ia

θiatia{a†i} (13)

T θ2 [η] =
∑

i<j,a<b

θijabtijab{a†b†ji} (14)

where θia and θijab are compact notations for the following Heaviside step functions,

θia[η, g] ≡ θ(|gia| − η) (15)

θijab[η, g] ≡ θ(|gA
ijab| − η). (16)

In the above equations, we have introduced a control parameter η that projects out particle-

hole excitations whose amplitudes are below a certain tolerance value. The one-body and

two-body t-amplitudes in Eq. (13) and (14) are obtained by applying the geminal-projected

particle-hole operators for the construction of the many-electron wave function.

Ψexact ≈ Ω[T θ]Φ0 (17)
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i1 i2
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i1

i3

i2

b
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i2

i4

b

i1

i3

i5

i2

i4

b

i1

i3

i5

i2

i4

i6

FIG. 1. Diagram 1 through diagram 5.

where, Ω is a general many-body operator responsible for including electron correlation,

and the square bracket denotes that it is a functional of the t-amplitudes. In this work, we

present three different strategies using configuration interaction, many-body perturbation

theory, and coupled-cluster theory for determination of the t-amplitudes and the details of

the derivation are presented in section II C 1, section II C 2, and section II C 3, respectively.

B. Determination of correlation function

In this work, the R12-correlation operator is represented using Gaussian-type geminal

functions as shown in the following equation,

g(r1, r2) =

Ng∑
k=1

bke
−r212/dk (18)
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r

b

i1
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j1

i2
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FIG. 2. Diagram 6 through diagram 21. From left to right, the wk operator increases from a two-

body operator (w2) to a six-body operator (w6). The first row contains diagram 6 (D6) through

diagram 10 (D10) going across. The second row contains diagram 11 (D11) through diagram 15

(D15) going across. The thrid row contains diagram 16 (D16) through diagram 20 (D20) going

across.

where Ng are the number of terms in the expansion and bk and dk are expansion parame-

ters. Typically, the expansion parameters are determined using a variational approach by

minimizing the energy or its variance. However, such a strategy in not practical in this work

because the computational effort for the variational determination of the geminal parameters

would be higher than performing the GP-CI calculations. Here, we present an analytical

method for determination of the geminal parameters, which does not rely on a variational
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b

i1a1 i2 a2

b

i2a1

j2

i1

FIG. 3. The diagram on the left is the 2p-2h excitation operator and the diagram on the right is

the 1p-1h operator.

i1a1 i2 a2

i1a1 i2 a2 i1a1 i2 a2 i1a1 i2 a2

i1a1 i2 a2 i1a1 i2 a2

+	  

+	  

+	  

+	  

×	  

FIG. 4. Factorization of diagrams 6-10 in terms of 2p-2h operator.

approach. To keep the analytical derivation tractable we use only one geminal function

(Ng = 1). The determination of the geminal parameters (b1, d1) is based on imposing the

the Kato electron-electron cusp condition which is given by the following equation,(
∂Ψ

∂r12

)
r12=0

=
1

2
r12. (19)

Unfortunately, Gaussian-type geminal (GTG) functions do not have the necessary analytical

properties to satisfy the above condition. The Kato cusp condition in principle, can be

realized by using Slater-type geminal (STG) function,

φSTG(r12) = e−
1
2
r12 . (20)
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j2

a1 i2 i1

j2

a1 i2 i1

+	  

+	  

+	  

+	  

×	  

FIG. 5. Factorization of diagrams 11-15 in terms of 1p-1h operator.

However, calculation of molecular integrals is more expensive using STG as compared to

GTG, and using STG will increase the computational cost and complexity of the overall

calculations. Because the GTG function cannot satisfy the exact Kato cusp condition,

we imposed the requirements that the geminal parameters must satisfy an approximate

condition that is based on the average electron-electron separation distance.

b1

d1

r2
12 6=

1

2
r12 (21)

b1

d1

〈r2
12〉 =

1

2
〈r12〉 (22)

The motivation for the above condition is based on the previous observations [39, 90, 91]

that the form of the explicitly correlated wave function in the neighborhood of the electron-

electron coalescence point plays a significant role in the accurate treatment of electron-

electron correlation. Comparing the left and right side of the above equation, we define

geminal parameter as,

b1 = 〈r12〉 (23)

d1 = 2〈r2
12〉. (24)

The computation of 〈r12〉 is more expensive than the computation of 〈r2
12〉 because integral

over r2
12 using Gaussian-type orbitals (GTOs) can be expressed as sum of x2, y2 and z2
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components. Therefore we approximate the average electron-electron distance using the

following expression,

〈r12〉 ≈
√
〈r2

12〉. (25)

Therefore, we approximate b1 as,

b1 ≈
√
〈r2

12〉. (26)

Substituting in the values for d1 from Eq. (24) and b1 from Eq. (26) into Eq. (18), we arrive

at the final expression for the geminal function (in atomic units).

g(r12) =

(√
〈r2

12〉
1 a.u.

