
This is the accepted manuscript made available via CHORUS. The article has been
published as:

How to quantify coherence: Distinguishing speakable and
unspeakable notions

Iman Marvian and Robert W. Spekkens
Phys. Rev. A 94, 052324 — Published 18 November 2016

DOI: 10.1103/PhysRevA.94.052324

http://dx.doi.org/10.1103/PhysRevA.94.052324


How to quantify coherence: distinguishing speakable and unspeakable notions

Iman Marvian1, 2 and Robert W. Spekkens3

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics and Astronomy, Center for Quantum Information Science and Technology,

University of Southern California, Los Angeles, CA 90089
3Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo,

Ontario, Canada N2L 2Y5

Quantum coherence is a critical resource for many operational tasks. Understanding how to quan-
tify and manipulate it also promises to have applications for a diverse set of problems in theoretical
physics. For certain applications, however, one requires coherence between the eigenspaces of spe-
cific physical observables, such as energy, angular momentum, or photon number, and it makes a
difference which eigenspaces appear in the superposition. For others, there is a preferred set of sub-
spaces relative to which coherence is deemed a resource, but it is irrelevant which of the subspaces
appear in the superposition. We term these two types of coherence unspeakable and speakable re-
spectively. We argue that a useful approach to quantifying and characterizing unspeakable coherence
is provided by the resource theory of asymmetry when the symmetry group is a group of transla-
tions, and we translate a number of prior results on asymmetry into the language of coherence. We
also highlight some of the applications of this approach, for instance, in the context of quantum
metrology, quantum speed limits, quantum thermodynamics, and NMR. The question of how best
to treat speakable coherence as a resource is also considered. We review a popular approach in terms
of operations that preserve the set of incoherent states, propose an alternative approach in terms of
operations that are covariant under dephasing, and we outline the challenge of providing a physical
justification for either approach. Finally, we note some mathematical connections that hold among
the different approaches to quantifying coherence.

PACS numbers:

I. INTRODUCTION AND SUMMARY

Many properties of quantum states can be better
understood by considering them as constituting a re-
source [1]. The properties of entanglement [2, 3], asym-
metry [4–13], and athermality [14–19] are good examples.
We are here concerned with the property of having coher-
ence relative to some decomposition of the Hilbert space.
This property appears to be necessary for certain types of
tasks, and as such it is natural to attempt to understand
coherence from the resource-theoretic perspective. This
has led to some proposals for how to define a resource
theory of coherence and in particular how to quantify
coherence [10, 20–23].

The following is a list of operational tasks for which
quantum coherence seems to be a resource.

• Quantum metrology. An example is the task of es-
timating the phase shift on a field mode, used in
quantum accelerometers and gravitometers. Here
one requires the ability to prepare and measure co-
herent superpositions of different occupation num-
bers of the mode. Another example is estimat-
ing the rotation of a quantum gyroscope about
some axis, where one must be able to prepare and
measure coherent superpositions of eigenstates of
the angular momentum operator along that axis, a
problem that is relevant for developing high preci-
sion measurements of magnetic field strength [24].
A third example is building high precision clocks,
where one must be able to prepare and measure co-

herent superpositions of energy eigenstates [25–28].

• Reference frame alignment. Examples include
aligning distant gyroscopes, synchronizing distant
clocks, and phase-locking distant phase references.
Each example requires communicating quantum
states that carry the appropriate sort of informa-
tion (orientation, time, and phase, for instance) and
therefore, like the metrology examples, requires co-
herence relative to the appropriate eigenspaces [29].

• Thermodynamic tasks. An example is the task of
extracting as much work as possible from a given
quantum state given a bath at some fixed back-
ground temperature. This require states that are
not in thermal equilibrium at the background tem-
perature. Resources here include not only those
states having a nonthermal distribution of energy
eigenstates, but also those that have coherence be-
tween the energy eigenspaces [30–33].

• Computational, cryptographic and communication
tasks. For these sorts of tasks, it is well known
that having access only to preparations and mea-
surements that are all diagonal in some basis, hence
incoherent, is not sufficient for achieving any quan-
tum advantage. So it is natural to seek to study
such coherence as a resource.

For many resource theories, there are also applications
to problems in theoretical physics. For example, while
entanglement theory was originally developed through its
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role as a resource in operational tasks such as quantum
teleportation [34] and dense coding [35], the possibility
of quantifying entanglement has since found applications
in diverse problems, including the study of phase tran-
sitions, characterizing the ground states of many-body
systems [36–39], holography in quantum field theories
[40], and the black hole information-loss paradox [41–
43]. Similarly, the possibility of quantifying coherence is
expected to shed light on various problems in theoretical
physics. The following are a few examples.

• Quantum speed limits. The Mandelstam-Tamm
bound [44] and the Margolus-Levitin bound [45]
are upper bounds on the minimum time it takes
for a system in some state to evolve to a (partially)
distinguishable state. This time is clearly related
to the amount of coherence between energy eigen-
states and therefore quantifying this coherence can
shed light on quantum speed limits [21, 46].

• Magnetic resonance techniques. For such tech-
niques, in particular in NMR, if the system one
is probing consists of many spins, then the large
dimension of the Hilbert space together with con-
straints on the measurements are such that full to-
mography is not possible. Still, one can obtain
much useful information about the state by mea-
suring the degree of coherence relative to the quan-
tization axis [47]. If the system is quantized along
the ẑ axis, then coherence of order q of the state ρ
is defined as the norm of the sum of the off-diagonal
terms ρm1m2

|m1〉〈m2| with m2−m1 = q, where |m〉
is the eigenstate with eigenvalue m of Jẑ, the mag-
netic moment in the ẑ direction [47]1. Measuring
the quantum coherence of different orders is rela-
tively straightforward and has been useful in many
NMR experiments, in particular, in the context of
quantum information processing, as well as in sim-
ulations of many-body dynamics (See e.g. [47–49]).

• Coherence lengths. The spatial extent over which a
quantum state is coherent is an important concept
in many-body physics [50], for instance, in the on-
set of Bose-Einstein condensation [51], and in quan-
tum biology, for instance, in excitation transport in
photosynthetic complexes [52–54].

1 This concept is closely related to the idea of decomposition into
modes of asymmetry, introduced in Refs. [8, 9] (See Sec.III A 5
for a short review). In particular, the qth-quantum coherence
component in the language of [47] is the same as the mode q
component in the language of [8, 9]. Furthermore, the Frobenius
norm of the qth-quantum coherence component, which can be
measured in NMR experiments, provides lower and upper bounds
on a measure of coherence studied in [8, 9], which quantifies the
asymmetry of a state in mode q (See Eq.(6.23)).

• Order parameters. Quantum phase transitions in
the ground states of quantum many-body systems,
such as a spin chain, can be studied in terms of the
degree of coherence contained in local reductions of
the state, such as single-spin or two-spin, density
operators [55, 56].

• Decoherence theory. It is well known that inter-
action of a system with its environment can lead
to the loss of coherence relative to preferred sub-
spaces that depend on the nature of the interaction
[57]. For instance, if an environment couples to the
spatial degree of freedom of a system, then it will
reduce the spatial extent over which the system ex-
hibits coherence [57]. Such decoherence plays a sig-
nificant role in many accounts of the emergence of
classicality. Measures of coherence, therefore, can
be used as a tool for studying such emergence.

It is critical, however, to distinguish two types of co-
herence that arise in these various applications. The dis-
tinction can be explained as follows. Consider the states

|ψ〉 =
|0〉+ |1〉√

2
and |φ〉 =

|0〉+ |2〉√
2

. (1.1)

If we are interested in quantum computation using
qutrits and the elements of the set {|l〉}l∈{0,1,2} are the
computational basis states, then we would expect the
states |ψ〉 and |φ〉 to be equivalent resources because the
particular identities of the computational basis states ap-
pearing in the superposition are not relevant for any com-
putational task. In this case, l is simply an arbitrary label
or flag for different distinguishable pure states. If, on the
other hand, we are considering a phase estimation task
and the elements of the set {|l〉}l∈{0,1,2} are eigenstates
of the number operator, then there is a significant differ-
ence between the states |ψ〉 and |φ〉. For instance, |ψ〉 can
detect a phase shift of π while |φ〉 cannot. Conversely, if
one’s task is to estimate a very small phase shift, then
|φ〉 is a better resource than |ψ〉, because the former be-
comes more orthogonal to itself than the latter under a
small phase shift. Similarly, starting from the incoherent
state |0〉, to prepare a state close to |φ〉 one needs to have
access to a phase reference with higher precision than the
phase reference required to prepare a state close to |ψ〉
[8]. Here, l is not an arbitrary label, but an eigenvalue
of the number operator, and its value is relevant for the
task of phase estimation.

These two types of coherence pertain to two types of
information which have been termed speakable and un-
speakable [29, 58]. Speakable information is information
for which the means of encoding is irrelevant. This is ex-
emplified by the fact that if one seeks to transmit a bit-
string, it is irrelevant what degree of freedom one uses to
encode the bits. Unspeakable information is information
which can only be encoded in certain degrees of freedom.
Information about orientation, for instance, is unspeak-
able because it can only be transmitted using a system
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that transforms nontrivially under rotations. Informa-
tion about time is also unspeakable because it can only
be transmitted by a system that transforms nontrivially
under time-translations. We shall therefore refer to the
two types of coherence we have outlined above as speak-
able and unspeakable respectively.

For the list of operational tasks we have provided
above, the relevant notion of coherence is the unspeakable
one in all cases except for the last item. This is also the
case for most of the physical applications listed above.
This is because from the point of view of speakable co-
herence, the eigenvalues of the observable that defines
the preferred subspaces are not relevant: the set of pre-
ferred subspaces is a set without any order. However, for
the examples of quantum speed limits, coherence lengths
and magnetic resonance, for instance, it is clear that the
eigenvalues of the relevant observable, the Hamiltonian,
position, and magnetic moment observables respectively,
has important physical meaning, and there is a natural
order defined on the preferred subspaces. Therefore, the
notion of unspeakable coherence seems to be the more
appropriate one in these cases.

Most recent work on coherence as a resource, however,
considers only speakable coherence. One might think,
therefore, that there is work to be done in defining a re-
source theory of unspeakable coherence. In fact, however,
such a resource theory already exists. It simply goes by
another name: the resource theory of asymmetry.2 To be
precise, the resource of unspeakable coherence is nothing
more than the resource of asymmetry relative to a group
of translations.

A. Resource-Theoretic approach to unspeakable
coherence

Consider the task of phase estimation as an example.
A state of some field mode has coherence relative to the
eigenspaces of the number operator N if and only if it
is asymmetric (i.e., symmetry-breaking) relative to the
group of phase-shifts generated by N , where such trans-
lations of the phase are represented by the group of uni-
taries {e−iNθ : θ ∈ (0, 2π]}. This follows from the fact
that if a state ρ is symmetric under phase-shifts, that is,
∀θ ∈ (0, 2π] : e−iNθρeiNθ = ρ, then it must be block-
diagonal with respect to the eigenspaces of N , while if it
is not symmetric under phase-shifts, then it cannot have
this form.

Other examples are treated in a similar fashion3: co-
herence relative to the eigenspaces of a Hamiltonian

2 In early work on the topic, which emphasized the role of asym-
metric quantum states in defining quantum reference frames, the
resource theory of asymmetry was termed the resource theory of
frameness [4].

3 Throughout this article, we use units where ~ = 1.

H is simply asymmetry relative to the group of time-
translations generated by this Hamiltonian, {e−iHt : t ∈
R}; coherence relative to the eigenspaces of the mo-
mentum operator P is simply asymmetry relative to the
group of spatial translations, {e−iPx : x ∈ R}; coherence
relative to the eigenspaces of the angular momentum op-
erator Jz is simply asymmetry relative to the group of
rotations around ẑ, {e−iJzθ : θ ∈ (0, 2π]}.

Any resource theory must not only partition the states
into those that are resources and those that can be freely
prepared at no cost, it must also partition the opera-
tions into those that are resources and those that can be
freely implemented at no cost. The free set of operations
is required to be closed under composition and convex
combination [1]. In entanglement theory, for instance,
not only are the states partitioned into those that are
unentangled, hence free, and those that are entangled,
hence resources, but the operations are also partitioned
into those that can be achieved by Local Operations and
Classical Communications (LOCC), which are deemed to
be free, and those which cannot, which are deemed to be
resources.

