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We propose a systematic procedure to optimize quantum state tomography protocols for continu-
ous variable systems based on excitation counting preceded by a displacement operation. Compared
with conventional tomography based on Husimi or Wigner function measurement, the excitation
counting approach can significantly reduce the number of measurement settings. We investigate
both informational completeness and robustness, and provide a bound of reconstruction error in-
volving the condition number of the sensing map. We also identify the measurement settings that
optimize this error bound, and demonstrate that the improved reconstruction robustness can lead
to an order of magnitude reduction of estimation error with given resources. This optimization
procedure is general and can incorporate prior information of the unknown state to further simplify
the protocol.

I. INTRODUCTION

Quantum state tomography (QST) is a powerful pro-
cedure to completely characterize quantum states, which
can be extended to quantum process tomography for
general quantum operations. However, QST is often
resource-consuming, involving preparation of a large
number of identical unknown states and measurement
of a large set of independent observables. For qubit sys-
tems, many techniques have been developed to reduce
the cost of full state tomography, such as compressed
sensing [1–3], permutationally invariant tomography [4],
self-guided/adaptive tomography [5, 6], matrix product
states tomography [7]. In contrast, for continuous vari-
able (CV) systems that also play an important role in
quantum information, the standard techniques in use
today are decades old, namely homodyne measurement
[8, 9] for optical photons and direct Wigner function mea-
surement [10–12] for cavity QED. With the rapid devel-
opment in CV quantum information processing, rang-
ing from arbitrary state preparation [13] to universal
quantum control [14, 15] and from engineered dissipation
[16, 17] to quantum error correction [18, 19], a large di-
mension of Hilbert space can be coherently controlled in
experiments [12, 20]. However, homodyne measurement
might not be immediately applicable due to intrinsic non-
linearity preventing applying a very large displacement in
cavity QED, and Wigner function measurement requires
intensive data collection [20]. Thus there is an urgent
need for reliable and efficient tomography for CV sys-
tems.

There have been significant advances in excitation
counting over various physical platforms, including op-
tical photons [21], microwave photons [22–25], and
phonons of trapped ions [26–28]. In particular, the ca-
pability of quantum non-demolition measurement of mi-
crowave excitation number has been demonstrated with

superconducting circuits [29]. Tomography based on ex-
citation counting has also been theoretically proposed
[30, 31] and experimentally demonstrated with trapped
ions and cavity/circuit QED [25, 26, 32]. However, all
these works only considered specific choices of measure-
ment settings (associated with certain displacement pat-
terns), and mostly restricted to the feasibility of tomogra-
phy, without further investigating the robustness against
measurement noise to develop robust QST protocols for
CV systems.

Motivated by these recent advances, we develop a the-
oretical framework to investigate cost-effective QST pro-
tocols for CV systems based on excitation counting. Con-
ventional QST protocols can be regarded as special cases
collecting partial information of the excitation number
distribution. For example, up to a displacement, the
Husimi Q function can be regarded as the probability
of zero excitation, and the Wigner function can be ob-
tained from the difference between probabilities associ-
ated with even and odd number of excitations. We ex-
pect more cost-effective QST by collecting full population
distributions upon various displacements using excitation
counting, which can be efficiently achieved in various CV
systems [21–29].

The rest of the paper is organized as follows. In Section
II, we first provide a mathematical formulation of QST
based on displacements and excitation counting. We then
consider QST for a special class of quantum states in Sec-
tion III, illustrating the advantage of excitation count-
ing and introducing the criterion of error robusteness in
terms of the condition number (CN) of the sensing map
in Section IV. The main results on QST of a general un-
known quantum state are presented in Section V and VI.
In Section VII, the choice of optimization target for dif-
ferent error models are analyzed. We put our optimized
scheme to the test using simulated measurement records
in Section VIII. Section IX discusses possible generaliza-
tions of the scheme. Finally, the conclusion is given in
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Section X.

II. INFORMATIONAL COMPLETENESS

Mathematically, QST solves the inversion problem

A · ~ρ = ~b,

where ~ρ is the unknown density matrix arranged as a vec-
tor, ~b denotes all the measurement records, and A is the
sensing matrix determined by the kind of measurements
performed. The set of measurements should be infor-
mationally complete (IC) — that is, the sensing matrix
A should be invertible [33]. For non-square sensing ma-
trix, the unknown state can be reconstructed using least
squares fitting,

~ρ = Ã−1~b =
(
A†A

)−1
A†~b.

Due to experimental noise, the least square solution may
turn out non-physical, i.e. having negative eigenvalues.
This can be fixed by finding the physical density matrix
σ that is closest to ρ, with the distance defined by some
matrix norm, e.g. Frobenius norm. A justification of this
procedure is provided in Appendix A.

For CV systems, each measurement setting is asso-
ciated with a displacement operation D (β). We may
directly count the excitation number after the displace-
ment operation and obtain the number distribution,
which is called the generalized Q function (Qn function)
[29, 30, 34, 35]

Qβn (ρ) = tr
[
|n〉 〈n|D(−β)ρD†(−β)

]
,

where n = 0, 1, 2, · · · , nc with nc the maximal resolved
excitation number. Reshaping ρ into a column vector
~ρ we obtain the linear equation ~Qβ(ρ) = Aβ~ρ, where
~Qβ(ρ) is a column vector with (nc + 1) entries Qβn(ρ)
and the matrix Aβ has (nc + 1) rows. Multiple mea-
surement settings associated with a set of displacements{
β1, β2, · · · , βNβ

}
are used to constrain the inversion

problem. The measurement record ~b is then a column
vector with Nβ · (nc + 1) entires of Qβjn (ρ); the sensing
matrix A can be obtained by stacking Aβi , with a total
of Nβ · (nc + 1) rows. The basis under which ρ is written
can be arbitrary, e.g. Fock basis |m1〉 〈m2| or coherent
state basis |αi〉 〈αj |.

In comparison, the sensing matrix for standard QST
with the Husimi Q function Qβn=0 (ρ) = 〈β| ρ |β〉 or
Wigner function W β (ρ) =

∑
n (−1)

n
Qβn (ρ) consists of

only Nβ rows (which are linear combinations of Nβ ·(nc+
1) rows of the sensing matrix associated with Qn function
[36]), which neglect a large portion of potentially useful
information. In the following, we consider QST for a class
of quantum states and show that the neglected informa-
tion can be crucial.

III. QST FOR CAT STATES

Cat states are quantum states characterized by den-
sity matrix ρ =

∑p
i,j=1 ρij |αi〉 〈αj |, where |αi〉 are well

separated coherent states [37]. The Schrödinger cat state
|α〉 + |−α〉 is a well-known example. Standard QST of
cat states with large unknown α’s is resource consum-
ing and requires many measurement settings. In par-
ticular, both the Husimi and Wigner function measure-
ment schemes encounter the challenge of unknown α’s,
and have to deploy many measurement settings to scan
various displacements, the majority of which is unfor-
tunately wasted because Qβ(ρ) ≈ W β(ρ) ≈ 0 for most
choices of β. In contrast, the Qn function measurement
always generates an excitation distribution, from which
we can estimate the distances |αi − β| for different β. Us-
ing the idea of trilateration, we can estimate all α’s using
about three measurement settings. Using the data Qβn(ρ)
for {β1, β2, β3}, we can estimate the denisty matrix ρ̃ us-
ing the iterative maximum likelihood estimation (iMLE)
technique [38] and calculate the corresponding Husimi Q
function, see Fig. 1 (b). To increase confidence, one can
additionally measure Qβn(ρ) at one or two β′s, preferrably
at the current estimated α′is, see Fig. 1 (c), (d). If the
true state is not a cat-state, we would not see clearly sep-
arated population patches in the phase space and need
to treat it as a general state.