)
exp[− r2

12

2〈r2
12〉

] (in atomic units) (27)

The square of the electron-electron separation distance is obtained from the Hartree-Fock

wave function using the following expression,

〈r2
12〉 =

2

N(N − 1)
〈0|
∑
i<j

r2
ij|0〉. (28)

C. Construction of geminal projected correlated wave functions

The geminal-projected particle-hole (GPPH) operators (1p-1h and 2p-2h) can be used in

various many-body theories for treating electron-electron correlation. The t-amplitudes

(tia, tijab) in the GPPH can be determined using different existing strategies for treat-

ing electron-electron correlation. In this work, we present three different proof-of-concept

strategies for calculating the t-amplitudes using variational, many-body perturbation theory

(MBPT), and coupled-cluster theory.

1. Configuration interaction

To determine the t-amplitudes using the variational procedure, we construct the geminal

projected configuration interaction (GP-CI) operator which is defined as follows,

ΩGP−CI[η, g] = 1 + T θ1 [η, g] + T θ2 [η, g]. (29)

The GP-CI wave function is defined as,

ΨGP−CI = ΩGP−CI|Φ0〉. (30)
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The t-amplitudes are obtained variationally by minimizing the total energy.

EGP−CI[η, g] = min
tia,tijab

〈0|Ω†GP−CIHΩGP−CI|0〉
〈0|Ω†GP−CIΩGP−CI|0〉

(31)

The implementation of the this approach is straightforward and is identical to the conven-

tional CISD implementation. However, it is important to note that unlike the conventional

CISD method, the size of the GP-CI matrix depends on the choice of g and η. The total

number of terms in the ΩGP−CI is given by,

NGP−CI[η, g] = 1 +
∑
ia

θia +
∑

i<j,a<b

θijab. (32)

In the limit of η → 0, the method should reduce to the conventional CISD method.

lim
η→0

NGP−CI = NCISD (33)

lim
η→0

ΩGP−CI = ΩCISD (34)

lim
η→0

EGP−CI = ECISD (35)

In the limit η →∞, the method reduces to the Hartree-Fock method.

lim
η→∞

NGP−CI = 1 (36)

lim
η→∞

ΩGP−CI = 1 (37)

lim
η→∞

EGP−CI = EHF (38)

2. Many-body perturbation theory

The derivation of the time-independent perturbation theory is well known and has been

derived earlier in literature using different theoretical formulations.[92–94] In this work,

we use the Rayleigh-Schrödinger perturbation theory (RSPT) approach to illustrate the

application of the GPPH operators in perturbation theory. The RSPT, the ground state

wave function and energy are defined using the following expansion,

|ΨRSPT〉 = Φ0 + Ψ(1) + Ψ(2) + . . . (39)

E = E(0) + E(1) + E(2) + . . . (40)
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where Φ0 and E(0) are the unperturbed wave function and ground state energy, respectively.

The expressions for the perturbed wave functions and energies are obtained by first substi-

tuting the above expansion in the exact Schrödinger equation and then performing a term

by term analysis[92–94]

(E(0) −H0)Ψ(n) = WΨ(n−1) −
n−1∑
i=0

E(n−i)Ψ(i) (41)

where W is the perturbing potential W = H −H0. Using (41), the nth order correction to

the exact ground state energy is given in terms of the perturbing potential W .