If one considers each of the tasks for which unspeak-
able coherence is a resource, one sees that the freely-
implementable operations are those that are covariant
under translations, that is, for which first translating and
then implementing the operation is equivalent to first im-
plementing the operation and then translating (See Def.
2). For instance, in the task of reference frame alignment,
the set-up of the problem is that there are two parties,
each of which has a local reference frame (e.g. a gyro-
scope, a clock, a phase reference), but the group element
that relates these two frames (e.g. the rotation, the time
translation, the phase shift) is unknown. It is not diffi-
cult to show that the operations that one party can im-
plement relative to the other party’s reference frame are
precisely those that are covariant under the group action
[9, 29, 59]. In fact, there are many ways of providing a
physical justification of the translationally-covariant op-
erations, and we shall review these at length further on.

These considerations imply that the problem of quan-
tifying and classifying unspeakable coherence can be con-
sidered a special case of the resource theory of asymmetry
where the group under consideration describes a transla-
tional symmetry. (The resource theory of asymmetry is
more general than this, however, because it is also capa-
ble of dealing with non-Abelian groups where asymmetry
does not simply correspond to the existence of coherence
between some preferred set of subspaces.)

The notion that the resource of coherence should
be understood as asymmetry relative to the action of
a translational symmetry and that the free operations
defining the resource theory are the translationally-
covariant ones was first proposed in Ref. [10] and de-
veloped in Appendix A of Ref. [8] and in Ref. [21] (See
also [23]).

This connection implies that most questions about un-
speakable coherence as a resource find their answers in



4

prior work on the resource theory of asymmetry. It suf-
fices to specialize known results to the particular trans-
lational symmetry of interest. One of the goals of this
article is to explicitly translate some of these known re-
sults from the language of asymmetry to the language
of coherence, to describe the measures of coherence that
result, and to review some of the applications.

This approach to coherence has already been applied
to shed light on the various applications of unspeakable
coherence outlined above: quantum metrology [8, 10],
aligning reference frames [6, 29], quantum thermodynam-
ics [30, 32, 33, 60, 61], quantum speed limits [21, 46].
Furthermore, it was shown in Ref. [10] that for sym-
metic open-system dynamics, measures of asymmetry are
monotonically nonincreasing, thereby yielding a signif-
icant generalization of Noether’s theorem. Translated
into the language of coherence, this result states that for
open system dynamics that is translationally-covariant,
every measure of coherence which is derived within the
translational-covariance approach to coherence provides
a monotone of the dynamics. Such measures, therefore,
provide a powerful new tool for studying decoherence.

B. Resource-Theoretic approaches to speakable
coherence

The second topic we address in this work is whether
and how one can develop a resource theory of speakable
coherence.

When one considers recent work on quantifying coher-
ence from the perspective of the speakable/unspeakable
distinction, it is clear that it concerns itself only with
the speakable notion (See e.g. [20, 22, 62–68]). Most of
this work builds on a proposal by Baumgratz, Cramer
and Plenio (BCP) [20]. The set of free operations in the
BCP approach, called incoherent operations, is defined
based on the Kraus decomposition of quantum opera-
tions, and is closely related to another set which is called
incoherence-perserving. These are operations which take
every incoherent state to an incoherent state.

Because it concerns speakable coherence, this approach
is only appropriate for tasks concerning speakable infor-
mation. Nonetheless, if one is content to accept that a
resource theory of speakable coherence has a more lim-
ited scope of applications than one might have näıvely
expected, the question arises of whether the BCP ap-
proach is the right way to define the resource theory of
speakable coherence.

C. Criticism of resource-theoretic approaches to
speakable coherence

As we noted earlier, to take a resource-theoretic ap-
proach to any given property one must first of all make
a proposal for which set of operations can be freely im-
plemented. But a given proposal for how to do so is

only expected to have physical relevance if it can be pro-
vided with a physical justification, that is, if one can pro-
vide a restriction on experimental capabilities that yields
all and only the operations in the free set that is pro-
posed. For instance, in entanglement theory, the restric-
tion on experimental capabilities that yields all and only
the LOCC operations between two parties is the absence
of any quantum channel between the two parties.

Despite the amount of attention that the BCP ap-
proach has received, no one has yet described a physical
justification for the set of incoherent operations or the
set of incoherence-preserving operations. The property of
taking incoherent states to incoherent states is certainly a
mathematically well-defined constraint; whether there is
an experimental constraint that corresponds to this prop-
erty is the question of interest here. Of course one can
imagine physical scenarios in which preparing coherent
states is hard, for instance, because of the challenge of
isolating one’s systems from environmental decoherence.
But this does not justify the claim that the set of in-
coherent operations or the set of incoherence-preserving
operations is the natural one to study; to do so one needs
to argue that all of the operations in a given set can be
easily implemented in that physical scenario. However,
it is not clear whether such a justification can be found.

For one, because the free states in the resource the-
ory of coherence should be restricted to those that have
no coherence between the preferred subspaces, one would
expect that the free measurements in a resource theory
of coherence should be similarly restricted. However, we
show that the BCP proposal places no constraint on the
sorts of measurements that can be implemented, in the
following sense: for any POVM, it is possible to find
a measurement that realizes it which is considered free
in the BCP approach. Therefore, to justify the BCP
approach to the resource theory of speakable coherence,
one needs to argue that there are physical or experimen-
tal constraints which lead to a significant restriction on
state-preparations and transformations, but no restric-
tion on the possibilities for discriminating states.

For another, it turns out that even if one finds physical
scenarios in which the set of free unitaries is the set of
incoherent unitaries (as defined by BCP), this still does
not justify the set of incoherent or incoherence-preserving
operations as the set of free operations for a resource
theory of speakable coherence. As we will show, a gen-
eral incoherence-preserving (incoherent) operation can-
not be implemented using only incoherent states, inco-
herent unitaries and incoherent measurements. Using a
more technical language, this means that incoherence-
preserving (incoherent) operations do not admit dila-
tion using only incoherent resources (at least, not in a
straightforward way, when we treat all systems even-
handedly).

This lack of dilation for the set of free operations is



5

not necessarily a problem in its own right 4. One can
imagine physical scenarios where the set of operations
that we can implement in a controlled fashion using the
free unitaries and free states, are smaller than the set of
all free operations we can implement on the systems of
interest, because the latter operations might result from
uncontrolled interaction of these systems with an envi-
ronment over which the experimenter has limited control,
such as a thermal bath. The lack of a dilation that is
even-handed in its treatment of systems implies that this
is the only sort of avenue open for providing a physical
justification of the incoherence-preserving or incoherent
operations. Furthermore, we show that there are other
natural proposals for the set of free operations for the re-
source theory of speakable coherence that share precisely
the same set of free unitaries, namely, the incoherent uni-
taries. Therefore, even if one accepts that the set of in-
coherent unitaries is the appropriate set of free unitaries
for a resource theory of speakable coherence, this does
not resolve the question of which of the many sets of free
operations consistent with this choice one should use to
define the resource theory.

Our concerns about the suitability of the incoherence-
preserving operations in a resource theory of coherence
are bolstered by comparing them to the non-entangling
operations in entanglement theory5. The non-entangling
operations are those that map unentangled states to un-
entangled states [69]. Like the incoherence-preserving op-
erations, therefore, they are the largest set that maps the
free states to the free states. The non-entangling opera-
tions are a strictly larger set than the LOCC operations
because they include nonlocal operations such as swap-
ping systems between the two parties, and because they
allow the implementation of arbitrary POVM measure-
ments on the bipartite system. It is difficult to imagine
any restriction on experimental capabilities that yields
all and only the non-entangling operations. Indeed, it is
widely acknowledged that the LOCC operations—which
do arise from a natural restriction, having classical chan-
nels but not quantum channels—is the physically inter-
esting set, while the non-entangling operations are stud-
ied primarily as a mathematical technique for making

4 In entanglement theory, the free operations are the LOCC oper-
ations, which do not all admit of a dilation in terms of the free
unitaries (because the only unitaries in the LOCC set are tensor
products of local unitaries, which do not support any sort of com-
munication, classical or quantum, between the two parties), and
yet this is not considered a problem with entanglement theory
because there is a natural physical restriction that yields LOCC
as the set of free operations, namely, the fact that classical chan-
nels between parties are technologically easy to implement, while
quantum channels are not.

5 One can also define a set of operations that plays a role in entan-
glement theory which is parallel to the role played by incoherent
operations in the resource theory of coherence, namely, those
bipartite operations for which there is a Kraus decomposition
where each term is non-entangling.

inferences about LOCC. Incoherence-preserving and in-
coherent operations may ultimately have a similarly sub-
servient role to play in the resource theory of coherence.

D. A new proposal for the resource theory of
speakable coherence

In the absence of a physical justification for the BCP
approach, the question arises of whether an alternative
choice of the set of free operations might be more suited
to a resource-theoretic treatment of speakable coherence.
Once the question is raised, a natural alternative for the
set of free operations immediately suggests itself, namely,
those that are covariant under dephasing, that is, those
that commute with the operation that achieves complete
dephasing relative to the preferred subspaces. We call
this the dephasing-covariance approach to coherence. A
variant of this proposal has recently been considered in
Ref. [70]6.

This proposal does not have one of the counter-
intuitive features of the BCP approach that was outlined
above: the set of free measurements includes only the
POVMs whose elements are incoherent, as one would
expect. Nonetheless, it is still not clear whether the
dephasing-covariance approach to coherence has much
physical relevance because it is still unclear whether
there is any restriction on experimental capabilities that
picks out all and only the dephasing-covariant operations.
(In particular, it is unclear whether every dephasing-
covariant operation admits of a dilation in terms of inco-
herent states, incoherent measurements and dephasing-
covariant unitaries.) We do not settle the issue here.

E. Relation between different approaches

In addition to providing a characterization and assess-
ment of both the dephasing-covariance approach and the
BCP approach for treating speakable coherence as a re-
source, we explore the mathematical relation between the
free set of operations that each adopt. In particular,
we show that the dephasing-covariant operations relative
to a choice of preferred subspaces are a strict subset of
the incoherent (incoherence-preserving) operations rela-
tive to the same choice. This implies that any measure
of coherence in the incoherent (incoherence-preserving)
approach is also a measure of coherence in the dephasing-
covariance approach.

We also compare the translational-covariance approach
to coherence with the dephasing-covariance approach

6 Ref. [70] came to our attention as we were preparing this
manuscript.
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(and, via the connection noted above, with the incoher-
ent and incoherence-perserving approaches).

Any given translational symmetry defines a decompo-
sition of the Hilbert space via the joint eigenspaces of the
generators of this symmetry. Thus, for any given transla-
tional symmetry, one can consider the sets of dephasing-
covariant, incoherent, and incoherence-preserving opera-
tions defined relative to this decomposition of the Hilbert
space. For instance, the incoherence-preserving opera-
tions defined by a given translational symmetry is the
set of operations under which any state which is inco-
herent with respect to the eigenspaces of its generators,
is mapped to a state which is still incoherent relative to
these eigenspaces.

We show that the set of translationally-covariant op-
erations is a strict subset of the dephasing-covariant
operations and thus also a strict subset of the inco-
herent (incoherence-preserving) operations. This im-
plies that any measure of coherence in the dephasing-
covariance proposal is also a measure of coherence in the
translational-covariance proposal. We also show that this
inclusion relation is strict.

Given these inclusion relations, the question arises of
whether the measures of coherence that have been iden-
tified recently as valid in the BCP approach were already
identified in prior work on the resource theory of asym-
metry. We show that this is indeed the case for most such
measures of coherence.7 In addition to noting these rela-
tions, we discuss two general techniques for deriving mea-
sures of coherence, one that infers them from measures
of information and the other that appeals to a certain
kind of decomposition of operators into so-called modes
of asymmetry.

F. The choice of preferred subspaces

The notion of the state of a system being coherent is
only meaningful relative to a choice of decomposition of
the Hilbert space of the system into subspaces. The lat-
ter must be dictated by physical considerations, which
is to say, operational criteria. This is because, from a
purely mathematical point of view, any state is coher-
ent in some basis and incoherent in another basis. If
|±〉 ≡ (|0〉±|1〉)/

√
2, then the state |+〉 is coherent if one

judges relative to the {|0〉, |1〉} basis, but by the same
token, |0〉 is deemed coherent if one judges relative to
the {|+〉, |−〉} basis. One consequently has no alterna-
tive but to appeal to physical considerations in defining
the notion of coherence8.

7 Note that the present work expands on some of the comparisons
between the BCP approach to coherence and the one based on
translational asymmetry made in Ref. [21].