Once the α′s are known, the generalized Q function
measurement only requires one additional measurement
setting to fulfill the IC requirement, independent of the
number of coherent components. It is note-worthy that
examples where tomography requires only one measure-
ment setting is extremely rare. This observation can be
justified by the relation

Qβn(ρ) =

p∑
i,j=1

ρijQ
β
n (|αi〉 〈αj |)

=

p∑
i,j=1

ρijtr
[
|n〉 〈n|D(−β) |αi〉 〈αj |D†(−β)

]
=

p∑
i,j=1

ρije
iθ(β,αi,αj)e−

1
2 (|αi−β|−|αj−β|)

2

× 1

n!
[(αi − β)(αj − β)∗]

n
e−|αi−β|·|αj−β|

=

p∑
i,j=0

ρ̃ij
1

n!

[
didje

iφij
]n
,

where we defined

di ≡ |αi − β| ,
φij ≡ arg(αi − β)− arg(αj − β),

θ(β, αi, αj) ≡ −i(−βα∗i + β∗αi − αjβ∗ + α∗jβ)/2,

ρ̃ij ≡ eiθ(β,αi,αj)e−
1
2 (di−dj)

2

e−didjρij .



3

−2 0 2

−2

0

2

−2 0 2 −2 0 2 −2 0 2
Re(α)Re(α) Re(α) Re(α)

Im
(α
)

(a) (c)(b) (d)

Figure 1. Procedure of estimating the αi via Husimi Q function. (a) shows the true Q function of the state; (b) shows the
estimated Q function via iMLE after measuring Qβn(ρ) at three β′s shown as the crosses; (c)/(d) are estimations after measuring
at four/five β′s. Apparently estimate in (c) already converges to the true Q function shown in (a).

Reshaping ρ̃ij as a column vector, we have


1 · · · 1 · · ·
...

. . .
...

d2n1 · · · (didje
iφij )n

...
...

. . .



ρ̃11
...
ρ̃ij
...

 =


0!Qβ0
...

n!Qβn
...

 .

The matrix on the left hand side is a Vandermonde ma-
trix, having full column rank (all column vectors are
independent and A†A is invertible) if and only if all
didje

iφij are distinct. Under the following conditions,
all the didjeiφij are distinct: (i) di 6= dj , other wise the
columns corresponding to ρ̃ii and ρ̃jj would be identi-
cal;; (ii) φij 6= 0, π, otherwise the columns ρ̃ij and ρ̃ji
would be identical; (iii) didj 6= dkdl or φij 6= φkl where
all of i, j, k, l are assumed to be distinct. These re-
quirements have clear geometric interpretations: (i) β
does not lie on the perpendicular bisector of the line seg-
ment αiαj ; (ii) β, αi, αj are not collinear; (iii) trian-
gles formed by (β, αi, αj) and (β, αk, αl) do not have
the same area or the angles subtended by the segments
αiαj and αkαl from β are different. There is in fact
one extra soft requirement, due to the factor e−

1
2 (di−dj)

2

in Qβn (|αi〉 〈αj |). When di � dj or di � dj , ρij gets
exponentially suppressed and almost vanishes from the
sensing equation, just like the case with the conventional
Husimi Q function. So we add one requirement (iv) β
does not lie far away from the bisector of αiαj in the
sense that e−

1
2 (di−dj)

2

is not too small. Requirement (iv)
is closely related to the error robustness which will be
discussed later. The Qn function at one suitable β con-
tain sufficient information. More specifically, the diag-
onal terms in the density matrix ρii (the population of
|αi〉) can be extracted from the envelope of the distri-
bution, while the off-diagonal terms ρi,j can be obtained
from the interference signals peaked at n̄ = didj in the
distribution. Therefore, sampling the excitation number
distribution can boost the inforamtion gain and thus re-
duce the measurement settings significantly.

IV. ERROR ROBUSTNESS OF
RECONSTRUCTION

So far, we have only considered the requirement for
IC, possibility of reconstruction. We do not yet know
the accuracy of the reconstruction when measurements
are noisy. Next, we investigate robustness and estimate
the reconstruction error. Assume that the measurements
~b have noise δ~b, leading to noise in the solution Ã−1δ~b. To
bound the noise in the solution, we consider the worst-
case noise magnification ratio

κ(A) ≡

∥∥∥Ã−1δ~b∥∥∥ / ∥∥∥Ã−1~b∥∥∥∥∥∥δ~b∥∥∥ / ∥∥∥~b∥∥∥ ,

which is called the condition number (CN) of A [39]. The
CN is a property of the sensing map and does not depend
on the specific procedure that solves the linear equations.
In principle the norm can be chosen arbitrarily. We will
use the 2-norm ‖•‖2 of vectors, because in this case the
CN is simply the ratio of the largest and smallest singular
values of A [39]. Clearly κ(A) ≥ 1 and when κ(A) = 1
the sensing map is isometric (distance preserving). The
CN has been introduced as a measure of robustness of
reconstruction schemes for qubit systems [40–42]. Using
Uhlmann’s definition

F (ρ, σ) = Tr
[√√

ρσ
√
ρ

]
,

the reconstruction fidelity can be bounded as (see Ap-
pendix B for a proof)

F (ρ, ρ+ δρ) ≥ 1− 1

2
κ(A)

√
r ‖ρ‖F

∥∥∥δ~b∥∥∥
2
/
∥∥∥~b∥∥∥

2
, (1)

where r is the rank of δρ bounded by the system di-
mension, and ‖ρ‖F is the Frobenius norm of the true
density matrix which is fixed. Assuming for now that∥∥∥δ~b∥∥∥

2
/
∥∥∥~b∥∥∥

2
is fixed (e.g., due to systematic bias), a ro-

bust QST should minimize CN to have an optimal guar-
antee of the reconstruction fidelity. Note that a lower CN
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Figure 2. (Color online) Condition number of the sensing
map as a function of β for cat states with number of compo-
nents p = 2, 3, 4. Upper panels: numerical results for CN;
Lower panels: a simple estimate of the CN using the ex-
pression κ(β) ∼

∑
i,j exp

[
(di − dj)2 /2

]
where di ≡ |αi − β|.

We also included the white lines on which the sensing map is
strictly informationally incomplete, see main text. Blue stars
indicate the positions of the coherent components |αi〉. For
visual clarity, values beyond 100 are all mapped to white. The
minimum CN achievable for the three cases are 1.74, 6.81 and
38.64 (numerical results), respectively. Here the maximal re-
solved excitation number nc is taken sufficiently large. If nc
decreases, CN for large |β| gets worse.

reduces the sample complexity but not the computational
complexity of the inversion problem.

We now use CN to examine the robustness of QST for
cat-states, for which CN is a function of one complex vari-
able β. Due to the factor e−

1
2 (di−dj)

2

in Qβn (|αi〉 〈αj |),
when di � dj or di � dj , ρij gets exponentially sup-
pressed, just like the case with the Husimi Q function. In
those regions, the factor exp

[
(di − dj)2 /2

]
would mag-

nify the noise during the reconstruction. Thus we esti-
mate

κ(β) ∼
∑
i,j

exp
[
(di − dj)2 /2

]
,

which agrees well with the numerical calculation of CN,
as illustrated in Fig. 2. Different from the requirement
for IC, CN depends on the number of coherent compo-
nents p, the values of αi, and the choice of β. For small p,
there exist low-CN regions of β (dark regions in Fig. 2),
which imply that the protocol with only about four mea-
surement settings (about three for trilateration and one
for coherences) can be robust.

These low-CN regions are very similar to the regions
with high Fisher information in the worst case. For the
state ρ =

∑p
i,j=1 ρij |αi〉 〈αj | with known αi, the param-

eters to estimate are ρij . For convenience we arrange the
p2 numbers as a vector ~ρ. For a certain measurement
position β, we can get a distribution

f(n) ≡ Qβn(~ρ).

According to the definition, the Fisher information ma-
trix is

I(~ρ) = E~ρ

[(
∂

∂~ρ
log f(n)

)
·
(
∂

∂~ρ
log f(n)

)†]

=

∞∑
n=0

1

f(n)

(
∂

∂~ρ
f(n)

)
·
(
∂

∂~ρ
f(n)

)†
,

where

∂f

∂ρij
= Qβn (|αi〉 〈αj |) .