E(n) = 〈Φ0|W |Ψ(n−1)〉 (42)

The perturbed wave function is expressed in terms of the resolvent operator R0 which is

defined as,

R0 = (E0 −H0)−1 (43)

where H0 and E0 are the unperturbed Hamiltonian and unperturbed ground state energy,

respectively. Using Eq. (41) and Eq. (43), the nth order perturbed wave function can be

expressed as,

|Ψ(n)〉 = R0W |Ψ(n−1)〉 −
n−1∑
i=0

E(n−i)R0|Ψ(i)〉. (44)

In conventional RSPT, the perturbed wave function is expanded in the in the basis of the

eigenfunctions of the H0 [92–94]

|Ψ(n)〉RSPT =

[∑
ia

tiaa
†i+

∑
i<j,a<b

tijaba
†b†ji+

∑
i<j<k,a<b<c

tijkabca
†b†c†kji+ . . .

]
|Φ0〉 (45)

where the amplitudes (tia, tijab, . . . ) are obtained by substituting Eq. (45) in Eq. (44). In

the geminal-projected RSPT (GP-RSPT) method, we use the project particle-hole operators

defined in Eq. (14) to construct the perturbed wave function.

|Ψ(n)〉GP−RSPT =

[∑
ia

tiaθiaa
†i+

∑
i<j,a<b

tijabθijaba
†b†ji+

∑
i<j<k,a<b<c

tijkabca
†b†c†kji+ . . .

]
|Φ0〉

(46)
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We note that because the GPPH operators span only 1p-1h ans 2p-2h excitation space, 3p-3h

and higher order operators in the above expression are identical to the RSPT equation.

|Ψ(n)〉GP−RSPT =

[
T θ1 + T θ2 +

∑
i<j<k,a<b<c

tijkabca
†b†c†kji+ . . .

]
|Φ0〉 (47)

In this work, we have used the the Møller-Plesset (MP) partitioning of the many-electron

Hamiltonian where the zeroth order Hamiltonian H0 is the Fock operator and perturb-

ing potential is the difference between the electron-electron Coulomb operator Vee and the

Hartree-Fock potential

W = Vee − 〈Φ0|Vee|Φ0〉. (48)

The 2nd order Møller-Plesset energy is given by the following expression,[92, 93]

E
(2)
MP2 =

1

4

∑
ijab

|〈ij|r−1
12 |ab〉A|2

(εi + εj − εa − εb)
. (49)

Using Eq. (47), the analogous equation for the geminal-project Møller-Plesset (GP-MP)

perturbation theory is given by the following expression,

E
(2)
GP−MP2[η, g] =

1

4

∑
ijab

θijab
|〈ij|r−1

12 |ab〉A|2
(εi + εj − εa − εb)

. (50)

The number of terms in the above expression depend on the choice of η and g and is given

by the following expression,

NGP−MP2[η, g] =
1

4

∑
ijab

θijab. (51)

3. Coupled-cluster theory

The GPPH operators can also be used in coupled-cluster theory. In this work, we present

formulation for the geminal-projected analogues of CCSD theory, which is defined by the

following expression,

|Ψ〉GP−CCSD = eT
θ
1 +T θ2 |Φ0〉. (52)

The coupled-cluster equation in terms of the normal-ordered Hamiltonian HN is given as,

HNe
T θ1 +T θ2 |Φ0〉 = ∆EeT

θ
1 +T θ2 |Φ0〉 (53)
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where ∆E is the correlation energy and HN = H − 〈Φ0|H|Φ0〉. Performing similarity

transformation gives us the equations for correlation energy and t-amplitudes

〈Φ0|e−T
θ
1 +T θ2HNe

T θ1 +T θ2 |Φ0〉C = ∆E (54)

〈Φa
i |e−T

θ
1 +T θ2HNe

T θ1 +T θ2 |Φ0〉C = 0 (55)

〈Φab
ij |e−T

θ
1 +T θ2HNe

T θ1 +T θ2 |Φ0〉C = 0 (56)

where, the subscript ”C” in the above equations implies that only connected terms are

included in evaluating the expressions.[93–95] The equations for the t-amplitudes are ob-

tained by performing the BakerCampbellHausdorff expansion of the similarity-transformed

Hamiltonian and are well-documented in literature.[93–95] The t-amplitude equations are

solved iteratively, the total correlation energy is calculated from them using the following

expression [93–95]

∆EGP−CCSD[η, g] =
1

4

∑
ijab

tijabθijab〈ij|r−1
12 |ab〉A +

1

2

∑
ijab

tiatjbθiaθjb〈ij|r−1
12 |ab〉A. (57)

The above expression is similar to the conventional CCSD energy expression, however, the

number of terms in the above expression depends on η and g and which can be calculated

using the procedure described earlier for GP-CI method.
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Perform HF calculation

Calculate r0 from HF

wave function Eq. (28)

Calculate geminal

function from r0 Eq. (27)

Use g to construct

screened T operators

Eq. (13),(14),(15),(16)

Use in GP-CI Eq. (31) Use in GP-MP2 Eq. (50) Use in GP-CCSD Eq. (57)

FIG. 6. This flowchart shows the steps involved in GP-CI, GP-MP2, and GP-CCSD theories.