8 The fact that the direct-sum decomposition of Hilbert space that
defines the resource of coherence is determined by the physical
problem of interest is completely analogous to how the factoriza-

Furthermore, physical considerations often dictate that
the relevant notion of coherence is relative to a decom-
position of the Hilbert space into subspaces that are not
1-dimensional. A few examples serve to illustrate this.

In the context of decoherence theory, environmental
decoherence does not always pick out 1-dimensional sub-
spaces of the system Hilbert space. The dimensions of the
decohering subspaces depend on which degree of freedom
of the system couples to the environment and generally
this is a degenerate observable. Indeed, this fact, i.e., the
existence of Decoherence Free Subspaces with dimension
larger than one, has been exploited to protect quantum
information against decoherence [71, 72].

Another common example is where the notion of co-
herence that is of interest is coherence relative to the
eigenspaces of some particular physical observable, such
as the system’s Hamiltonian (as happens when the co-
herence is a resource for building a quantum clock) or
the photon number operator in a particular mode (as
happens when the coherence is a resource for phase es-
timation). Even if the notion of coherence of interest is
the speakable one, some physical degree of freedom must
be used to encode the coherence, and practical consid-
erations might dictate the use of a particular physical
observable. And in all such cases, there is a priori no
reason that the physical observable should be nondegen-
erate.

A final example is if there are degrees of freedom over
which the experimenter has no control. In this case, co-
herence in that degree of freedom is neither observable
nor usable.

Thus, if the physically relevant observable is L, and
l labels its eigenspaces while α is a degeneracy index,
the state |l, α1〉+ |l, α2〉 is an incoherent state in the re-
source theory insofar as it has no coherence between the
eigenspaces of L9. Coherence within an eigenspace of L
might be made to be a resource as well, but this requires
the degeneracy to be broken, for instance, by introduc-
ing another physical observable which picks out a basis
of that eigenspace.

We conclude that any resource theory of coherence
should be able to quantify and characterize coherence,
not only with respect to 1-dimensional subspaces, but
also with respect to subspaces of arbitrary dimension.
As we will see in the following, the resource the-
ory of unspeakable coherence based on translationally-
covariant operations has this capability. In the case of
speakable coherence, we define dephasing-covariant and
incoherence-preserving operations to incorporate this
possibility, and we generalize the definition of incoher-
ent operations in BCP [20], which assumed 1-dimensional

tion of the Hilbert space of a composite system that defines the
resource of entanglement is so determined.

9 This is analogous to how entanglement between laboratories can
be a resource while entanglement within a given laboratory is
not.
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subspaces, to do so as well.

G. Composite systems

How should the resource theory of coherence be de-
fined on composite systems? In particular, how should
we define the set of free states and free operations in
this case? For instance, suppose we are interested in
quantifying coherence with respect to the energy eigen-
basis, which is relevant, for instance, in the context of
thermodynamics and clock synchronization. Consider
two non-interacting systems having identical Hamiltoni-
ans, HA and HB , with energy eigenbases {|E〉A} and
{|E〉B} respectively. One can then imagine two differ-
ent ways of defining coherence on the composite system
AB. Definition (1): coherence is defined relative to the
products of eigenspaces of the single system Hamiltoni-
ans. In this case, a joint state of systems A and B is
coherent if it contains coherence with respect to either of
these two Hamiltonians. In particular, in this approach,
the state (|E1〉A|E2〉B + |E2〉A|E1〉B)/

√
2 is considered

a resource. Definition (2): coherence is defined relative
to the eigenspaces of the total Hamiltonian, that is, of
HA ⊗ IB + IA ⊗HB , where IA and IB are, respectively,
the identity operators on systems A and B. In this case,
states which do not contain coherence relative to the to-
tal Hamiltonian, such as (|E1〉A|E2〉B+|E2〉A|E1〉B)/

√
2,

are deemed to be incoherent.

As the set of preferred subspaces and incoherent states
on a single system should be chosen based on physical
considerations, the set of incoherent states on composite
systems should also be defined in a similar fashion. It
turns out that each of the above definitions can be rel-
evant in some physical scenarios. For instance, in the
scenarios where the two subsystems cannot exchange en-
ergy (for instance, because they are held by two dis-
tant parties) then approach (1) is relevant, and entan-

gled states such as (|E1〉A|E2〉B + |E2〉A|E1〉B)/
√

2 are
resources. On the other hand, in the scenarios where
we can easily apply operations that allow energy ex-
change between the two subsystems, then the relevant
observable is the total energy, and not the energy of the
individual subsystems. Therefore, in this situation ap-
proach (2) is the relevant one, and entangled states such

as (|E1〉A|E2〉B+|E2〉A|E1〉B)/
√

2 are not resources. The
fact that the resource of coherence is only defined rela-
tive to a choice of basis which depends on the physi-
cal scenario is precisely analogous to how the resource
of entanglement is only defined relative to a choice of
factorization of the Hilbert space which depends on the
physical scenario. (For instance, in the distant laborato-
ries paradigm, entanglement between laboratories is a re-
source, while entanglement between systems in the same
laboratory is not.)

H. Outline

The article is organized as follows. Sec. II covers pre-
liminary material, including a discussion of certain fea-
tures that are common to the various different propos-
als for a resource theory of coherence, what counts as
a physical justification of a proposal for the set of free
operations, and the definition of a measure of coherence.
Sec. III presents the resource theory of unspeakable co-
herence that one obtains by taking the free operations
to be those that are translationally covariant. In par-
ticular, various different characterizations and physical
justifications of the free operations are provided. Sec. IV
presents the proposal for speakable coherence based on
dephasing-covariant operations, together with a discus-
sion of the relation to the translationally-covariant oper-
ations and physical justifications. In Sec. V, we review
the BCP proposal for speakable coherence, which is de-
fined by the incoherent operations, as well as a related
proposal, defined by the set of incoherence-preserving op-
erations. The relation to the dephasing-covariance ap-
praoch is considered, as well as possibilities for a physical
justification. Finally, in Sec. VI, we consider measures of
coherence within the various approaches, and in Sec. VII
we provide some concluding remarks.

II. PRELIMINARIES

Any resource theory is specified by a set of free states
and a set of free operations. These are states and opera-
tions which are easy or allowed to prepare and implement
under a practical or fundamental constraint.

A. Free states

The notion of coherence is only defined relative to a
preferred decomposition of the Hilbert space into sub-
spaces. This preferred decomposition is determined
based on practical restrictions or physical considerations,
although in some cases a preferred decomposition may be
considered as a purely mathematical exercise. For a sys-
tem with Hilbert space H, we denote the preferred sub-
spaces by {Hl}l, so that H =

⊕
lHl. Here, the index l

may be discrete or continuous. We denote the projectors
onto these subspaces by {Πl}l.

The free states, which are termed incoherent states,
are those states which are block-diagonal relative to the
preferred subspaces,

ρ =
∑
l

plΠl . (2.1)

An alternative way of characterizing the set of free
states is via map that dephases between the preferred
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subspaces. This dephasing map has the form

D(·) ≡
∑
l

Πl(·)Πl . (2.2)

As a superoperator acting on the vector space of opera-
tors, D is a projector, and hence idempotent, D2 = D.
In fact, it projects onto the subspace of operators that
are block-diagonal relative to the decomposition {Hl}l,
so that the set of incoherent states can be characterized
as those that are invariant under D,

D(ρ) = ρ . (2.3)

Note that for any choice of preferred subspaces, the set
of incoherent states is closed under convex combinations.
We will denote this set by I.

B. Free measurements

If a system survives a quantum measurement, then the
outcome of the measurement provides the ability to pre-
dict the outcomes of future measurements on the system.
To do so, one must specify the state update map associ-
ated to the measurement. The von Neumann projection
postulate is an example. This is a specification of the
measurement’s predictive aspect. Whether the system
survives or not, every quantum measurement also allows
one to make retrodictions about earlier interventions of
the system. We here focus only on the retrodictive as-
pect of a measurement, which in quantum theory is rep-
resented by a postive-operator-valued measure (POVM).
An element of a POVM, denoted E, satisfies I ≥ E ≥ 0,
and wlll be termed an effect.

We will call an effect incoherent if it is block-diagonal
relative to the preferred subspaces. Although one might
have expected all proposals for the resource theory of co-
herence to allow as free only those POVMs made up of
incoherent effects, we will see that this is not the case for
the proposal based on incoherence-preserving or incoher-
ent operations.

C. Free operations

We turn now to the set of free operations. We consider
not only those operations wherein the input and output
spaces are the same (i.e., transformations of a system)
but also those where they may be different (in which
case the operation involves adding or taking away some
or all of the system). In particular, the free operations
from a trivial input space to a nontrivial output space
specify which preparations of the output system can be
freely implemented, so that a specification of the free
operations implies a specification of the free states.

The minimal property that the set of free operations
should have is to be incoherence-preserving, which is to
say that each free operation takes every incoherent state

on the input space to an incoherent state on the out-
put space. Note that the incoherence-preserving prop-
erty implies that for the special case where the operation
is a state preparation, the free set corresponds to the
incoherent states. 10

All proposals we consider here are such that every free
operation is incoherence-preserving. Nonetheless, differ-
ent proposals for how to treat coherence as a resource
differ in their choice of the set of free operations, subject
to this constraint.

Note that we here use the term quantum operation to
refer to a trace-nonincreasing completely positive linear
map. If the operation is trace-preserving, we will refer to
it as a quantum channel.

D. Physical justification of the free operations
through dilation

It is widely believed that physical systems undergo-
ing closed-system dynamics evolve according to a uni-
tary map. In this view, the only circumstance in which
a nonunitary map is used to describe the evolution of a
system’s state is when the system is known to undergo
open-system dynamics, that is, when it interacts with
some auxiliary system (perhaps its environment) via a
unitary map, but one chooses to not describe the auxil-
iary system, by marginalizing or post-selecting on it. It is
straigthforward to show that in any situation wherein a
system interacts unitarily with the auxiliary system and
one subsequently marginalizes or post-selects on the lat-
ter (through a partial trace or a partial trace with some
measurement effect respectively), the effective evolution
of the system’s state is always described by a completely
positive trace-nonincreasing map (what we are here call-
ing a quantum operation). The Stinespring dilation theo-
rem [73] guarantees that the vice-versa is also true: every
quantum operation on the system can be achieved in this
fashion.

For a given triple of state of the auxiliary system, effect
measured thereon, and unitary coupling of the system to
its auxiliary, we will term the effective quantum opera-
tion on the system that it defines the marginal operation
on the system. For a given quantum operation on the
system, we will term any triple of state of the auxiliary,
effect on the auxiliary and unitary coupling of system
to auxiliary that yields the operation as a marginal, a
dilation of that operation.

In the context of resource theories, one way to define
the free set of operations on a system is by specifying
the free states and free effects on the auxiliary system,
as well as the free unitaries that couple the system to the

10 This is because we can think of the input in a state preparation
as a 1-dimensional system, which is necessarily in an incoherent
state.
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auxiliary, and then defining the free set of operations on
the system as all and only those that can be obtained
as a marginal of these. If a proposal for the free set
of operations is not defined in this way, then one can
and should ask whether it admits of such a definition
or not. In other words, one should seek to determine
whether the free set of operations in a given proposal
can be understood as those that admit of a dilation in
terms of the free states and effects on, and free unitary
couplings with, the auxilary system. We refer to such
dilations as free dilations.

We shall here ask this question of various proposals
for how to choose the free set of operations in a resource
theory of coherence. If, for any given proposal, one finds
that the free set of operations on the system of interest
includes an operation that does not admit of a free dila-
tion, then this may imply that some nontrivial resource
on the composite of system and auxiliary must be con-
sumed in order to realize the operation.

We will show that in cases where one considers a trans-
lation group that acts collectively on all physical sys-
tems, the translationally-covariant operations have free
dilation. We will also show that the set of incoherence-
preserving operations and the set of incoherent opera-
tions does not have this property, at least not if we treat
all systems even-handedly. For the set of dephasing co-
variant operations, the question remains open.

E. Measures of coherence

In any resource theory, a measure of the resource is
a function from states to real numbers which defines a
partial order on the set of states. The essential property
that any such function must have is to be a monotone
(i.e, to be monotonically nonincreasing) under the free
operations11. We are therefore going to use the following
definition of a measure of coherence:

Definition 1 A function f from states to real numbers is
a measure of coherence according to a given proposal if (i)
For any trace-preserving quantum operation E which is
free according to the proposal, it holds that f(E(·)) ≤ f(·).
(ii) For any incoherent state ρ ∈ I, it holds that f(ρ) = 0.