Notice that I(~ρ) is a matrix-valued function depending
on the true state specified by ~ρ. We use the determinant
of I(~ρ) as a one-parameter measure of the information
contained in the measurement Qβn(ρ) and plot det I(~ρ)
as a function of β for a few different ~ρ, see Fig. 3.

This justifies the use of CN as a guide for optimizing
measurement schemes, which is much easier to calculate
than the worst-case Fisher information. For larger p or
general states, we need to consider multiple measurement
settings and optimized choices of β′s as discussed below.

V. INFORMATIONAL COMPLETENESS FOR
GENERAL STATES

We now consider general states with no structure other
than an excitation number cutoff mc. To achieve IC, we
needNβ = (mc+1) different β′s as argued below. In Fock
basis, ρ =

∑mc
m1,m2=0 ρm1,m2

|m1〉 〈m2|, and for each term
|m1〉 〈m2|

Qβn (|m1〉 〈m2|)

=
|β|2n e−|β|2

n!

√
m1!m2!

(−β)m1(−β∗)m2
Ln−m1
m1

(|β|2)Ln−m2
m2

(|β|2),

where Lnm(x) is the associated Laguerre polynomial.
Note that Lnm(x) is not only a polynomial of degree m
in x but also a polynomial of degree m in n. Apart from

the factor |β|
2ne−|β|

2

n! , Qβn (|m1〉 〈m2|) is a polynomial of
degree (m1 +m2) in n. Since Qβn(ρ) has a degree of 2mc

in n, experimental values of of Qβn(ρ) for each β provides
(2mc + 1) real coefficients,

Qβn(ρ) =

2mc∑
k=0

nk · cβk .

The dependence of cβk on ρm1m2
is shown below (omitting

β superscript on ck ):
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Figure 3. Determinant of the Fisher information I(~ρ) as a function of β for four different states. (a) Two-component maximally
mixed cat state, ρij ∝ δij . In other words, the Bloch vector for the effective two level system is ~0; (b) A two component
cat state, with Bloch vector 0.9 · (1, 1, 0)/

√
2; (c) Three-component maximally mixed cat state, ρij ∝ δij ; (d) A mixture

ρ = (1−λ)I/3+λ |ψ〉 〈ψ| where I is the identity and |ψ〉 = (1, 1, 1)†
√
3. The shape of the good detection region for maximally

mixed states are very similar to that predicted by the condition number while for higher purity states additional “interference
fringes” appear. The worst case of Fisher information over all true states appears to be that of the maximally mixed states.
The good regions for β predicted by worst-case Fisher information agree well with that given by condition number.

c2mc ∼ ρmc,mc
c2mc−1 ∼ ρmc,mc , ρmc−1,mc , ρmc,mc−1

...
cmc ∼ ρ0,mc , ρ1,mc−1, · · · , ρmc,0 and all above

cmc+1 ∼ mc new terms and all above
...

c0 ∼ all variables above.

For example, knowledge of c2mc directly reveals ρmc,mc
and c2mc−1 gives a linear equation involving ρmc,mc−1,
ρmc−1,mc and ρmc,mc which is already obtained from
c2mc . After experimentally obtaining Qβ1

n (ρ) and Qβ2
n (ρ),

the values of ρmc,mc−1 and ρmc−1,mc can be determined.
Continuing this way we can determine all of ρm1,m2

after
measuring Qβn(ρ) for (mc+1) β′s. This analysis is similar
to that done in [9].

VI. ERROR ROBUSTNESS FOR GENERAL
STATES

It is convenient to consider the covariance matrix,

C ≡ A†A =
∑
j

A†βjAβj ,

and κ(C) = κ(A)2. The element C(m1m2),(n1n2) is the
overlap of the columns of A corresponding to |m1〉 〈m2|
and |n1〉 〈n2|. In the ideal case, where κ(A) = 1 and A
is an isometry, C should be proportional to the identity

matrix. Using

A(n,β),(m1,m2) = tr [D(β) |n〉 〈n|D(−β) |m1〉 〈m2|]

= e−|β|
2 1

n!
|β|2n

√
m1!

(−β)m1
Ln−m1
m1

(
|β|2

)
×
√
m2!

[(−β)m2 ]
∗Ln−m2

m2

(
|β|2

)
,

we see that

A(n,β),(m1,m2) ∝ β
m2−m1gm1m2

(|β|),

and

C(m1m2),(n1n2) =
∑
n,j

A∗(n,βj),(m1,m2)
A(n,βj),(n1,n2)

∝
∑
βj

βm1−m2−n1+n2
j fm1,m2,n1,n2

(|βj |),

where g and f are real functions that do not have de-
pendence on the complex argument of β′s. Note the
convenient fact that the matrix C is additive for parts
corresponding to different β′s. Consider a set of β′s
with the same magnitude, βj = |β| eiφj . Partitioning
the indices (m1m2) and (n1n2) into groups according to
k1 ≡ m1 − m2 and k2 ≡ n1 − n2, C has a block struc-
ture C = [Ck1k2 ], where elements of the block Ck1k2 are
proportional to

∑
j e
−i(k1−k2)φj .

Both intuitively and rigorously, eliminating the off-
diagonal blocks with k1 6= k2 would reduce the condition
number. This is also known as “pinching” in matrix anal-
ysis (see also Appendix C). We may use Nβ = (2mc + 1)
measurement settings with β′s evenly distributed over a
circle with

φj =
2π

2mc + 1
j, for j = 0, 1, · · · , 2mc,

which is denoted as “full-ring configuration” or FRC, as
shown in inset of Fig. 7. As pointed out in Appendix
C, the multiple-full-ring configuration (MFRC) should
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be optimal. However we observed numerically that the
improvement of MFRC over the FRC with optimal ring
radius is extremely small or even 0. Denote the covari-
ance matrix for a ring of (2mc + 1) β′s with radius r as
Cr. We compared minr κ(Cr) and minr1,r2 κ(Cr1 +Cr2).
For mc = 1 we found a 1.6% difference and for mc ≥ 2
(tested up to 7) they are equal. We thus conjecture that
FRC is the optimal configuration for mc ≥ 2. The num-
ber of β′s required for MFRC is at least twice as large as
that of FRC. So practically FRC is much more efficient
than MFRC.

Strictly speaking, with a smaller Nβ it is not possible
to fully pinch matrix C, i.e. satisfying∑

j

e−i(k1−k2)φj ∝ δk1k2 ,

for all k1, k2. This justifies the ring based configurations
used in [25, 26, 30]. Numerically, however, we find that
for large |β|, the number of measurement settings can be
further reduced from 2mc+ 1 to mc+ 1 without compro-
mising CN, as illustrated in Fig. 7. The optimized β’s
are evenly distributed over half a circle, with

φj =
π

mc + 1
j, for j = 0, 1, · · · , mc,

which is denoted as “half-ring configuration” or HRC, as
shown in inset of Fig. 7. For even mc, the configuration
φj = 2π

mc+1j, for j = 0, 1, · · · , mc works as well. The jus-
tification of HRC lies in the special asymptotic behavior
of matrix C. As |β| gets large, the off-diagonal blocks of
Ck1,k2 with odd k1 − k2 scale as 1/ |β|2, negligible com-
pared to those Ck1,k2 with even k1 − k2 which scales as
1/ |β| (see Appendix F for a proof). So nearly half of
those off-diagonal blocks are automatically pinched and
we only need to have∑

j

e−i(k1−k2)φj ∝ δk1k2 , for even k1 − k2,

to fully pinch C, which can be achieved using mc + 1
settings. Interestingly, the pinching analysis can be ap-
plied to Homodyme detection (see Appendix D) and we
verified that the intuitive choice of equally spaced phase
angles is optimal. Futhermore, we found that the matrix
C for Qn asymptotes to that of Homodyne detection and
so Homodyne detection can in some sense be seen as the
Qn detection with β →∞.