III. RESULTS AND DISCUSSION

The effectiveness of the GPPH method was analyzed by performing proof-of-concept

calculations on representative many-electron systems. We have implemented both GP-CI

and GP-MP2 methods and steps involved in the calculations are summarized in Fig. 6.

As seen in Fig. 6, the first four steps involved construction of the GPPH operators, and

the final step involved construction of the CI and first-order wave functions for GP-CI and

GP-MP2 methods, respectively. The GP-CI method was tested on a set of isoelectronic

10-electron systems: CH4, NH3, H2O, HF, and Ne and the calculated ground state energies

were compared with CISD results. In all cases, the calculations were performed using 6-31G?

basis functions. We defined two important metrics for analyzing the GP-CI results. The

first is the difference between CISD and GP-CI energies Ediff and second is the ratio of the

number of variational parameters between the two methods. (Eq. (58),(59))

Ediff(η) = EGP−CI(η)− ECISD (58)

19



R(η) =
NCISD

NGP−CI(η)
(59)

As presented in Eq. (32), the number of variational parameters in the GP-CI method de-

pends on the choice of the η and for these calculations η was varied from 10−1 to 10−5.

In tables I to V we observe a significant reduction in the size of the CI space, while not

sacrificing accuracy in the calculated ground state energy. Using the GP-CI method on the

systems studied, the CI space was reduced by a factor of 6 while still maintaining ground

state energies with accuracy of 10−6 Hartrees with respect to the CISD energy. For exam-

ple, in case of Neon, the GP-CI method was able to give an accuracy of 10−3 Hartrees as

compared to CISD results while using a configuration space that is 19 times smaller than

the CISD calculation. The accuracy of the GP-CI method can be systematically increased

by decreasing the η parameter and for the Neon atom, 10−6 Hartrees accuracy was achieved

by using a configuration space that was 7 times smaller than the CISD calculation. The

percentage of CISD correlation energy recovered by the GP-CI method as a function of the

cutoff-parameter η is presented in Fig. 7. In all cases, we found that more than 90% of CISD

correlation energy was recovered when η is in the range of 10−2 − 10−3. The results from

GP-MP2 were also found to follow similar trend and are presented in tables VI to X. The re-

sults from both GP-CI and GP-MP2 calculations show the effectiveness of geminal-projected

particle-hole operators for construction of many-electron correlated wave functions.

TABLE I. CISD ground state energy (in Hartrees) of CH4 calculated using analytical

geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 39 -40.194994 736.18 1.56× 10−1

10−2 354 -40.269236 81.10 8.19× 10−2

10−3 4336 -40.346046 6.62 5.06× 10−3

10−4 8004 -40.351015 3.59 8.71× 10−5

10−5 8919 -40.351072 3.22 3.04× 10−5

CISD 28711 -40.351102 1.00 0.00

The method presented here is restricted to only two-body operator G. As a consequence

of this choice, only 1p-1h and 2p-2h particle-hole operators can be projected out. In prin-
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FIG. 7. Analysis of the percentage of CISD correlated energy recovered by the GP-CI method as

a function of the tolerance parameter η.

ciple, this strategy can be systematically extended to 3p-3h and higher-order operators by

including three-body and higher term in the correlation function G. However, it is important

to note that the use of geminal-projected particle-hole operators is intrinsically approximate

because it projects out non-contributing terms and therefore cannot be used for construction

of the exact many-electron wave function. However, the strength of the geminal-projected

particle-hole operators lies in numerically efficient implementation of approximate many-

electron theories such as configuration interaction, many-body perturbation theory, and

coupled-cluster theory.