Because any incoherent state can be mapped to any
other incoherent state via a free trace-preserving oper-
ation, condition (i) implies that the value of the function
f must be the same for all incoherent states. Condi-
tion (ii) merely expresses a choice of convention for this
value: that all incoherent states should be assigned mea-
sure zero. Of course, given any function satisfying con-

11 See Ref. [4] for an operational justification of monotonicity, that
is, an account of why monotonicity is required if a measure of
a resource is to characterize the degree of success achievable in
some operational task.

dition (i), one can define a shift of this function which
satisfies condition (ii).

It is worth noting that any measure of a resource f is
constant on states that are connected by a free unitary
operation. That is, if U is a free unitary operation, then
any resource measure f must satisfy

f(ρ) = f(U(ρ)).

The proof is simply that if ρ and σ are connected by a
free unitary, then state conversion in both directions are
possible under the free operations, ρ → σ and σ → ρ,
which in turn implies that f(ρ) ≥ f(σ) and f(ρ) ≤ f(σ).

We distinguish the three resource-theoretic ap-
proaches to coherence that we consider in this ar-
ticle by the set of free operations that define
them: translationally-covariant, dephasing-covariant and
incoherence-preserving operations. A measure of coher-
ence within a given approach is also defined relative to
the set of free operations within that approach. There-
fore, we refer to measures of coherence within the dif-
ferent approaches as measures of TC-coherence, DC-
coherence, and IP-coherence respectively. In Sec. VI,
we provide a list of examples for each type.

III. COHERENCE VIA
TRANSLATIONALLY-COVARIANT

OPERATIONS

We begin by demonstrating that if one is interested
in an unspeakable notion of coherence, then coherence
can be understood as asymmetry relative to a symmetry
group of translations. In this approach, the coherence is
defined based on a given observable L, such as the Hamil-
tonian, the linear momentum, or the angular momentum.
Then, to characterize coherence relative to the eigenbasis
of L, we consider the asymmetry relative to the group of
translations generated by L, i.e., the group of unitaries

UL,x ≡ e−ixL : x ∈ R . (3.1)

The superoperator representation of the translation x ∈
R is then

UL,x(·) ≡ UL,x(·)U†L,x
= e−ixL(·)eixL. (3.2)

Note that this group has often a natural physical inter-
pretation. For instance, if L is the Hamiltonian, then it
generates the group of time translations, and if L is the
component of angular momentum in some direction, then
it generates the group of rotations about this direction.12

12 Note that, depending on the spectrum of L, this group could be
isomorphic to U(1) or to R (under addition).
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The free states are taken to be those that are
translationally-invariant or translationally-symmetric,

∀x ∈ R : UL,x(ρ) = ρ. (3.3)

One can easily see that the set of translationally-invariant
states coincides with the set of states that are incoherent
with respect to the eigenspaces of L, i.e.,

∀x ∈ R : UL,x(ρ) = ρ ⇐⇒ [L, ρ] = 0. (3.4)

Therefore, in the translational-covariance approach to co-
herence the preferred subspaces relative to which coher-
ence is a resource are the eigenspaces of the generator
L.

A. Free operations as translationally-covariant
operations

For a given choice of symmetry transformations, the
resource theory of asymmetry is defined by taking the set
of free operations to be those that are covariant relative
to the symmetry transformations. We here particularize
this definition to the case of a translational symmetry,
and provide several ways of characterizing this set.

1. Definition of translationally-covariant operations

Definition 2 We say that a quantum operation E is
translationally-covariant relative to the translational
symmetry generated by L if

∀x ∈ R : UL,x ◦ E = E ◦ UL,x. (3.5)

Note that condition (3.5) is equivalent to

∀x ∈ R : UL,x ◦ E ◦ U†L,x = E . (3.6)

If the input and output spaces of the map E are dis-
tinct, then the generator L may be different on the in-
put and output spaces. For instance, in the case where
L corresponds to the angular momentum in a certain
direction, then this observable may have different rep-
resentations on the input and output spaces. For sim-
plicity, we do not indicate such differences in our nota-
tion. A preparation of the state ρ is an operation with
a trivial input space and translational-covariance in this
case implies translational-invariance of ρ, confirming that
translationally-invariant states are the free states in this
approach.

Sec. II C articulated a minimal constraint on the free
operations, that they should be incoherence-preserving.
Translationally-covariant operations have this property
because from Eq. (3.3) one can deduce that for a
translationally-covariant operation E , and an incoherent
state ρ for input,

∀x ∈ R : UL,x(E(ρ)) = E(UL,x(ρ)) = E(ρ), (3.7)

which implies that E(ρ) is translationally-invariant, hence
incoherent. Therefore incoherent states are mapped to
incoherent states.

If one thinks of incoherence as translational symmetry,
then the incoherence-preserving property formalizes the
simple intuition known as Curie’s principle: If the initial
state does not break the translational symmetry and the
evolution does not break the translational symmetry ei-
ther, then the final state cannot break the translational
symmetry.

2. Translationally-covariant measurements

If an operation E has a trivial output space, so that it
corresponds to tracing with a measurement effect E on
the input space, that is, E(·) = Tr(E·), then Eq. (3.5)
reduces to

∀x ∈ R : Tr(E(·)) = Tr(E UL,x(·))

= Tr(U†L,x(E) (·)), (3.8)

which in turn implies

∀x ∈ R : U†L,x(E) = E, (3.9)

i.e., the effect E is translationally-invariant. This condi-
tion is equivalent to [E,L] = 0, so that the effect E is
incoherent with respect to the eigenspaces of L.

Proposition 3 A POVM is translationally-covariant if
and only if all of its effects are incoherent relative to the
eigenspaces of L.

3. Translationally-covariant unitary operations

Finally, if V is a unitary translationally-covariant op-
eration, that is, V(·) = V (·)V † for some unitary operator
V (in which case the input and output spaces are neces-
sarily the same), then Eq. (3.5) reduces to

∀x ∈ R : UL,xV (·)V †U†L,x = V UL,x(·)U†L,xV
†, (3.10)

which implies

∀x ∈ R : UL,xV = eiφ(x)V UL,x, (3.11)

for some phase φ(x). Taking the traces of both sides, we
find that in finite-dimensional Hilbert spaces, this condi-
tion can hold if and only if eiφ(x) = 1, that is, if and only
if

∀x ∈ R : [UL,x, V ] = 0, (3.12)

which is equivalent to [V,L] = 0, so that the unitary
operator V is also block-diagonal with respect to the
eigenspaces of L. If {Hλ}λ denotes the set of eigenspaces
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of L, {Πλ}λ the projectors onto these, and {Vλ}λ an ar-
bitrary set of unitaries within each such subspace, then
any such unitary V can be written as

V =
∑
λ

VλΠλ . (3.13)

If the Hilbert space is infinite-dimensional, on the other
hand, then the characterization above need not apply.
Indeed, in this case, there are translationally-covariant
unitaries that need not map every eigenspace of L to
itself. For instance, if the generator is a charge operator
with integer eigenvalues, Q =

∑∞
q=−∞ q|q〉〈q|, then the

unitary V∆q that applies a rigid shift of the charge by an
integer ∆q, that is,

V∆q ≡
∞∑

q=−∞
|q + ∆q〉〈q|,

defines a unitary operation V∆q(·) = V∆q(·)V †∆q that is
covariant relative to the group of shifts of the phase
conjugate to charge, {UQ,x : x ∈ R} where UQ,x(·) =
e−ixQ(·)eixQ. As another example, if the system is a par-
ticle in one dimension, then the unitary operation that
boosts the momentum by ∆p is translationally-covariant
relative to the group of spatial translations. This is be-
cause the unitary operation associated with a boost by
∆p, e−i∆pX(·)ei∆pX where X is the position operator,
and the unitary operation associated with a translation
by ∆x, e−i∆xP (·)ei∆xP where P is the momentum oper-
ator, commute with one another for all ∆x,∆p ∈ R.

4. Characterization via Stinespring dilation

We show that every translationally-covariant opera-
tion on a system can arise by coupling the system to an
ancilla in an incoherent (translationally-invariant) state,
subjecting the composite to a translationally-covariant
unitary, and post-selecting on the outcome of a measure-
ment on the ancilla which is assoicated to an incoherent
(translationally-invariant) effect. Such an implementa-
tion is termed a translationally-covariant dilation of the
operation.

To make sense of the notion of a translationally-
covariant dilation, however, one needs to specify not only
the representation of the translation group on the system
and ancilla individually, but on the composite of system
and ancilla as well. Recall that we allow the operation E
to have different input and output spaces, so that to make
sense of a translationally-covariant dilation, we must also
specify the representation of the translation group on the
output versions of the system and ancilla.

Some notation is helful here. We denote the Hilbert
spaces corresponding to the input and output of the map
E by Hs and Hs′ respectively. Denoting the Hilbert space
of the ancilla by Ha, the composite Hilbert space of sys-
tem and ancilla is Hs ⊗ Ha. We denote the subsystem

that is complementary to Hs′ by Ha′ (this is the subsys-
tem over which one traces), so that Hs⊗Ha = Hs′⊗Ha′ .

In the physical situations to which TC-coherence
applies—which we will discuss at length in Sec. III B—
one can always choose an ancilla system such that trans-
lation is represented collectively on the composite of sys-
tem and ancilla. Specifically, if Ls is the generator of
translations on Hs and La is the generator of translations
on Ha, then the generator of translations on the compos-
ite Hs ⊗Ha is L = Ls ⊗ Ia + Is ⊗ La. Similarly, we have
L = Ls′ ⊗ Ia′ + Is′ ⊗ La′ . It follows that the translation
operation on the composite is collective on the factoriza-
tion Hs ⊗ Ha, that is, UL,x = ULs,x ⊗ ULa,x and on the
factorization Hs′⊗Ha′ , that is, UL,x = ULs′ ,x⊗ULa′ ,x. In
the discussion below, we use L to denote the generator of
translations, regardless of the system it is acting upon.

Proposition 4 A quantum operation E is
translationally-covariant if and only if it can be
implemented by coupling the system Hs to an ancilla Ha

prepared in an incoherent state σ via a translationally-
covariant unitary quantum operation V, and then
post-selecting on the outcome of a measurement on the
ancilla Ha′ which is associated with an incoherent effect
E. Formally, the condition is that for all quantum states
ρ,

E(ρ) = tra′(EV(ρ⊗ σ)), (3.14)

where [La, σ] = 0 and [La′ , E] = 0 and where V ◦ UL,x =
UL,x ◦ V for all x ∈ R.

Proof. The proof that any operation of the form of
Eq. (3.14) is translationally-covariant is as follows:

E
(
ULs,x(ρ)

)
(3.15a)

= tra′

(
EV
(
ULs,x(ρ)⊗ σ

))
(3.15b)

= tra′

(
E V

(
ULs,x(ρ)⊗ ULa,x(σ)

))
(3.15c)

= tra′

(
E ULs′ ,x ⊗ ULa′ ,x

(
V[ρ⊗ σ]

))
(3.15d)

= ULs′ ,x

(
tra′

(
U†La′ ,x

(E)
(
V[ρ⊗ σ]

)))
(3.15e)

= ULs′ ,x

(
tra′
(
E V[ρ⊗ σ]

))
(3.15f)

= ULs′ ,x(E(ρ)), (3.15g)

where in the second equality, we have used that fact that
σ is an incoherent state; in the third equality, we have
used the fact that V is a translationally-covariant opera-
tion; in the fifth equality, we have used the fact that E
is an incoherent effect; and in the last equality, we have
used Eq. (3.14).

For the converse implication, we refer the reader to the
result on the form of the Stinespring dilation for group-
covariant quantum operations by Keyl and Werner [74].
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5. Characterization via modes of translational asymmetry

We begin by introducing some technical machinery.
Denote the preferred subspaces of H relative to which

coherence is evaluated, that is, the eigenspaces of L, by
{Hλn}, where {λn}n is the set of eigenvalues of L (these
may be discrete or continuous). Let the set of modes Ω
be the set of the gaps between all eigenvalues, i.e. {λn−
λm}n,m. In the case where L is the system Hamiltonian,
each element of Ω can be interpreted as a frequency of
the system.