We also performed numerical gradient-based optimiza-
tion of κ(A) over β′s with different Nβ . The gradient of
CN with respect to β′s can be calculated using pertur-
bation theory (detailed in Appendix E). CN drops signif-
icantly as Nβ increases to mc + 1 and does not improve
further when Nβ > mc + 1. For each Nβ we initialize
the optimization with a large number of different config-
urations of β′s and HRC turns out the best (with the
exception of the case mc = 1). As a function of mc, the
asymptotic CN grows slowly, κ(A) ∼ m1/2

c (see Fig. 5).

VII. DISCUSSION OF NOISE MODELS

So far, we have assumed that
∥∥∥δ~b∥∥∥

2
/
∥∥∥~b∥∥∥

2
be fixed, and

minimize κ(A) to optimize the bound in Eq. (1). On the
other hand,

∥∥∥δ~b∥∥∥
2
/
∥∥∥~b∥∥∥

2
might be tunable. A practically

relevant situation is shot-noise, with∥∥∥δ~b∥∥∥
2
/
∥∥∥~b∥∥∥

2
∝ 1/

√
Nrep.

Meanwhile, κ(A) depends on the number of measurement
settings Nβ . Given total number of measurements (or
copies of unknown states) Ntot = Nβ · Nrep, we need to
minimize ε̃ ≡ κ(A)

∥∥∥δ~b∥∥∥ / ∥∥∥~b∥∥∥ to have a better bound.
Hence,

ε̃ ∝ κ(A)/
√
Nrep = κ(A)

√
Nβ/Ntot

implies that we should minimize κ(A)
√
Nβ . As illus-

trated in the bottom inset of Fig. 7, HRC has lower
κ(A)

√
Nβ for large |β|, and is more robust than FRC

in that regime. In terms of scaling with mc,

κ(A)
√
Nβ ∼ m1/2

c

√
mc + 1 ∼ mc

for HRC and FRC while κ(A)
√
Nβ appears super-linear

in mc for Wigner tomography, as shown in Fig. 6. The
relative advantage of Qn tomography grows as mc in-
creases.

VIII. BENCHMARKING WITH SIMULATED
DATA

Using simulated data (shot-noise only), we tested and
compared several schemes, including Wigner measure-
ments where β′s form a square lattice (yellow triangles),
Wigner measurements with optimized β′s (red squares),
and Qn measurements with optimized β′s (blue circles).
For each case reconstruction is done by fitting a physical
density matrix to the data, a semidefinite program that
can be solved efficiently with the Matlab package CVX
[43, 44]. Some typical results with mc = 2 and mc = 5
are shown in Fig. 4. Both optimized schemes have bet-
ter error scaling than the unoptimized one, because the
bound for the unoptimized case is too forgiving to sup-
press reconstruction error. Between the two optimized
schemes, the reconstruction infidelity for the Qn-based
scheme is at least an order of magnitude smaller than
that of the Wigner-based scheme. Moreover, the advan-
tage of using Qn measurement and more generally opti-
mized schemes indeed becomes more significant for larger
mc, as predicted by the figure of merit shown in Fig. 6
and demonstrated by Fig. 4.
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Figure 4. (Color online) Comparison of performances of Wigner measurements where β′s form a square lattice (yellow triangles),
Wigner measurements with optimized measurement settings obtained from gradient search (red squares), and Qn measurements
with optimized measurement settings (blue circles). Left/Right panels correspond to mc = 2 and mc = 5. The true state
ρ is a randomly generated density matrix with excitation number cutoff mc = 5. Each scatter point corresponds to one
reconstruction via semi-definite programming based on a set of simulated measurement records containing only shot-noise. The
y-axis shows the reconstruction infidelity δF = 1−F (ρ, ρ′) and the x-axis shows the total number of measurements performed,
i.e. total number of copies of unknown states consumed.
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mc

0
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40
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80

5
2

Figure 5. Optimal condition number for Qn measurements as
a function of mc. Vertical axis shows κ(A)2. Red solid line
shows a linear fit with equation κ2 = 3.28mc − 0.07769.

IX. GENERALIZATIONS

The idea of optimizing the condition number of the
measurement scheme is completely general and can ap-
ply to the reconstruction problem using arbitrary bases.
Here we show one such example, the generalized cat
states,

ρ =
∑

i,j,m1,m2

ρi,m1;j,m2 |αi, m1〉 〈αj , m2| ,

where i, j = 1, 2, · · · , p and m1, m2 = 0, 1, · · · , mc,
and

|αi, mi〉 ≡ D(αi) |mi〉

are displaced Fock states. Such states may arise when an
ideal cat state is subject to experimental noise and each
coherent state component is deformed. Now each column
of the sensing matrix has the form

(didje
iφij )nP (n),

0 2 4 6 8
mc

0

5

10

15

20

5
p N

-
Qn
Wigner

Figure 6. Comparison of the figures of merits (assuming shot-
noise only) κ

√
Nβ for optimized Qn tomography with large

enough |β| and optimized Wigner tomography obtained from
gradient-based optimization.

where P (n) is a polynomial coming from the associated
Laguerre polynomials

P (n) = Ln−m1
m1

(|β|2)Ln−m2
m2

(|β|2).

On a large scale of n, the change of (didje
iφij )nP (n)

as a function of n is dominated by the exponential part
(didje

iφij )n. So just as in the cat state case the columns
with distinct didjeiφij are linearly independent. For the
(mc + 1)2 columns that share the same didjeiφij but dif-
ferent polynomials P (n), we need (mc+1) different β’s to
completely fix all unknowns as discussed previously. We
can then run numerical optimization for all N ≥ (mc+1)
and pick the optimal N .

A simultaneous optimization of many β′s can often get
stuck in shallow local minima. Here we show an alter-
native greedy-policy for optimization that works pretty
well, where we pick one best β at a time. The proce-
dure is as follows. (1) Start with an empty set S = ∅ of
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Figure 7. (Color online) Main panel shows condition num-
bers of full-ring configuration (FRC) and half-ring configura-
tion (HRC) as a function of the ring radius (mc = 4 case).
Top two insets show FRC and HRC in phase space. For
both schemes, βj = |β| eiφj . FRC: φj = 2π

2mc+1
j, j =

0, 1, 2, · · · , 2mc; HRC: φj = π
2mc+1

j, j = 0, 1, 2, · · · , mc.
The condition number of HRC approaches that of FRC as |β|
gets large, as predicted by theory. Bottom inset shows the
figure of merit κ

√
Nβ for HRC and FRC.

β′s, keeping all the α′s but set mc = 0, which allows the
condition number to be finite with one β; (2) Pick the
optimal β (in the sense that it combined with those β′s
in S produces the lowest condition number) and add it
to the set S; (3) If the optimal condition number is small
enough, increase mc by one (otherwise keep it the same);
(4) Repeat (2) and (3) until one reaches the desired mc.

We give one example here for which the condition num-
ber as a function of the next β to pick are shown in Fig.
8.

X. CONCLUSION

We proposed and analyzed a continuous variable QST
scheme with the full distribution information of excita-
tion number after a variable displacement. We showed
how to construct a set of measurements that has a small
reconstruction error bound by optimizing a figure of
merit based on the condition number of the sensing map.
For general states with a given excitation number cutoff,
we obtained the optimal displacement patterns (half-ring
and full-ring) that rationalize and improve the previously
considered ring-based choices. The idea of gradient-based
optimization of the condition number of the sensing map
is versatile and can apply to states expanded in an ar-
bitrary basis and detection methods that are parameter-
ized by some continuous variables. As future work, it is
interesting to generalize the current scheme to QST for
multiple oscillators, spin ensembles [45] and CV process
tomography.
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Appendix A: Reconstructing A Physical Density Matrix

Let ~ρ′ be the least square solution (potentially non-physical) from the noisy measurement record,

~ρ′ =
(
A†A

)−1
A†
(
~b+ δ~b

)
.