The method can also be combined with other theories that include explicit treatment

of electron-electron cusp in the many-electron wave function. For example, the geminal-
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TABLE II. CISD ground state energy (in Hartrees) of NH3 calculated using analytical

geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 29 -56.183815 780.72 1.81× 10−1

10−2 265 -56.296168 85.44 6.85× 10−2

10−3 2214 -56.360953 10.23 3.76× 10−3

10−4 3221 -56.364358 7.03 3.50× 10−4

10−5 3599 -56.364668 6.29 4.02× 10−5

CISD 22641 -56.364708 1.00 0

TABLE III. CISD ground state energy (in Hartrees) of H2O calculated using analytical

geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 25 -76.010000 691.64 1.90× 10−1

10−2 235 -76.149998 73.58 5.03× 10−2

10−3 1192 -76.197151 14.51 3.12× 10−3

10−4 1709 -76.199857 10.12 4.15× 10−4

10−5 1905 -76.200269 9.08 3.31× 10−6

CISD 17291 -76.200272 1.00 0

projected particle-hole operators can be used in multi-determinant quantum Monte Carlo

and F12 methods including MP2-F12 and CCSD-F12 methods. The addition to the electron-

electron cusp condition, a systematic improvement of electron-nuclear cusp condition can

be achieved by using Slater-type orbitals and electron-nuclear Jastrow functions.

IV. CONCLUSIONS

The derivation of the geminal projected particle-hole excitation operators was presented.

The central idea underlying this method is the use of an explicitly correlated reference wave

function to define a projecting operator that projects out potential non-contributing con-
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TABLE IV. CISD ground state energy (in Hartrees) of HF calculated using analytical

geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 27 -100.002394 468.93 1.80× 10−1

10−2 177 -100.136821 71.53 4.56× 10−2

10−3 937 -100.179458 13.51 2.96× 10−3

10−4 1602 -100.182291 7.90 1.28× 10−4

10−5 1919 -100.182410 6.60 8.50× 10−6

CISD 12661 -100.182419 1.00 0

TABLE V. CISD ground state energy (in Hartrees) of Ne calculated using analytical

geminal parameters and varying η.

η NGP-CI EGP-CI NCISD/NGP-CI EGP-CI − ECISD

10−1 13 -128.474407 673.15 1.50× 10−1

10−2 97 -128.592196 90.22 3.24× 10−2

10−3 479 -128.622321 18.27 2.28× 10−3

10−4 1013 -128.624309 8.64 2.89× 10−4

10−5 1240 -128.624596 7.06 1.53× 10−6

CISD 8751 -128.624598 1.00 0

figurations in the CI expansion. In this work, the explicitly correlated reference function

was defined using a two-body Gaussian-type geminal function. The derivation of the pro-

jection operator was performed by first expressing the total energy in terms of Hugenholtz

diagrams and then factorizing out particle-hole excitation operators that are functionals of

the R12-correlator operator. The efficiency of the projection operation is controlled by a

tunable external parameter. The projected particle-hole operators were used for the con-

struction of the geminal-projected CI wave function which was subsequently used to perform

proof-of-concept ground state energy calculations on a set of molecules. The results from

these calculations demonstrate that the method shows much promise since in all cases the

geminal-projected CI wave function was found to deliver CISD level accuracy using a CI
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TABLE VI. MP2 ground state energy (in Hartrees) of CH4 calculated using analytical

geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 -40.194994 28351 1.42× 10−1

10−2 268 -40.229412 105.79 1.08× 10−1

10−3 4248 -40.312698 6.67 2.43× 10−2

10−4 7916 -40.334316 3.58 2.72× 10−3

10−5 8831 -40.336758 3.21 2.74× 10−4

MP2 28351 -40.337032 1.00 0.00

TABLE VII. MP2 ground state energy (in Hartrees) of NH3 calculated using analytical

geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 -56.183815 22321 1.74× 10−1

10−2 215 -56.291308 103.82 6.61× 10−2

10−3 2156 -56.354307 10.35 3.07× 10−3

10−4 3159 -56.357209 7.07 1.67× 10−4

10−5 3523 -56.357356 6.34 2.06× 10−5

MP2 22321 -56.357376 1.00 0

space that is at least six times smaller than the CISD space. The results from this work

highlight the efficacy of the geminal-project particle-hole operators for reducing number of

optimizable parameters in a correlated many-electron wave function. The application of

geminal-project particle-hole operators operators derived in this work is not restricted to

a CI wave functions and was demonstrated to be applicable to many-body perturbation

theory and coupled-cluster theory as well. We envision that geminal projected particle-hole

excitation operators can also be used in multi-determinant quantum Monte Carlo methods.
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TABLE VIII. MP2 ground state energy (in Hartrees) of H2O calculated using analytical

geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 -76.010000 17011 1.89× 10−1