Elements of the set Ω label different modes in the sys-
tem. For any ω ∈ Ω, define the superoperator

P(ω) = lim
x0→∞

1

2x0

∫ x0

−x0

dx e−iωx UL,x , (3.16)

where UL,x(·) = UL,x(·)U†L,x = e−ixL(·)eixL. This super-
operator is the projector that erases all the terms in the
input operator except those which connect eigenstates
of L whose eigenvalues are different by ω, i.e., all ex-
cept those which are of the form |λn, α〉〈λn+ω, β|, where
|λn, α〉 and |λn + ω, β〉 are eigenstates of L with eigen-
values λn and λn + ω respectively. One can easily show
that ∑

ω∈Ω

P(ω) = Iid (3.17a)

P(ω) ◦ P(ω′) = δω,ω′P(ω) (3.17b)

P(0) = D (3.17c)

UL,x ◦ P(ω) = eiωxP(ω) , (3.17d)

where Iid is the identity superoperator, and δω,ω′ is the
Kronecher delta.

The set of superoperators {P(ω) : ω ∈ Ω} are a com-
plete set of projectors to different subspaces of the opera-
tor space B. It can be easily shown that these subspaces
are orthogonal according to the Hilbert-Schmidt inner
product, defined by (X,Y ) ≡ Tr(X†Y ) for arbitrary pair
of operators X,Y ∈ B. Therefore, the operator space B
can be decomposed into a direct sum of operator sub-
spaces, B =

⊕
ω∈Ω B(ω), where each B(ω) is the image of

P(ω).
Note that any operator in the operator subspace B(ω)

transforms distinctively under translations,

A ∈ B(ω) =⇒ UL,x(A) = eiωxA. (3.18)

We refer to B(ω) as the “mode ω” operator subspace. For
any operator A, the component of that operator in the
operator subspace B(ω), denoted

A(ω) ≡ P(ω)(A),

is termed the “mode ω component of A”.
Clearly, every incoherent (i.e. translationally symmet-

ric) state lies entirely within the mode 0 operator sub-
space, while a coherent (i.e. translationally asymmetric)

state has a component in at least one mode ω operator
subspace with ω 6= 0.

Operator subspaces associated with distinct ω values
have been called “modes of asymmetry” in Ref. [8], where
the decomposition of states, operations and measure-
ments into their different modes was shown to constitute
a powerful tool in the resource theory of asymmetry.

Example 5 Consider the special case where Jẑ is the an-
gular operator in the ẑ direction. For simplicity, assume
that Jẑ is non-degenerate and let {|m〉}m be its orthonor-
mal eigenbasis, where |m〉 is the eigenstate of Jẑ with
eigenvalue m. Since the eigenvalues of the angular mo-
mentum operator are all separated by integers, it follows
the set of modes Ω is a subset of the integers, Ω ⊆ Z.
Then, for each integer k ∈ Ω we have

B(k) ≡ span{|m〉〈m+ k|}m. (3.19)

Furthermore, the mode k component of any operator A
is given by

A(k) =
∑
m

|m〉〈m+ k| 〈m|A|m+ k〉 . (3.20)

The mode k of the density operator ρ corresponds to co-
herence of order k in the context of magnetic resonance
techniques [47].

With these notions in hand, we can provide the mode-
based characterization of the translationally-covariant
operations.

Proposition 6 A quantum operation E is translation-
ally covariant relative to the generator L if and only if it
preserves the modes of asymmetry associated to L, that
is, if and only if the mode ω ∈ Ω component of the in-
put state is mapped to the mode ω ∈ Ω component of the
output state. Formally, the condition is that whenever
E(ρ) = σ, we have E(ρ(ω)) = σ(ω) where ρ(ω) ≡ P(ω)(ρ)
and σ(ω) ≡ P(ω)(σ). Note that σ is only a normalized
state if E is a channel (i.e. trace-preserving) and is oth-
erwise subnormalized.

The proof follows immediately from properties listed in
Eq.(3.17) (See [8] for further discussion).

6. Characterization via Kraus decomposition

Proposition 7 A quantum operation E is translationally
covariant if and only if it admits of a Kraus decomposi-
tion of the form

E(·) =
∑
ω,α

Kω,α(·)K†ω,α, (3.21)

where the elements of the set {Kω,α}α are all mode ω
operators.
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To see that any quantum operation with such a Kraus
decomposition is translationally covariant, we note that

UL,x ◦ E ◦ U†L,x =
∑
ω∈Ω,α

UL,x(Kω,α)(·)(UL,x(Kω,α))†

(3.22)
and then use the fact that Kω,α ∈ B(ω) and Eq. (3.18) to
infer that UL,x(Kω,α) = eiωxKω,α, which in turn implies

∀x ∈ R : UL,x ◦ E ◦ U†L,x =
∑
ω,α

Kω,α(·)K†ω,α = E , (3.23)

which, from Eq. (3.6), simply asserts the translational
covariance of E .

The proof that every translationally-covariant opera-
tion has a Kraus decomposition of the form specified can
be inferred from a result in Ref. [4] which characterizes
the Kraus decomposition of any group-covariant opera-
tion, by specializing the result to the case of a translation
group. Alternatively, it can be inferred from the Stine-
spring dilation, Proposition 4, using a slight generaliza-
tion (from channels to all operations) of the argument
provided in Appendix A.1 of Ref. [21].

Proposition 7 also implies:

Corollary 8 A quantum operation E is translationally-
covariant if and only if it admits of a Kraus decomposi-
tion every term of which is translationally-covariant.

It suffices to note that each term of the Kraus decomposi-
tion specified in proposition 7 is translationally-covariant.
It follows that if the different terms in this Kraus de-
composition correspond to the different outcomes of a
measurement, then even one who post-selected on a par-
ticular outcome would describe the resulting operation
as translationally-covariant.

B. Physical justifications for the restriction to
translationally-covariant operations

As noted in the introduction, it is critical that any
definition of the restricted set of operations in a resource
theory must be justifiable operationally. In this section,
we discuss different physical scenarios in which the set of
translationally-covariant operations are naturally distin-
guished as the set of easy or freely-available operations.

1. Fundamental or effective symmetries of Hamiltonians

If, for a set of systems, the Hamiltonians one can access
are symmetric and the states and measurements that one
can implement are also symmetric, then for any given
system only symmetric operations are possible13. Such

13 This is the easy half of the dilation theorem in Prop. 3.14.

symmetry constraints can sometimes be understood to
be consequences of fundamental or effective symmetries
in the problem.

A constraint of translational symmetry on the Hamil-
tonian is fundamental if it arises from a fundamental
symmetry of nature, such as a symmetry of space-time.
It is effective if it arises from practical constraints, for in-
stance, if one is interested in time scales or energy scales
for which a symmetry-breaking term in the Hamiltonian
becomes negligible. A translational symmetry constraint
on the states and measurements can sometimes arise as a
consequence of this symmetry of the Hamiltonian. For in-
stance, if the only states that one can freely prepare are
those that are thermal, then given that thermal states
depend only on the Hamiltonian, any fundamental or ef-
fective symmetry of the Hamiltonian is inherited by the
thermal states.

2. Lack of shared reference frames

The most natural experimental restriction that leads
to translationally-covariant operations is when one lacks
access to any reference frame relative to which the trans-
lations can be defined. Such a lack of access can arise in
a few ways.

For a pair of separated parties, each party may have
a local reference frame, but no information about the
relation between the two reference frames. For instance,
a pair of parties may each have access to a Caretesian
reference frame (or clock, or phase reference), but not
know what rotation (or time-translation or phase-shift)
relates one to the other.

Under this kind of restriction, each party essentially
lacks access to the reference frame of the other. It has
been shown that this lack of a shared reference frame
implies that the only operations that one party can im-
plement, relative to the reference frame of the other, are
those that are group-covariant (see Refs. [6, 29]). For in-
stance, if two parties lack of a shared phase reference,
then the only operations whose descriptions they can
agree on are phase-covariant operations.

It is also possible that the reference frame that one re-
quires cannot even be prepared locally, due to technologi-
cal limitations. For instance, only after the experimental
realization of Bose-Einstein condensation in atomic sys-
tems [75, 76], was it possible to prepare a system that
could serve as a reference frame for the phase conjugate
to atom number.

3. Metrology and phase estimation

Unspeakable coherence is the main resource for quan-
tum metrology, and in particular phase estimation. In
this context, a state is a resource to the extent that it al-
lows one to estimate an unknown translation applied to
the state (such as a phase-shift, a rotation, or evolution
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for some time interval). Suppose one prepares a system
in the state ρ prior to it being subjected to a unitary
translation UL,x, where x is unknown. In this case, one
knows that the state after the translation is an element
of the ensemble {UL,x(ρ)}x and the task is to estimate
x. Clearly, if ρ is invariant under translations (i.e., inco-
herent), then it is useless for the estimation task. In this
sense, translationally asymmetry, and hence coherence
relative to the eigenspaces of the generator of transla-
tions, is a necessary resource for metrology.

Furthermore, as we show in the following, in this con-
text, the set of translationally-covariant operations has
also a simple and natural interpretation. Suppose one is
interested in determining which of two states, ρ and σ, is
the better resource for the task of estimating an unknown
translation. To do so, one must determine which of the
two encodings, x → UL,x(ρ) and x → UL,x(σ), carries
more information about x. But suppose there exists a
quantum operation E such that for all x, it transforms
UL,x(ρ) to UL,x(σ), i.e.,

∀x : E(UL,x(ρ)) = UL,x(σ) . (3.24)

Here, the quantum operation E can be thought as an in-
formation processing which we perform on the state be-
fore performing the measurement which yields the value
of x. If such a quantum operation exists, then we can
be sure that the state ρ is more useful than σ for this
metrological task. Because any information that we can
obtain using the state σ, we can also obtain if we use the
state ρ.

It turns out that any such information processing E can
be chosen to be translationally covariant with respect to
translation UL,x, i.e.

Proposition 9 For any given pair of states ρ and σ the
following statements are equivalent:
(i) There exists a translationally-covariant quantum op-
eration E such that E(ρ) = σ.
(ii) There exists a quantum operation E such that
E (UL,x(ρ)) = UL,x(σ), for all x ∈ R.

This is the specialization to the case of a translational
symmetry group of a similar proposition for an arbi-
trary symmetry group the proof of which is presented
in Ref. [6], where we have also presented a version of this
duality for pure states and unitaries, its interpretation in
terms of reference frames, and some of its applications.

Statement (ii) in proposition 9 concerns the relative
quality of ρ and σ as resources for metrology, while
statement (i) concerns the relative quality of ρ and σ
within the resource theory defined by the restriction
to translationally-covariant operations. The partial or-
der of quantum states under translationally-covariant
operations, therefore, determines their relative worth
as resources for metrology. Note that in this context,
translationally-covariant operations are all and only the
operations that are relevant.

It follows from proposition 9 that any function which
quantifies the performance of states in this metrological
task should be a measure of unspeakable coherence.

4. Thermodynamics

The resource theory of athermality seeks to understand
states deviating from thermal equilibrium as a resource
[14–19, 32, 33] . The free operations defining the theory,
termed thermal operations are all and only those that can
be achieved using thermal states, unitaries that commute
with the free Hamiltonian, and the partial trace opera-
tion. (The restriction on unitaries is motivated by the
fact that were one to allow more general unitaries, one
could increase the energy of a system, thereby allowing
thermodynamic work to be done for free.)

Noting that: (i) if a unitary commutes with the free
Hamiltonian, then it is covariant under time-translations,
and (ii) because thermal states are defined in terms of
the free Hamiltonian, they are symmetric under time-
translations, it follows from the dilation theorem for
translationally-covariant operations (Prop. 4) that the
restriction to thermal operations implies a restriction to
time-translation-covariant operations.

5. Control theory

Suppose we are trying to prepare a quantum system in
a desired state by applying a sequence of control pulses to
the system. Then, there is an important distinction be-
tween the pulses which commute with the system Hamil-
tonian H, and hence are invariant under time transla-
tions, and those which are not. Namely, to apply the
pulses which do not commute with the system Hamilto-
nian, we need be careful about the timing of the pulses,
and also the duration that the pulse is acting on the sys-
tem.

To see this, first assume that the pulses are applied
instantaneously, i.e., the width of the pulse is sufficiently
small that the intrinsic evolution of the system gener-
ated by the Hamiltonian H during the pulse is negligible.
Then, if instead of applying the control unitary V at the
exact time t, we apply it at time t+∆t, the effect of apply-
ing this pulse would be equivalent to applying the pulse
eiH∆tV e−iH∆t at time t, instead of the desired pulse V .
If V does not commute with the Hamiltonian H, then in
general V and eiH∆tV e−iH∆t are different unitaries, and
so the final state is different from the desired state.