We claim that the physical density matrix τ that is closest to ρ′ in the sense of some norm (say, Frobenius norm) can
only be a better estimate of the true state ρ, i.e.

‖τ − ρ‖F ≤ ‖ρ
′ − ρ‖F . (A1)

We now prove the above equation by contradiction. Suppose ‖τ − ρ‖F > ‖ρ′ − ρ‖F . Now consider the triangle
whose vertices are ρ, ρ′ and τ . Let θ ∈ [0, π] be the angle at the vertex τ . Using the Law of Cosines, we have that

cos θ =
‖ρ′ − τ‖2F − ‖ρ− ρ′‖

2
F + ‖ρ− τ‖2F

2 ‖ρ′ − τ‖F ‖ρ− τ‖F
> 0.

This implies that 0 ≤ θ < π/2, i.e., the angle at τ is less than 90 degrees.
Hence, there exists a point ζ that is a convex combination of τ and ρ such that

‖ζ − ρ′‖F < ‖τ − ρ
′‖F .

Moreover, since ρ and τ are physical density matrices and the space of density matrices is convex, it follows that
ζ is also physical. This contradicts the assumption that “τ is the physical density matrix τ that is closest to ρ′”.
Therefore, we conclude that Eq. (A1) must hold.
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Figure 8. Greedy optimization of the set of β′s. Crosses show the position of α′s and stars indicate all the β′s added to the
set S. At each step, the optimal β is added to the set S. When the condition number is low enough (smaller than a preset
threshold), mc is increased by one and the optimization goes on.

Practically, τ can be obtained as the solution of the following semidefinite program (SDP),

minimize ‖σ − ρ′‖F
subject to σ � 0, trσ = 1.

Note that SDP can be solved efficiently using the Matlab package CVX [43, 44].
Alternatively, a physical reconstruction τ ′ may be obtained by directly solving the least square problem in the space

of physical density matrices, i.e.

minimize
∥∥∥A · ~σ −~b′∥∥∥

2

subject to σ � 0, trσ = 1.

Appendix B: Bound for Reconstruction Error

We derive lower bound on the fidelity of reconstruction in terms of condition number here. We will first find a
upper bound for the trace distance of the reconstructed state to the true state, and then get the fidelity bound using
the relation between fidelity and trace distance D(ρ, σ),

F (ρ, σ) ≥ 1−D(ρ, σ)

where D(ρ, σ) = 1
2 ‖ρ− σ‖tr.

Let ~ρ be the true state and ~ρ′ be the least square solution from the noisy measurement record,

~ρ =
(
A†A

)−1
A†~b,

~ρ′ =
(
A†A

)−1
A†
(
~b+ δ~b

)
,

and define δ~ρ ≡ ~ρ− ~ρ′ = Ã−1δ~b =
(
A†A

)−1
A†δ~b.

Following the main text we use the 2-norm for vectors ~ρ to define the condition number, then

(
‖δ~ρ‖2
‖~ρ‖2

)
/


∥∥∥δ~b∥∥∥

2∥∥∥~b∥∥∥
2

 ≤ κ(A).
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Since the Frobenius norm of a matrix is the same as the 2-norm of it when arranged as a vector,

‖ρ‖F = ‖~ρ‖2 ≤ κ(A) ‖ρ‖F

∥∥∥δ~b∥∥∥
2∥∥∥~b∥∥∥
2

.

Let τ be physical density matrix that best satisfies the noisy measurement record Aτ = ~b+δ~b, obtained as described
in the previous section. We have

‖ρ− τ‖F ≤ ‖ρ− ρ
′‖F = ‖δρ‖F ≤ κ(A) ‖ρ‖F

∥∥∥δ~b∥∥∥
2∥∥∥~b∥∥∥
2

,

where the first inequality uses Eq. (A1). The above bound is useful since it upper bounds the distance (in terms of
Frobenius norm) between the reconstructed state and the true state.

Using the relation between the trace norm and Frobenius norm

‖M‖tr ≤
√
r ‖M‖F ,

we find

D(ρ, τ) ≤ 1

2

√
r ‖ρ− τ‖F ≤

1

2

√
rκ(A) ‖ρ‖F

∥∥∥δ~b∥∥∥
2∥∥∥~b∥∥∥
2

and

F (ρ, τ) ≥ 1−D(ρ, τ) ≥ 1− 1

2

√
rκ(A) ‖ρ‖F

∥∥∥δ~b∥∥∥
2∥∥∥~b∥∥∥
2

. (B1)

In practice we have an estimate for the measurement noise ε ∼ ‖
δ~b‖

2

‖~b‖
2

and the truncation dimension d upperbounds

the rank r of δρ. Since ρ is unknown we replace it with the reconstructed τ . In this way an approximate bound on
the fidelity can be calculated, F (ρ, τ) & 1− 1

2ε
√
dκ(A) ‖τ‖F .

Appendix C: Discussion of Full/Half Ring Configurations

The Pinching Inequality

Mathematically, wiping out all the off-diagonal blocks is called “pinching” and is formally described as

C 7→ C̃ =
∑
k

PkCPk,

where Pk is the projector to the subspace corresponding to the block Ckk. It is known that the eigenvalues of
C̃ are majorized by those of C (see page 50 of [39]), i.e.

∑k
i=1 λ

↓
i (C̃) ≤

∑k
i=1 λ

↓
i (C) for k = 1, 2, · · · , D and∑D

i=1 λ
↓
i (C̃) =

∑D
i=1 λ

↓
i (C), where λ↓i are the eigenvalues in descending order and D is the dimension of C and C̃.

This implies that κ(C̃) ≤ κ(C). This fact can also be understood in the language of quantum mechanics. View C̃ as
a block-diagonal Hamiltonian H0 and C− C̃ as a perturbationH1 coupling different subspaces of H0. It is well known
that energy levels repel each other when coupled to each other. So the highest of energy level gets higher and the
lowest gets lower, with their ratio being increased.

This means that among the sets of β′s with the same magnitude, the full-ring configuration (FRC) can give the
optimal condition number (CN).
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Multiple full-ring configuration gives lowest condition number

We now argue that the multiple full-ring configuration (MFRC) can give the minimal condition number if we do not
limit the number of measurement settings. Here is our two-step argument. (a) Given a candidate configuration {βi}
distributed on a ring, i.e. |βi| = r, we can always decrease CN by rearranging/adding β′s such that the configuration
becomes FRC, i.e. pinching the covariance matrix. (b) For any given candidate set {βi} distributed on different
rings, we can always decrease the condition number by rearranging/adding β′s such that the configuration becomes
a collection of FRC (MFRC) to pinch the covariance matrix.

Numerically we observed that usually one full-ring is as good as the multiple full-ring configuration, except the case
with mc = 1 where a 1.6% difference between single-ring and double-ring configurations is found.

Half-ring configuration approximates full-ring well

We find it possible to simplify FRC further. With less than (2mc + 1) points, it is impossible to exactly satisfy∑
j e
i(k1−k2)φj = δk1k2 for all k1, k2. However, we find a very special asymptotic behavior of the covariance matrix,

as stated by the following theorem (see Appendix F for the proof).

Theorem 1. The large-|β| asymptotic form of Cm1m2,m3m4(β) is

Cm1m2,m3m4(β) ∼

{
g(m1, m2, m3, m4, φ)/ |β| ,

∑4
i=1mi is even;

g(m1, m2, m3, m4, φ)/ |β|2 ,
∑4
i=1mi is odd;

where φ is the complex angle of β.