10−2 193 -76.148962 88.14 5.03× 10−2

10−3 1140 -76.196804 14.92 2.43× 10−3

10−4 1655 -76.198907 10.28 3.27× 10−4

10−5 1851 -76.199232 9.19 2.08× 10−6

MP2 17011 -76.199234 1.00 0

TABLE IX. MP2 ground state energy (in Hartrees) of HF calculated using analytical

geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 -100.002394 12421 1.82× 10−1

10−2 139 -100.136290 89.36 4.79× 10−2

10−3 889 -100.179077 13.97 5.08× 10−3

10−4 1550 -100.183800 8.01 3.57× 10−4

10−5 1867 -100.184153 6.65 3.92× 10−6

MP2 12421 -100.184157 1.00 0
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TABLE X. MP2 ground state energy (in Hartrees) of Ne calculated using analytical

geminal parameters and varying η.

η NGP-MP2 EGP-MP2 NMP2/NGP-MP2 EGP-MP2 − EMP2

10−1 1 -128.474407 8551 1.52× 10−1

10−2 75 -128.523031 114.01 1.03× 10−1

10−3 453 -128.547410 18.88 7.88× 10−2

10−4 987 -128.616193 8.66 9.98× 10−3

10−5 1214 -128.625523 7.04 6.53× 10−4

MP2 8551 -128.626176 1.00 0
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V. APPENDIX A

In this section, we briefly summarize the Goldstone and Hugenholtz diagrammatic repre-

sentations which were used in the derivation of the geminal-project particle-hole operators.

The one-particle operators for both the Goldstone and Hugenholtz representations have the

same form, but the two-particle operators have slightly different form for each representa-

tion. We start by considering the singly excited Slater determinant, Φa
i = {a†i}Φ0, before we

consider the one-particle operators. Here we follow the convention of labeling the occupied

and unoccupied states by indicies i, j, k, l and a, b, c, d, respectively. The occupied indices

are used to refer to the hole states and the unoccupied indicies are used to refer to the

particle states.[93] This Slater determinant is represented diagrammatically with a particle

line pointing upwards and a hole line pointing downwards as seen in Fig. 8. Similarly, the

a i

FIG. 8. This figure shows a particle and hole for the Slater determinant Φa
i in diagram-

matic representation.

doubly-excited Slater determinant Φab
ij = {a†b†ji}Φ0, the diagrammatic representation has

two particle lines, a and b, and two hole lines, i and j, as seen in Fig. 9. Now we con-

ai bj

FIG. 9. This figure shows particles and holes for the Slater determinant Φab
ij in dia-

grammatic representation.

sider diagrammatic notation for the one-particle operator, û. The form of the one-particle

operator can be written as 〈p|û|q〉 where p and q can be particle or hole lines. There are

four possibilities to represent the one-particle operator. It can either be particle-particle,

hole-hole, particle-hole, or hole-particle, where we will use a and b as particle states and i

27



b

a

b

b

i

j

b

ai

b
ai

〈b|û|a〉 〈i|û|j〉 〈b|û|j〉 〈i|û|a〉

FIG. 10. One-particle operators in diagrammatic representation.

and j as hole states. These four cases are seen in Fig. 10. The bold dot in the diagrams

represents the operator, û and it occurs at the vertex of two lines. Each vertex needs one

incoming line and one outgoing line. In relation to the operator dot, the incoming line is the

ket state, while the outgoing line is the bra state. The two-particle operators are consistent

with this notation used by the one-particle operators.

For the two-particle operators in the Goldstone representation, there is no longer one

vertex. The one vertex is split into two half-vertices which are connected by a dashed

interaction line. The two half-vertices and the interaction line constitute a single vertex.

In the Hugenholtz representation, the diagrams are compacted so that there is only one

vertex in each two-body diagram. The relationship between the Goldstone and Hugenholtz

diagrams and the corresponding matrix elements are shown in Fig. 11 and Fig. 12.
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FIG. 11. Part 1. Two-body Goldstone diagrams are shown on the left while the

corresponding two-body Hugenholtz diagrams are shown on the right.
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FIG. 12. Part 2. Two-body Goldstone diagrams are shown on the left while the

corresponding two-body Hugenholtz diagrams are shown on the right.
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