Furthermore, if the control pulse V commutes with the
system Hamiltonian H, then dealing with the nonzero
width of the pulse is much easier and we do not need
to be worried about the intrinsic evolution of the system
during the pulse, as we now demonstrate. In general,
to apply a control unitary V we need to apply a control
field to the system. The effect of this control field can
be described by a term Hcont(t) which is added to the
system Hamiltonian H. Then, to implement a control
unitary V which does not commute with the Hamiltonian
H, we need to apply a control field Hcont(t) which does
not commute with the Hamiltonian H. In this case, the
width of the control pulse, i.e., the duration over which
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we apply the control field Hcont(t), becomes an important
parameter. In practice, in many situations we need to
choose the control field Hcont(t) to be strong enough so
that the evolution of the system during the pulse width is
negligible. On the other hand, if the control field Hcont(t)
commutes with the system Hamiltonian, then the effect
of finite width can be easily taken into account, and so
we do not need to apply strong fields to the system.

It follows that in this context, operations which are
covariant under time translations are easy to implement,
because for this type of operation, there is no sensis-
tivity to the exact timing and the width of the con-
trol pulses. So it is natural to consider the operations
that are covariant under time-translations as the set of
freely-implementable operations, and this again leads us
to treat coherence as translational asymmetry.

C. Covariance with respect to independent
translations

It can happen that the set of all systems is partitioned
into subsets and that the action of the translation group
is only collective for those systems within a given subset,
while it is independent for different subsets. Suppose
that the subsets are labelled by α and that for the set of
systems of type α, the generator of collective translations
on these systems is denoted L(α). Consider the group el-
ement consisting of a translation by xα ∈ R for all the
systems of type α. We label this group element by the in-
dependent translation parameters (x1, x2, . . . , xA) ∈ RA
where A denotes the number of different types of system.
The unitary representation of this group element is

U{L(α),xα} ≡
⊗
α

e−ixαL
(α)

. (3.25)

The superoperator representation of this group element
is then

U{L(α),xα}(·) ≡ U{L(α),xα}(·)U
†
{L(α),xα}

(3.26)

In this case, the set of free states are translationally-
invariant relative to translations generated by the set
of generators {L(α)}. These are the states that are
block-diagonal relative to the distinct joint eigenspaces
of {L(α)}.

The free operations are those that are translationally-
covariant relative to the set of generators {L(α)}, that is,
∀(x1, x2, . . . , xA) ∈ RA ,

U{L(α),xα} ◦ E = E ◦ U{L(α),xα}. (3.27)

Indeed, all of the results expressed in this section
can be generalized by substituting the translations x ∈
R with (x1, x2, . . . , xA) ∈ RA, the superoperator UL,x
with U{L(α),xα}, and the eigenspaces of L with the joint

eigenspaces of {L(α)}.

IV. COHERENCE VIA
DEPHASING-COVARIANT OPERATIONS

Much recent work seeking to quantify coherence as a
resource has considered speakable coherence. The article
of Baumgratz, Cramer and Plenio [20] (BCP) provides
one such proposal, which has been taken up by most
other authors who have sought to characterize coherence
as a resource. Nonetheless, we postpone our discussion
of the BCP proposal to Sec. V and instead begin our dis-
cussion of speakable coherence with a very different pro-
posal, based on operations that are dephasing-covariant.
We here assess the dephasing-covariance approach and
compare it to the translational-covariance approach dis-
cussed in the last section.

A. Free operations as dephasing-covariant
operations

1. Definition of dephasing-covariant operations

As before, suppose that the preferred subspaces rela-
tive to which coherence is to be quantified are {Hl}l and
are associated with the projectors {Πl}l.

Definition 10 We say that a quantum operation E is
dephasing-covariant relative to the preferred subspaces if
it commutes with the associated dephasing operation, D
of Eq. (2.2), i.e., if

E ◦ D = D ◦ E . (4.1)

Note that if the input and output spaces of the map
E are distinct, then the dephasing map is different on
the input and output spaces, but we do not indicate this
difference in our notation.

Dephasing-covariant quantum operations are easily
seen to be incoherence-preserving. It suffices to note that
if E is dephasing-covariant, then for any incoherent state
ρ ∈ I,

E(ρ) = E(D(ρ)) = D (E(ρ)) , (4.2)

and therefore E(ρ) is invariant under dephasing and
hence incoherent.

2. Dephasing-covariant measurements

If the output space is trivial, so that the map corre-
sponds to tracing with a measurement effect E on the
input space, that is, E(·) = Tr(E·), then Eq. (4.1) re-
duces to

Tr(E(·)) = Tr(ED(·))
= Tr(D(E) (·)), (4.3)
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where we have used the fact that D is self-adjoint relative
to the Hilbert-Schmidt inner product, and this in turn
implies

D(E) = E, (4.4)

where we have used the fact that the set of all quantum
states form a basis of the operator space. Thus E is an
incoherent effect, i.e., it is block-diagonal with respect to
the preferred subspaces.

Proposition 11 A POVM is dephasing-covariant if and
only if all of its effects are incoherent.

Comparing to proposition 3, we see that a POVM is
dephasing-covariant if and only if it is translationally-
covariant.

3. Dephasing-covariant unitary operations

Because the dephasing-covariant operations are all
incoherence-preserving, the set of unitary dephasing-
covariant operations are included within the set of uni-
tary incoherence-preserving operations. As it turns out,
the two sets are in fact equivalent. We postpone the proof
until Sec. V B, Proposition 18, where we also present the
general form of such unitaries.

4. Considerations regarding the existence of a free dilation

By analogy with the considerations of Sec. III A 4, in
order to discuss the possibility of dilating a dephasing-
covariant operation with the use of an ancilla in an in-
coherent state and a dephasing-covariant unitary on the
composite of system and ancilla, one needs to specify not
only the preferred subspaces (relative to which coherence
is defined) on the system and ancilla individually, but on
the composite of system and ancilla as well. When the
input and output spaces differ this needs to be specified
on the outputs as well, as discussed in Sec. III A 4.

Recall that the system input and output spaces are
denoted Hs and Hs′ , the ancilla input and output spaces
are denoted Ha and Ha′ , and the composite of system
and ancilla isHsa = Hs⊗Ha = Hs′⊗Ha′ . We also denote
the associated sets of incoherent states and dephasing
maps with the subscripts s, a and sa (or s′a′).

We here assume that the preferred subspaces for the
composite are just the tensor products of those for the
system and for the ancilla, so that

Dsa = Ds ⊗Da. (4.5)

Proposition 12 A quantum operation E is dephasing-
covariant if it can be implemented by coupling the system
to an ancilla in a state σ that is incoherent, via a uni-
tary quantum operation V that is dephasing-covariant,

and then post-selecting on a measurement outcome as-
sociated to an incoherent effect E. Suppose E can be
implemented as a dilation of the form

E(ρ) = tra′(E V(ρ⊗ σ)), (4.6)

where ρ is a state on Hs, σ is a state on Ha, V(·) =
V (·)V † for some unitary operator V on Hsa , and E is an
effect on Ha′ . Then formally, E is dephasing-covariant
if there is such a dilation where Da(σ) = σ, Da′(E) = E
and V ◦ Dsa = Dsa ◦ V.

Proof. The proof is as follows:

E
(
Ds(ρ)

)
= tra′

(
E V[Ds(ρ)⊗ σ]

)
(4.7)

= tra′

(
E V[Dsa(ρ⊗ σ)]

)
(4.8)

= tra′

(
E Ds′a′

(
V[ρ⊗ σ]

))
(4.9)

= tra′

(
Ds′a′

(
E V[ρ⊗ σ]

))
(4.10)

= Ds′

(
tra′
(
E V[ρ⊗ σ]

))
(4.11)

= Ds′(E(ρ)), (4.12)

where in the second line, we have used the fact that
Da(σ) = σ together with Eq. (4.5); in the third line,
we have used the fact that V is a dephasing-covariant
operation; in the fourth line, we have used the fact that
Da′(E) = E and Eq. (4.5); in the fifth line, we have
used Eq. (4.5) again; and in the sixth line, we have used
Eq. (4.16).

It is an open question whether every dephasing-
covariant operation on a system can be implemented in
this fashion for a suitable choice of ancilla.

5. Characterization via diagonal and off-diagonal modes

A useful way of distinguishing incoherent states from
coherent states is by considering their representation as
vectors in B, the space of linear operators on H. The de-
phasing operationsD is a projector on the operator space,
i.e., it satisfies D◦D = D, and it induces a direct sum de-
composition on the operator space B as B = Bdiag⊕Boffd,
where Bdiag and Boffd are respectively the image and the
kernel of D. For an arbitrary operator A, we define the
diagonal component of A to be

Adiag ≡ D(A), (4.13)

and the off-diagonal component of A to be

Aoffd ≡ A−D(A) = A−Adiag. (4.14)

Clearly, all incoherent states lie entirely within Bdiag,
while every coherent state has some nontrivial compo-
nent in Boffd.

Then, the fact that dephasing-covariant operations
by definition commute with the dephasing operation D,



17

immediately implies that these operations are block-
diagonal with respect to this decomposition of the op-
erator space B.

It is useful to consider how a dephasing-covariant oper-
ation E is represented as a matrix on the operator space
B. If {Xi}i is an orthonormal basis (with respect to the
Hilbert Schmidt inner product) for the space of opera-
tors B, then E can be represented by the matrix elements

Eij = Tr(X†i E(Xj)). E is dephasing-covariant iff its ma-
trix representation has the following form relative to the
decomposition B = Bdiag ⊕ Boffd,

(Bdiag Boffd

Bdiag A 0

Boffd 0 B

)
, (4.15)

where A and B are matrices.

Alternatively, the mode-based characterization of
dephasing-covariant operations can be given as follows.

Proposition 13 A quantum operation E is dephasing-
covariant relative to a preferred set of subspaces if and
only if it preserves the diagonal and off-diagonal modes.
Formally, the condition is that whenever E(ρ) = σ, we
have E(ρdiag) = σdiag and E(ρoffd) = σoffd .

B. Physical justification for the restriction to
dephasing-covariant operations?

We noted that whether every dephasing-covariant op-
eration admits of a dilation in terms of an incoherent
ancilla state, an incoherent effect on the ancilla, and a
dephasing-covariant unitary on the system-ancilla com-
posite is currently an open question.

If its answer is positive, then the problem of finding a
physical justification for the dephasing-covariant opera-
tions reduces to finding a physical scenario wherein the
only free states and effects on the ancilla are incoherent
and the only free unitaries on the system-ancilla com-
posite are those that are dephasing-covariant. It is not
obvious how to justify the latter constraint in particular.
However, even if the answer is negative, there remains
the possibility that one can find a physical justification
for the free set of operations being the set of dephasing-
covariant operations. This is the same possibility that
remained for justifying the incoherence-preserving or in-
coherent operations as the free set, namely, by allowing
that different systems may not be treated even-handedly.

Overall, therefore, it is at present unclear whether a
restriction to dephasing-covariant operations arises from
a natural experimental restriction.

C. Relation of dephasing-covariant operations to
translationally-covariant operations

1. Relation between the sets of free operations

Here we study the relation between the dephasing-
covariant operations and the translationally-covariant
operations for the same choice of the preferred subspaces.
In the dephasing-covariance approach to coherence, one
must begin with a choice of preferred subspaces relative
to which dephasing occurs. If one is given a translational
symmetry, then one can choose these subspaces to be the
eigenspaces of the generator of that symmetry group (or,
if the symmetry group incorporates independent com-
muting translations and therefore multiple commuting
generators, then as the joint eigenspaces of the genera-
tors). Conversely, if a set of preferred subspaces is given,
one can always construct a Hermitian operator that has
these subspaces as eigenspaces with distinct eigenvalues
and consider this to be a generator of translations. Be-
cause a given choice of preferred subspaces might only be
physically justified in one of the two approaches, the com-
parison we are making here is best understood as probing
the mathematical relation between the two approaches to
quantifying coherence as a resource.

To understand this connection it is useful to note that
the dephasing operation relative to the eigenspaces of
L can be realized by applying a random translation to
the system, that is, a translation UL,x where x is chosen
uniformly at random,

D(·) = lim
x0→∞

1

2x0

∫ x0

−x0

dx e−ixL(·)eixL . (4.16)

It is also useful to note the connection between the two
approaches from the perspective of mode decompositions.
The diagonal mode relative to the eigenspaces of L cor-
responds to the ω = 0 mode of translational asymmetry
relative to the generator L,

Bdiag = B(0), (4.17)

while the off-diagonal mode relative to the eigenspaces of
L corresponds to the direct sum of the ω 6= 0 modes of
translational asymmetry relative to the generator L,

Boffd =
⊕
ω 6=0

B(ω). (4.18)

Intuitively then, to choose the dephasing-covariant op-
erations as the free set of operations is to disregard the
distinction between the different nonzero modes.