This theorem effectively says that the elements of C(β) has a “parity selection rule” .
So in the large |β| limit, the block Ck1k2 ∼ 1/ |β| if k1−k2 is even and Ck1k2 ∼ 1/ |β|2 if k1−k2 is odd. Certainly, all

diagonal blocks Ckk ∼ 1/ |β|. So if |β| is large enough, the blocks with odd (k1 − k2) automatically vanish. To make
the rest of the off-diagonal blocks vanish, we only need to choose a configuration such that

∑
j e
i(k1−k2)φj = δk1k2

holds for even k1 − k2 = 2l, where l = 0, ±1, ±2, · · · , ±mc, i.e.∑
j

e2ilφj = δl,0.

It is straightforward to check that the half-ring configuration (HRC), φj = π
mc+1j qualifies for all mc and φj = 2π

mc+1j

qualifies for even mc. In fact for even mc, φj = 2πn
mc+1j could work for any non-zero integer n. Therefore if the optimal

radius of FRC is large (which as we will show is usually the case), HRC should work equally well with only half of
the measurements.

Appendix D: Optimal Setting For Homodyne Measurement

The pinching analysis to Homodyne tomography follows the Qn case closely. The term |m1〉 〈m2| contributes the
Homodyne signal

H(|m1〉 〈m2|) = tr [|xθ〉 〈xθ| · |m1〉 〈m2|]

=
ei(m1−m2)θ

π1/2
√

2m1+m2m1!m2!
e−x

2

Hm1
(x)Hm2

(x).

And the covariance matrix is

Cm1m2,m3m4
=

ei(m3−m4−m1+m2)θ

π
√

2m1+m2+m3+m4m1!m2!m3!m4!

ˆ +∞

−∞
e−2x

2

Hm1
(x)Hm2

(x)Hm3
(x)Hm4

(x)

≡ ei(m3−m4−m1+m2)θ

π
√

2m1+m2+m3+m4m1!m2!m3!m4!
g(m1,m2,m3,m4).
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Due to the properties of the Hermite polynomials (i.e. Hn(x) is a odd/even function of x if n is odd/even), if
m1 +m2 +m3 +m4 is odd, the integral

ˆ +∞

−∞
dx e−2x

2

Hm1
(x)Hm2

(x)Hm3
(x)Hm4

(x) = 0.

To pinch the covariance matrix, we can use the half-ring configuration, i.e. pick (mc + 1) θj such that θj = π
2mc+1j

where j = 0, 1, 2, · · · , mc.
Plugging definite values for m1, m2, m3, m4, we find the covariance matrix for Homodyne to be the same (up to

global a constant) as the asymptotic covariance matrix for Qn measurements.

Appendix E: Numerical Calculation of the Gradient of the Condition Number

We briefly outline how to calculate the gradient of a matrix’s condition number using perturbation theory, in the
context of the state tomography problem.

Let us perturbe matrix A by changing βi infinitesimally,

A(βi + δβi) = A+ δβi(∂βiA)

≡ A+ δβiBi,

where matrix Bi can be calculated from the explicit expression of A. Note that we are changing only one βi so there’s
no summation over i here. We try to find ∂βiκ(A). For convenience we choose to work with the Hermitian covariance
matrix C ≡ A†A whose condition number is κ(C) = κ(A†A) = κ(A)2.

∂βiκ(C) = ∂βi
εmax(C)

εmin(C)

=
∂βiεmax(C)εmin(C)− εmax(C)∂βiεmin(C)

εmin(C)2
, (E1)

where εmax/εmin are the largest/smallest eigenvalues of C. Now the problem reduces to calculate the gradient of the
eigenvalues of C with respect to βi.

It is well known in quantum mechanics that the first order perturbation to the energy of the k-th eigenstate is

δεk = 〈ψk| δH |ψk〉

where |ψk〉 is the k-th eigenstate of the unperturbed Hamiltonian H and δH is a small perturbation.
In our case,

C(βi + δβi) = C + δβi(B
†
iA+A†Bi) +O(δβ2),

so

∂βiεk(C) = v†k(B†iA+A†Bi)vk, (E2)

where vk is the k-th eigenvector of C.

Appendix F: Proof of Theorem 1

For completeness, we provide the detailed proof of theorem 1 in this appendix.

Theorem. The large-|β| asymptotic form of Cm1m2,m3m4
(β) is

Cm1m2,m3m4
(β) ∼

{
g(m1, m2, m3, m4, φ)/ |β| ,

∑4
i=1mi is even;

g(m1, m2, m3, m4, φ)/ |β|2 ,
∑4
i=1mi is odd;

where φ is the complex angle of β.
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Some Preparation

Lemma 2. Let Iν(z) denote the modified Bessel functions of the first kind. For any non-negative integer k, we have

∂k

∂zk
[
(2
√
z)νIν(2

√
z)
]

= 2k
[
(2
√
z)ν−kIν−k(2

√
z)
]
,

∂k

∂zk
[
(2
√
z)−νIν(2

√
z)
]

= 2k
[
(2
√
z)−(ν+k)Iν+k(2

√
z)
]
,

Proof. These can be verified using the properties of Iν(z).

Lemma 3. Let n, j1, j2, j3, j4 be non-negative integers, we have
∞∑
n=0

zn

(n!)2

(
n
j1

)(
n
j2

)(
n
j3

)(
n
j4

)
=

1

j1!j2!j3!j4!
zj4

∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z)

=

j4∑
k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√
z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4(2

√
z).

where I0(2
√
z) =

∑∞
n=0

zn

(n!)2 .

Proof. It is straightforward to show tha∑
n

zn

(n!)2

(
n
j

)
=

1

j!

∑
n

zn

(n!)2
n(n− 1) · · · (n− j + 1) =

1

j!
zj

∂j

∂zj
I0(2
√
z).

Similarly,
∞∑
n=0

zn

(n!)2

(
n
j1

)(
n
j2

)(
n
j3

)(
n
j4

)
=

1

j1!j2!j3!j4!
zj4

∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z).

We now try to express the above quantity in an explicit form.
First, using Lemma 2,

∂j1

∂zj1
I0(2
√
z) = 2j1

[
(2
√
z)−j1I−j1(2

√
z)
]
.

Next,

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z) = 2j2−j1

[
(2
√
z)j1−j2Ij1−j2(2

√
z)
]
.

Continuing this, we can get

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z) = 2j2−j1

∂j3

∂zj3
zj2
[
(2
√
z)j1−j2Ij1−j2(2

√
z)
]

= 2j2−j1
j3∑

k3=0

(
j3
k3

)
∂k3

∂zk3
(zj2)

∂j3−k3

∂zj3−k3

[
(2
√
z)j1−j2Ij1−j2(2

√
z)
]

= 2j3+j2−j1
j3∑

k3=0

(
j3
k3

)
∂k3

∂zk3
(zj2)2−k3

[
(2
√
z)j1−j2−j3+k3Ij1−j2−j3+k3(2

√
z)
]

Eventually we obtain

zj4
∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z)

=

j4∑
k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√
z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4(2

√
z).
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Note that in the above derivation, factors like

a!

(a− b)!
= a(a− 1)(a− 2) · · · (a− b+ 1)

are naturally interpreted as 0 if a < b.

Lemma 4. Let m be a positive integer and k is a non-negative integer,

m∑
i=0

(−1)i
(
m
i

)
ik =


0, if 0 ≤ k < m;

(−1)mm!, if k = m;

(−1)mm!

(
m+ 1

2

)
, if k = m+ 1.

Proof. Let α be any real number,

(1 + α)m =

m∑
i=0

αi
(
m
i

)
.

We then have

(α
∂

∂α
)k(1 + α)m =

m∑
i=0

ikαi
(
m
i

)
.

Defining x ≡ 1 + α, we have

α
∂

∂α
= (α+ 1− 1)

∂

∂(α+ 1)
= (x− 1)

∂

∂x
= x

∂

∂x
− ∂

∂x
.