Denote the the set of quantum operations that are
translationally-covariant with respect to a generator L
by TCL and the set of quantum operations that are
dephasing-covariant with respect to the eigenspaces of
L (which we will denote S(L)) by DCS(L).

Proposition 14 The operations that are translationally-
covariant relative to translations generated by L are a
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proper subset of those that are dephasing-covariant rela-
tive to the eigenspaces of L,

TCL ⊂ DCS(L). (4.19)

Proof. The subset relation can be understood easily
within any of the characterizations of translationally-
covariant and dephasing-covariant operations that we
have provided. For instance, starting with the expres-
sion for the translational-covariance of an operation E ,
Eq. (3.5), if one integrates over x, one obtains the expres-
sion for the dephasing covariance of E , Eq. (4.1), where
we have made use of Eq. (4.16).

To show that the inclusion is strict, it suffices to
show that there are dephasing-covariant operations which
are not translationally-covariant. Any example of
a dephasing-covariant operation wherein one nonzero
mode, ω, is mapped to another, distinct, nonzero mode
is sufficient.

For example, consider the unitary that swaps a pair of
states living in different eigenspaces of L, and leaves the
rest of the states unchanged. This operation in general
will not be translationally-covariant while it is dephasing-
covariant.

Measures of  
TC-coherence 

Dephasing- 
Covariant  

Operations 

Translationally- 
Covariant  

Operations 

Measures of 
 DC-coherence 

FIG. 1: The relation between the dephasing-covariant and
the translationally-covariant operations and the relation be-
tween the associated measures of coherence that these sets of
operations define. Both inclusions are shown to be strict.

Despite the strict inclusion of translationally-covariant
operations in the set of dephasing-covariant operations,
if we focus on the POVMs associated to measurements
(i.e. the retrodictive aspect of the measurement) the two
approaches pick out the same set, as we noted earlier.

2. Relation between measures of coherence

Prop. 14 implies that if a transformation from initial
state ρ to final state σ is allowed under DCS(L) opera-
tions, then it is also allowed under TCL operations. This
means that any measure of DCS(L)-coherence is also a
measure of TCL-coherence. In fact, one can show that

Proposition 15 Any measure of DCS(L)-coherence is
also a measure of TCL-coherence, but not vice-versa.

The strictness of the inclusion is demonstrated in
Sec. VI. This relation is illustrated in Fig. 1.

V. COHERENCE VIA
INCOHERENCE-PRESERVING AND

INCOHERENT OPERATIONS

In this section, we consider approaches to coherence
wherein the free operations are incoherence-preserving or
incoherent operations.

A. Free operations as incoherence-preserving
operations

Definition 16 A quantum operation E is said to be
incoherence-preserving if it maps incoherent states on the
input space to incoherent states on the output space,

ρ ∈ Iin =⇒ E(ρ) ∈ Iout. (5.1)

Just as was the case with the dephasing-covariant op-
erations, the incoherence-preserving operations can be
characterized in terms of their interaction with the de-
phasing map:

Proposition 17 A quantum operation E is incoherence-
preserving if and only if

E ◦ D = D ◦ E ◦ D . (5.2)

We can also characterize incoherence-preserving oper-
ations in terms of their representations as matrices on the
operator space B, just as we did for dephasing-covariant
operations.

We deduce from Eq. (5.2) that an operation E is
incoherence-preserving if and only if its matrix represen-
tation has the following form relative to the decomposi-
tion B = Bdiag ⊕ Boffd,

(Bdiag Boffd

Bdiag A C

Boffd 0 B

)
, (5.3)

where A, B and C are matrices. A comparison with the
analogous characterization of dephasing-covariant oper-
ations, Eq. (4.15), shows how incoherence-preserving op-
erations do not preserve the diagonal and off-diagonal
modes.

We postpone our characterization of the incoherence-
preserving measurements until Sec. V D because it forms
the basis of one of our criticisms of this approach.

1. Incoherence-preserving unitary operations

For simplicity, we start with the special case where
the preferred subspaces are all 1-dimensional, where the
unitary incoherence-preserving operations have a partic-
ularly simple form.

Let V denote a unitary incoherence-preserving opera-
tion, and let {|l〉〈l|}l denote the set of projectors onto
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the elements of the preferred basis. Consider the im-
age of each |l〉〈l| under V. Because a unitary operation
preserves the rank of a state, the image must also be
a projector onto a 1-dimensional subspace. But given
that |l〉〈l| is an incoherent state and V is incoherence-
preserving, it follows that the image must be an incoher-
ent pure state. The only incoherent pure states are those
in the set {|l〉〈l|}l, therefore V must map this set to itself,
that is, for any l it should hold that

V(|l〉〈l|) = |π(l)〉〈π(l)| (5.4)

where π is a permutation over the set {l}l.
If V is the unitary operator that defines the unitary

incoherence-preserving operation V through V(·) = V ·
V †, the incoherence-preserving property implies that

V =
∑
l

eiθl |π(l)〉〈l| (5.5)

for a set of phases {eiθl}l. So, any incoherence-preserving
unitary operation can be characterized by a permutation
π of the preferred basis, and a set of phases {eiθl}l.

The case where the preferred subspaces are not all 1-
dimensional is slightly more complicated.

Let {|l, αl〉}αl denote an arbitrary basis for the pre-
ferred subspaceHl, so that {|l, αl〉}l,αl is a basis of the en-
tire Hilbert space. Now consider the image of {|l, αl〉}αl
under the unitary V . Although each vector |l, αl〉 ∈ Hl
need not be mapped to another vector in Hl, it is still
the case that for a given l, there must be some l′ such
that for every vector in Hl, its image is in Hl′ . The rea-
son is that if this were not the case, it would be possible
to identify some vector in Hl that is mapped to a non-
trivial coherent superposition of vectors lying in different
preferred subspaces, and this would imply a violation of
the incoherence-preserving property. Note that the di-
mension of Hl′ must be the same as the dimension of
Hl.

Therefore, if π denotes a dimension-preserving permu-
tation of the preferred subspaces, and Vl denotes a uni-
tary that acts arbitrarily within the Hl subspace and as
identity on the complementary subspace, then the prop-
erty of V being incoherence-preserving implies that

V =
∑
l,αl

Vπ(l)|π(l), απ(l)〉〈l, αl|. (5.6)

So, any incoherence-preserving unitary operation can
be characterized by a dimension-preserving permutation
π among the preferred subspaces, and a set of unitary
operators {Vl}l.

B. Relation of incoherence-preserving operations
to dephasing-covariant operations

We begin by considering unitary operations.

Proposition 18 The set of unitary dephasing-covariant
operations relative to the preferred subpaces {Hl}l is
equivalent to the set of unitary incoherence-preserving op-
erations relative to these same subspaces.

The proof is as follows. Every dephasing-covariant
operation is incoherence-preserving and therefore what
must be demonstrated is that for unitary operations,
being incoherence-preserving implies being dephasing-
covariant. This simply follows from the general form of
an incoherence-preserving unitary operation, Eq. (5.6).

In general, however, the dephasing-covariant opera-
tions are a strict subset of the incoherence-preserving
operations.

To demonstrate this, we provide a simple exam-
ple of an operation that is incoherence-preserving but
not dephasing-covariant. Consider a qubit and denote
the preferred basis thereof by {|0〉, |1〉}. Let |±〉 =
2−1/2(|0〉±|1〉). Consider the quantum operation defined
by

E(ρ) = |0〉〈0|Tr(|+〉〈+|ρ) + |1〉〈1|Tr(|−〉〈−|ρ), (5.7)

E is clearly incoherence-preserving, because for all input
states (and therefore, in particular, incoherent states),
the output is always an incoherent state. On the other
hand, one can easily show that it is not dephasing-
covariant because D ◦ E = E , while E ◦ D 6= E . This can
be seen, for instance, by noting that while D(|+〉〈+|) =
D(|−〉〈−|), operation E maps |+〉 and |−〉 to two different
states.

This example is related to the fact if one considers op-
erations with trivial output spaces, i.e., destructive mea-
surements, then there are incoherence-preserving opera-
tions which are not dephasing-covariant (See Sec. V D).

Denote the operations that are incoherence-preserving
(dephasing-covariant) relative to a particular choice S ≡
{Hl}l of the preferred subspaces by IPS (DCS). Then
we have the following result.

Proposition 19

DCS ⊂ IPS . (5.8)

Therefore, any measure of IPS-coherence is also a mea-
sure of DCS-coherence.

Here the second statement follows from the fact that
if ρ → σ is a transformation that is possible under
incoherence-preserving operations, then it is also possible
under dephasing-covariant operations because the latter
set includes the former. This, in turn, implies that any
function on states that is nonincreasing under the latter
set of operations is nonincreasing under the former set of
operations.

At present, it is not clear whether the vice-versa holds,
that is, whether or not there exist measures of DCS -
coherence that are not measures of IPS coherence. This
question remains open because although we have exam-
ples of operations that are incoherence-preserving but
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FIG. 2: The relation between the incoherence-preserving and
the dephasing-covariant operations and the relation between
the associated measures of coherence that these sets of oper-
ations define. It is not known whether the inclusion relation
among the measures is strict.

not dephasing-covariant, we do not have examples of
state transformations ρ → σ which are possible un-
der incoherence-preserving operations but not dephasing-
covariant ones. That is, we have no proof that the addi-
tional operations in the incoherence-preserving set are
in fact helpful in any state-conversion problem. The
question is also open if one considers measures of co-
herence under the incoherent operations rather than the
incoherence-preserving operations.

C. Free operations as incoherent operations

The approach to coherence described above is certainly
in the same spirit as the approach introduced by BCP.
Strictly speaking, however, BCP take the free operations
to be the incoherent operations, defined as follows:

Definition 20 A quantum operation E is said to be in-
coherent if it admits of a Kraus decomposition where
each term is incoherence-preserving, that is, if there is
a decomposition with Kraus operators {Kn}n such that
KnIinK

†
n ⊂ Iout for all n.

In their article, BCP only considered coherence rel-
ative to a decomposition of the Hilbert space into 1-
dimensional subspaces, while one may want to consider
decompositions into subspaces of arbitrary dimension.
Also, BCP did not explicitly consider the possibility that
the input and output spaces of E are different. The def-
inition of incoherent operations we have just provided
incorporates these two generalizations of the notion.

Note that because unitary operations have only a sin-
gle term in their Kraus decomposition, for unitary oper-
ations being incoherence-preserving coincides with being
incoherent.

D. Criticism of these approaches to defining
coherence

As noted in the introduction, a given choice of the
set of free operations is only physically justified if it can
be understood as arising from some natural restriction
on experimental capabilities. The situation where the

free operations are the incoherence-preserving or inco-
herent operations is like that of the dephasing-covariant
operations—it is unclear whether there is a natural re-
striction that picks out these sets.

Nonetheless, we describe two features of the
incoherence-preserving or incoherent operations that
seem pertinent to the question of whether they can arise
from a natural restriction: how they constrain measure-
ments and the nonexistence of a certain kind of Stine-
spring dilation.

1. Incoherence-preserving and incoherent measurements

If the output space of a quantum operation is trivial,
so that it corresponds to tracing with a measurement ef-
fect E on the input space, that is, E(·) = Tr(E·), then
the definition of incoherence-preserving in terms of the
dephasing map, Eq. (5.2), reduces to a trivial condition
that is satisfied by all effects E. Consequently, there is no
constraint on the effects in this approach. Similarly, in
the case of the incoherent operations proposed by BCP,
for any given POVM, the operation associated to a given
outcome can always be chosen to prepare the output sys-
tem in an incoherent state. It follows that the set of
incoherent measurements includes any POVM.

Proposition 21 The sets of POVMs associated to the
set of incoherence-preserving measurements and the set
of incoherent measurements are both the full set of
POVMs.

In these approaches, therefore, there is no limitation
on the retrodictive capacity of a free measurement. In
particular, measurements in the free set are capable of
detecting the presence of coherence in a state. This is
a rather counterintuitive feature for free measurements
to have. Furthermore, the fact that the free states are
incoherent while the free effects are not implies that the
proposal has an awkward asymmetry between prediction
and retrodiction. Recall that in the approaches based
on translationally-covariant or dephasing-covariant oper-
ations, by contrast, the free effects are the incoherent
effects. These considerations, in our view, suggest that
this approach does not have a natural physical justifica-
tion. The criticism is not conclusive however—an expla-
nation of circumstances in which just this sort of restric-
tion arises may yet be forthcoming.