So
m∑
i=0

(−1)i
(
m
i

)
ik = (α

∂

∂α
)k(1 + α)m

∣∣∣∣
α=−1

=

(
x
∂

∂x
− ∂

∂x

)k
xm

∣∣∣∣∣
x=0

. (F1)

Expanding
(
x ∂
∂x −

∂
∂x

)k
we will get 2k terms, among which those that contain l factors of − ∂

∂x would reduce the
power of xm by l (note that the factor x ∂

∂x preserves the power of x). The only term surviving in Eq. (F1) is x0.
Clearly when k < m, all the terms have power at least m− k. When k = m, the only term surviving is(

− ∂

∂x

)m
xm = (−1)mm!.

For k = m+ 1, there are m+ 1 surviving term each of which has m factors of − ∂
∂x and one factor of x ∂

∂x . They differ
by the position where x ∂

∂x appear. Consider the term with the i-th factor being x ∂
∂x , it is(

− ∂

∂x

)i−1
x
∂

∂x

(
− ∂

∂x

)m+1−i

xm = (−1)m
(
∂

∂x

)i−1
x
∂

∂x

m!

(i− 1)!
xi−1

= (−1)m(i− 1)!
m!

(i− 2)!

= (−1)mm!(i− 1).

Summing all these terms we get

m+1∑
i=1

(−1)mm!(i− 1) = (−1)mm!

(
m+ 1

2

)
.
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Proof of Theorem 1

Proof. Let β = |β| eiφ, x ≡ |β|, M = m1 +m2 +m3 +m4, we have

Cm1,m2;m3,m4
(β) =

∑
n

A∗n;m1m2
An;m3m4

= eiφ(m2+m3−m1−m4)(−1)M
√
m1!m2!m3!m4!x−Me−2x

2

×
∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

Using the explicit formula for the associated Laguerre polynomial

Ln−mm (x2) =

m∑
i=0

1

i!

(
n

m− i

)
(−x2)i =

m∑
j=0

(
n
j

)
(−1)m−j

(m− j)!
x2(m−j),

we find that

∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

=

m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

m4∑
j4=0

(−1)M−j1−j2−j3−j4x2(M−j1−j2−j3−j4)

(m1 − j1)!j1!(m2 − j2)!j2!(m3 − j3)!j3!(m4 − j4)!j4!

×j1!j2!j3!j4!
∑
n

x4n

(n!)2

(
n
j1

)(
n
j2

)(
n
j3

)(
n
j4

)

Letting z = x4, using Lemma 3, we have

j1!j2!j3!j4!
∑
n

x4n

(n!)2

(
n
j1

)(
n
j2

)(
n
j3

)(
n
j4

)
= zj4

∂j4

∂zj4
zj3

∂j3

∂zj3
zj2

∂j2

∂zj2
zj1

∂j1

∂zj1
I0(2
√
z)

=

j4∑
k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(
√
z)j1+j2+j3+j4−k3−k4Ij1−j2−j3−j4+k3+k4(2

√
z).

Therefore after some simplification

∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

= (−1)Mx2M
m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

m4∑
j4=0

(−1)j1+j2+j3+j4

(m1 − j1)!j1!(m2 − j2)!j2!(m3 − j3)!j3!(m4 − j4)!j4!

×
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4(2x2).
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Part of the above formula can be further simplified,
m3∑
j3=0

m4∑
j4=0

(−1)j3+j4

(m3 − j3)!j3!(m4 − j4)!j4!

×
j4∑

k4=0

j3∑
k3=0

j4!

k4!(j4 − k4)!

j3!

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4(2x2)

=

m4∑
k4=0

m3∑
k3=0

m3∑
j3=k3

m4∑
j4=k4

(−1)j3+j4

(m3 − j3)!(m4 − j4)!

× 1

k4!(j4 − k4)!

1

k3!(j3 − k3)!

j2!

(j2 − k3)!

(j2 + j3 − k3)!

(j2 + j3 − k3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4+k3+k4(2x2)

=

m4∑
k4=0

m3∑
k3=0

m3−k3∑
j3=0

m4−k4∑
j4=0

(−1)j3+k3+j4+k4

(m3 − j3 − k3)!(m4 − j4 − k4)!

× 1

k4!j4!

1

k3!j3!

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
(x2)−k3−k4Ij1−j2−j3−j4(2x2)

=

m4∑
k4=0

m3∑
k3=0

(x2)−k3−k4

k3!k4!
(−1)k3+k4

j2!

(j2 − k3)!(m3 − k3)!(m4 − k4)!

×
m3−k3∑
j3=0

(−1)j3
(j2 + j3)!

(j2 + j3 − k4)!

(
m3 − k3

j3

)m4−k4∑
j4=0

(−1)j4
(
m4 − k4

j4

)
Ij1−j2−j3−j4(2x2).

Now ∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

= (−1)Mx2M
1

m1!m2!

m4∑
k4=0

m3∑
k3=0

(x2)−k3−k4

k3!k4!(m3 − k3)!(m4 − k4)!
(−1)k3+k4

×
m1∑
j1=0

(−1)j1
(
m1

j1

) m2∑
j2=0

(−1)j2
(
m2

j2

)
j2!

(j2 − k3)!

×
m3−k3∑
j3=0

(−1)j3
(j2 + j3)!

(j2 + j3 − k4)!

(
m3 − k3

j3

)m4−k4∑
j4=0

(−1)j4
(
m4 − k4

j4

)
Ij1−j2−j3−j4(2x2).

We now focus on one term in the double summation
∑m4

k4=0

∑m3

k3=0, i.e. the summand with fixed k3 and k4. It is
known that for large z,

Iν(z) ∼ ez√
2πz

[
1− 4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ · · ·+ (−1)l

∏l
i=1

[
4ν2 − (2i− 1)2

]
l!(8z)l

+ · · ·

]
,

in our case

Ij1−j2−j3−j4(2x2) ∼ e2x
2

2x
√
π

[
1− 4(j1 − j2 − j3 − j4)2 − 1

16x2
· · ·+ (−1)l

∏l
i=1

[
4(j1 − j2 − j3 − j4)2 − (2i− 1)2

]
l!(4x)2l

+ · · ·

]
.

The expansion of Ij1−j2−j3−j4(2x2) contains polynomials of the form jp11 jp22 jp33 jp44 . Note also j2!
(j2−k3)! is a polynomial

of j2 of degree k3 and (j2+j3)!
(j2+j3−k4)! is polynomial of (j2 + j3) of degree k4. So overall the summand of the quadruple

summation
∑m1

j1=0

∑m2

j2=0

∑m3−k3
j3=0

∑m4−k4
j4=0 is a combination of polynomials of the form jp11 jp22 jp33 jp44 . Due to Lemma

4, the terms jp11 jp22 jp33 jp44 that gives non-zero contribution are those with p1 ≥ m1, p2 ≥ m2, p3 ≥ m3 − k3, and
p4 ≥ m4 − k4. We try to find such terms with the lowest power in 1

x . That is to find the smallest l such that the
following expression

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!

l∏
i=1

[
4(j1 − j2 − j3 − j4)2 − (2i− 1)2

]
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contains a term like jm1
1 jm2

2 jm3−k3
3 jm4−k4

4 or of even higher order. Since

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!

l∏
i=1

[
4(j1 − j2 − j3 − j4)2 − (2i− 1)2

]
= jk32 (j2+j3)k44l(j1−j2−j3−j4)2l+(lower order terms),

we must require

k3 + k4 + 2l ≥ m1 +m2 +m3 − k3 +m4 − k4,

i.e.

2(l + k3 + k4) ≥ m1 +m2 +m3 +m4 = M.

Thus the smallest l should be

l∗ =

{
M
2 − k3 − k4, if M even;
M+1

2 − k3 − k4, if M odd.

So if we neglect terms that either gives zero contribution to the quadruple sum over ji or are not of the leading order
in 1

x ,

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4(2x2)

∼ jk32 (j2 + j3)k4(−1)l∗
4l∗(j1 − j2 − j3 − j4)2l∗

l∗!(4x)2l∗
e2x

2

2x
√
π

= jk32 (j2 + j3)k4(j1 − j2 − j3 − j4)2l∗
(−1)l∗

l∗!4l∗x2l∗
e2x

2

2x
√
π
.

When M is even, 2(l∗ + k3 + k4) = M , so

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4(2x2)

∼ jk32
k4∑
µ=0

(
k4
µ

)
jµ2 j

(k4−µ)
3

×(−1)m2+m3+m4−2(k3+k4)jm1
1 jm2−k3−µ

2 jm3−k3−k4+µ
3 jm4−k4

4

×
(

M − 2k3 − 2k4
m1,m2 − k3 − µ,m3 − k3 − k4 + µ,m4 − k4

)
(−1)l∗

l∗!4l∗x2l∗
e2x

2

2x
√
π

= (−1)M−m1

k4∑
µ=0

(
k4
µ

)(
M − 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ, m4 − k4

)
jm1
1 jm2

2 jm3−k3
3 jm4−k4

4

× (−1)M/2−k3−k4

(M/2− k3 − k4)!2(M−2k3−2k4)x(M−2k3−2k4)
e2x

2

2x
√
π
,

where
(

n
k1, k2, · · · , km

)
≡ n!

k1!k2!···km! .

Using Lemma 4,

m1∑
j1=0

(−1)j1
(
m1

j1

) m2∑
j2=0

(−1)j2
(
m2

j2

)m3−k3∑
j3=0

(−1)j3
(
m3 − k3

j3

)m4−k4∑
j4=0

(−1)j4
(
m4 − k4

j4

)
jm1
1 jm2

2 jm3−k3
3 jm4−k4

4

=

m1∑
j1=0

(−1)j1
(
m1

j1

)
jm1
1

m2∑
j2=0

(−1)j2
(
m2

j2

)
jm2
2

m3−k3∑
j3=0

(−1)j3
(
m3 − k3

j3

)
jm3−k3
3

m4−k4∑
j4=0

(−1)j4
(
m4 − k4

j4

)
jm4−k4
4

= (−1)M−k3−k4m1!m2!(m3 − k3)!(m4 − k4)!.
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Plugging back to the expression of
∑
n
x4n

(n!)2L
n−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2) we eventually get∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

∼ (−1)m1+M/2e2x
2

xM−1
1

2M+1

1√
π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k422(k3+k4)

k3!k4!(M/2− k3 − k4)!

×
k4∑
µ=0

(
k4
µ

)(
M − 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ, m4 − k4

)
.

Finally, we have the leading order contribution for the even M case:

Cm1,m2;m3,m4
(β) ∼ x−1eiφ(m2+m3−m1−m4)

√
m1!m2!m3!m4!(−1)m1+M/2 1

2M+1
√
π

×
m4∑
k4=0

m3∑
k3=0

(−1)k3+k422(k3+k4)

k3!k4!(M/2− k3 − k4)!

×
k4∑
µ=0

(
k4
µ

)(
M − 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ, m4 − k4

)
=
g(m1, m2, m3, m4, φ)

|β|
.

When M is odd, 2(l∗ + k3 + k4) = M + 1. In this case five terms give non-zero contribution under the quadruple
sum of ji, which are P1 ≡ jm1+1

1 jm2
2 jm3−k3

3 jm4−k4
4 , P2 ≡ jm1

1 jm2+1
2 jm3−k3

3 jm4−k4
4 , P3 ≡ jm1

1 jm2
2 jm3−k3+1

3 jm4−k4
4 ,

P4 ≡ jm1
1 jm2

2 jm3−k3
3 jm4−k4+1

4 and P5 ≡ jm1
1 jm2

2 jm3−k3
3 jm4−k4

4 . P1, · · · , P4 are the highest order term about the
variables ji in the summand and P5 is the next highest order. Let us write

j2!

(j2 − k3)!

(j2 + j3)!

(j2 + j3 − k4)!
Ij1−j2−j3−j4(2x2) ∼ (−1)l∗

l∗!4l∗x2l∗
e2x

2

2x
√
π

5∑
ν=1

λνPν .

The coefficients λν are essentially combinatoric factors and it is not difficult to work them out, although the process
can be long and tedious. Eventually we find,

λ1 = (−1)m1+1
k4∑
µ=0

(
k4
µ

)(
M + 1− 2k3 − 2k4

m1 + 1, m2 − k3 − µ, m3 − k3 − k4 + µ, m4 − k4

)
,

λ2 = (−1)m1

k4∑
µ=0

(
k4
µ

)(
M + 1− 2k3 − 2k4

m1, m2 − k3 − µ+ 1, m3 − k3 − k4 + µ, m4 − k4

)
,

λ3 = (−1)m1

k4∑
µ=0

(
k4
µ

)(
M + 1− 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ+ 1, m4 − k4

)
,

λ4 = (−1)m1

k4∑
µ=0

(
k4
µ

)(
M + 1− 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ, m4 − k4 + 1

)
,

λ5 =

k4∑
µ=0

−k3(k3 − 1)

2

(
k4
µ

)(
M + 1− 2k3 − 2k4

m1, m2 − k3 − µ+ 1, m3 − k3 − k4 + µ, m4 − k4

)

+

k4−1∑
µ=0

−k4(k4 − 1)

2

(
k4 − 1
µ

)(
M + 1− 2k3 − 2k4

m1, m2 − k3 − µ, m3 − k3 − k4 + µ+ 1, m4 − k4

)
.
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The key point to notice is that because 2(l∗ + k3 + k4) = M + 1, now the leading term in 1
x is

(−1)l∗

l∗!4l∗x2l∗
e2x

2

2x
√
π

=
(−1)(M+1)/2−k3−k4

((M + 1)/2− k3 − k4)!2(M+1−2k3−2k4)x(M+1−2k3−2k4)
e2x

2

2x
√
π
∼ 1

x(M+1−2k3−2k4)
e2x

2

2x
√
π
,

which is one order higher in 1
x compared to the even M case.

Using Lemma 4,
m1∑
j1=0

(−1)j1
(
m1

j1

) m2∑
j2=0

(−1)j2
(
m2

j2

)m3−k3∑
j3=0

(−1)j3
(
m3 − k3

j3

)m4−k4∑
j4=0

(−1)j4
(
m4 − k4

j4

) 5∑
ν=1

λνPν

= (−1)M−k3−k4m1!m2!(m3 − k3)!(m4 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]
.

Now ∑
n

x4n

(n!)2
Ln−m1
m1

(x2)Ln−m2
m2

(x2)Ln−m3
m3

(x2)Ln−m4
m4

(x2)

∼ (−1)(M+1)/2e2x
2

xM−2
1

2M+2
√
π

m4∑
k4=0

m3∑
k3=0

(−1)k3+k422(k3+k4)

k3!k4! ((M + 1)/2− k3 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]
.

Finally,

Cm1,m2;m3,m4
(β) ∼ −x−2eiφ(m2+m3−m1−m4)

√
m1!m2!m3!m4!(−1)(M+1)/2 1

2M+2
√
π

×
m4∑
k4=0

m3∑
k3=0

(−1)k3+k422(k3+k4)

k3!k4! ((M + 1)/2− k3 − k4)!

×
[
λ5 +

(
m1 + 1

2

)
λ1 +

(
m2 + 1

2

)
λ2 +

(
m3 − k3 + 1

2

)
λ3 +

(
m4 − k4 + 1

2

)
λ4

]
=
g(m1, m2, m3, m4, φ)

|β|2
.

In summary, we have thus proved that for large |β|,

Cm1m2,m3m4(β) ∼

{
g(m1, m2, m3, m4, φ)/ |β| ,

∑4
i=1mi is even;

g(m1, m2, m3, m4, φ)/ |β|2 ,
∑4
i=1mi is odd;

NOTE: In fact our technique can be used to prove the general asymptotic result

∞∑
n=0

1

(n!)2
x4n

∏
i

Ln−mimi (x2) ∼

{
x
∑
imi−1,

∑
imi is even;

x
∑
imi−2,

∑
imi is odd.
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