2. Considerations regarding the existence of a free dilation

It turns out that, if one assumes that the preferred
subspaces for the system-ancilla composite are the tensor
products of the preferred subspaces for the system and for
the ancilla, i.e., if all systems are treated even-handedly,
then incoherence-preserving and incoherent operations
do not have free dilations. For instance, the operation
in Eq. (5.7), which distinguishes states |+〉 and |−〉, is
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both incoherent and incoherence-preserving and cannot
be implemented in this way.

The lack of a free dilation can be understood as a
consequence of the fact that when it comes to uni-
tary operations, there is no distinction between the
sets of dephasing-covariant, incoherent, or incoherence-
preserving operations (This follows from proposition 18,
together with the fact that a unitary operation has a
single term in its Kraus decomposition). It follows that
one can substitute “incoherence-preserving (or incoher-
ent) unitary operations” for “dephasing-covariant uni-
tary operations” in proposition 12, while preserving its
validity. Hence with incoherent states and incoherence-
preserving (or incoherent) unitaries, one can only gener-
ate dephasing-covariant operations. Because these are,
by proposition 14, a proper subset of the incoherent
operations, it follows that we cannot implement every
incoherence-preserving (incoherent) operation using in-
coherent states and incoherence-preserving (incoherent)
unitaries. Again, we note that a physical justification
might still be possible.

3. Incoherent operations versus incoherence-preserving
operations

Which of various different sets of free operations is the
appropriate one for defining a resource theory, for in-
stance, whether to use the incoherence-preserving or the
incoherent operatons to define coherence, is a question
that can be settled by finding a physical scenario or re-
striction on experimental capabilities that picks out one
or the other. If the set of operations are physically justi-
fied by an interaction between the system and an uncon-
trollable environment (on which one cannot implement
any measurements), then incoherence-preserving opera-
tions are more natural than incoherent operations. If, on
the other hand, the physical justification comes from an
interaction between the system and an apparatus with a
classical read-out, then incoherent operations are more
natural than incoherence-preserving operations.

Furthermore, if one seeks a physical justification in
terms of a constraint on the dilation of an operation,
then this too bears on the question of whether it is phys-
ically more reasonable to take the free operations to be
the incoherent operations or the incoherence-perserving
operations.

Consider the following (flawed) argument in favour
of using the incoherent operations. Take the standard
Stinespring dilation of an operation. For any Kraus de-
composition of that operation, it is possible to ensure
that the effective map on the system is a single term in
that Kraus decomposition by implementing the opera-
tion through its standard Stinespring dilation and then
performing an appropriate measurement on the auxiliary
system and post-selecting on a single outcome. Given
this possibility of realizing a single term in the Kraus de-
composition, so the argument goes, one should require

each such term to be incoherence-preserving, rather than
just requiring this of their sum.

However, this argument has appealed to the standard
Stinespring dilation theorem which only guarantees that
for every operation there is some unitary on a larger
system that realizes it by dilation. In the context of
a resource theory, however, one cannot avail oneself of
any unitary on the larger system because such a uni-
tary might not be free. Similar comments apply to the
states and effects on the auxiliary system that appear in
the dilation. In a resource theory, if a free operation is
implemented by dilation, then it must be implemented
by a free dilation, which is a strict subset of all possible
dilations.

Therefore, to settle this issue by appeal to dila-
tions one must find a physical justification of either the
incoherence-preserving or incoherent operations in terms
of a restriction on the dilation resources, which is an un-
solved problem, as we noted in the previous section.

Finally, we noted in the introduction that our proposal
for the set of free operations in a theory of speakable co-
herence, the dephasing-covariant operations, is closely re-
lated to the proposal found in Ref. [22]. In fact, the set of
free operations of Ref. [22] stands to the set of dephasing-
covariant operations as the set of incoherent operations
stands to the set of incoherence-preserving operations.
As such, disputes about the relative merits of the fomer
two sets are akin to those about the relative merits of the
latter two—they will only be resolved when one or the
other proposal is given a physical justification as all and
only the operations that can be dilated using a restricted
set of states, effects and unitaries.

VI. METHODS FOR DERIVING MEASURES
OF COHERENCE

In this section, we consider measures of coherence for
the various different sets of free operations described in
the article, in particular, TC-coherence, DC-coherence
and IP-coherence. We have already noted, in Proposi-
tions 15 and 19, that if one considers the same choice of
preferred subspaces, then every measure of IP-coherence
is also a measure of DC-coherence which is also a measure
of TC-coherence. Because a measure of TC-coherence is
a measure of translational asymmetry, one can immedi-
ately obtain many interesting measures of coherence by
simply appealing to the known measures of asymmetry.
Indeed, we show that most of the recent proposed mea-
sures of coherence in the BCP proposal correspond to
measures of asymmetry that have been previously stud-
ied in Refs. [9] and [10]. Because of the strictness of the
inclusions in Proposition 15, however, only a subset of the
measures of TC-coherence are measures of DC-coherence
or IP-coherence. We will highlight some examples of the
strictness of the inclusion.

In addition, we present certain general techniques for
deriving measures of coherence, adapted from ideas intro-
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duced in the context of asymmetry theory, and we review
some of the most important examples of measures of co-
herence. (Note, however, that the list we provide is not
complete; there are many known measures of asymmetry
that we do not review here. See e.g. [4, 9, 77, 78].)

A. Measures of coherence based on measures of
information

In Sec. III B, we showed that the resource for phase
estimation is TC-coherence. We saw that there is a du-
ality between the problem of state transformation in the
resource theory of TC-coherence on one hand, and the
problem of processing the classical information encoded
in the phase shifted versions of the state. This was for-
malized by proposition 9. This duality can be leveraged
to derive measures of unspeakable coherence from mea-
sures of information.

We begin by recalling the definition of a measure of the
information content of a quantum encoding of a classical
message.

Definition 22 A function I from sets {ρ(x)}x of quan-
tum states to the reals is a measure of the information
about x contained in the quantum encoding if
(i) For any trace-preserving quantum operation E it holds
that I({E(ρ(x))}x) ≤ I({ρ(x)}x).
(ii) For any trivial encoding, the elements of which are
indistinguishable, I takes the value 0.

If we define a function fI on states to be such that
its value on a state is the measure of information I on
the set of states obtained by acting on the state with all
elements of the translation group (i.e. the orbit under
translations of that state),

fI(ρ) = I({UL,x(ρ)}x∈R), (6.1)

then by proposition 9 and the definitions of measures of
TC-coherence and measures of information, we see that
fI is a measure of TC-coherence if I is a measure of
information.

In particular, one can obtain measures of TC-
coherence from measures of the distinguishability of any
pair of states in the translational orbit of ρ [9, 10].

A similar sort of consideration allows us to infer mea-
sures of DC-coherence from measures of information. In
particular, for any state ρ, one can encode 1 bit of classi-
cal information b as b→ ρb where ρ0 = ρ and ρ1 = D(ρ).
Then, it can be easily seen that for any measure of infor-
mation I,

f(ρ) = I({ρ,D(ρ)}), (6.2)

i.e., the amount of information about bit b that can
be transferred using this encoding is a measure of DC-
coherence. This follows from the fact that, by defi-
nition, if ρ can be transformed to σ by a dephasing-
covariant trace-preserving quantum operation, then the

same quantum operation transforms D(ρ) to D(σ), and
hence there is a trace-preserving quantum operation
which transforms the ρ-based encoding of b to the σ-
based encoding of b. But this in turn implies that the
σ-based encoding cannot have more information about
b than the ρ-based encoding. (This can be thought of
as the analogue of the easy direction of the duality in
proposition 9).

We now consider various measures of coherence that
can be derived from measures of information.

(i) If one uses the duality described by Eq. (6.1) with
the Holevo quantity as the measure of information, then,
following the argument of Ref. [10] and assuming a uni-
form probability density over the translations, one can
prove that the function

Γ(ρ) ≡ S(D(ρ))− S(ρ) . (6.3)

where S is the von Neumann entropy, is a measure of
TC-coherence.

Meanwhile, if one uses the duality described by
Eq. (6.2) with the quantum relative entropy, S(ρ||σ) ≡
tr(ρ log ρ) − tr(ρ log σ), as the measure of information,
then one can prove that the function

Γ′(ρ) = S (ρ||D(ρ)) , (6.4)

is a measure of DC-coherence.
Finally, the function

Γ′′(ρ) = minσ∈IS (ρ||σ) , (6.5)

the minimum relative entropy distance of ρ to the
set of incoherent states, is clearly nonincreasing under
incoherence-preserving operations and is therefore a mea-
sure of IP-coherence. It is also nonincreasing under inco-
herent operations [20].

It turns out that the three measures are all equivalent,
that is,

minσ∈IS (ρ||σ) = S (ρ||D(ρ)) = S(D(ρ))− S(ρ) , (6.6)

a fact that has been noted by many authors [5, 20, 79].
So this is an example of a function that is a measure of
coherence in all of the approaches we have considered.

In the context of asymmetry theory, this function was
first introduced by Vaccaro et al., who called it simply the
asymmetry [80]. It was further studied as a measure of
asymmetry in Ref. [5] (see proposition 2) and it was first
derived from the Holevo information in Ref. [10], where it
was called the Holevo asymmetry measure. Ref. [10] also
proposed that it and other measures of asymmetry could
be used to quantify coherence. BCP noted in Ref. [20]
that this function was monotonically nonincreasing under
incoherent operations and hence a measure of coherence
in their approach, where it has been dubbed the rela-
tive entropy of coherence. Several years prior both to
BCP’s work and the work which studied it as a measure
of translational asymmetry, this function was proposed
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as a measure of coherence by Ȧberg in a paper entitled
“Quantifying superposition” [79].

(ii) If we start from Eq. (6.1) using the Holevo quantity,
but where the probability distribution over translations is
allowed to be arbitrary rather than uniform, it is possible
to show that the following function is also a measure of
TC-coherence:

Γp(ρ) = S (Dp(ρ))− S(ρ) , (6.7)

where p is an arbitrary probability density on the real
line and Dp is a “weighted twirling operation” defined by

Dp(·) = lim
x0→∞

1

2x0

∫ x0

−x0

dx p(x)e−ixL(·)eixL . (6.8)

This translates into the language of coherence a measure
of asymmetry identified in Ref [10].

Note that for any symmetric state ρ and any arbitrary
probability density p, Γp(ρ) = 0. In Ref. [10], it is shown
that using a nonuniform probability density can be useful
in some physical examples.

It turns out that for a general probability density p,
the function Γp is not a measure of DC-coherence and
hence not a measure of IP-coherence either.

(iii) Using Eq. (6.2) while taking as our measure of in-
formation the Holevo quantity for a quantum encoding of
a classical bit but where the bit values have unequal prior
probabilities, we can derive a measure of DC-coherence.
Specifically, for any q ∈ [0, 1], the function

Γq(ρ) = S (qρ+ (1− q)D(ρ))− qS(ρ)− (1− q)S(D(ρ)),
(6.9)

is a measure of DC-coherence.
(iv) Starting from the monotonicty of the relative

Renyi entropy under information processing [81], one can
use Eq. (6.1) to show that the function

SL,s(ρ) ≡ tr(ρL2)− tr(ρsLρ(1−s)L) (6.10)

= −1

2
tr
(
[ρs, L][ρ1−s, L]

)
(6.11)

for 0 < s < 1 is a measure of TC-coherence. The argu-
ment is provided, in the context of asymmetry theory, in
Refs. [10] and [9].

Interestingly, this quantity has been introduced before
by Wigner and Yanase for s = 1/2 [82] (and generalized
by Dyson to arbitrary s in (0, 1)) and since then some
of its interesting properties have been studied. However,
its monotonicity under symmetric dynamics, and hence
its interpretation as a measure of asymmetry, was not
recognized in the past.

It has been claimed by Girolami [83] that this func-
tion is a measure of coherence according to the definition
of BCP [20], that is, he claimed that it is non-increasing
under incoherent operations. However, as is noted in [84]
and [21], this claim is incorrect. This can be seen, for in-
stance, by recognizing that in the case of pure states this
function is equal to the variance of the observable L, but

variance obviously is not invariant under permutations
of the eigenspaces of L. In other words, this function is
only a measure of unspeakable coherence, not of speak-
able coherence.

Note that for any incoherent state ρ, it holds that
SL,s(ρ) = 0. Furthermore, for pure states, the Wigner-
Yanase-Dyson skew information reduces to the variance
of the observable L, that is,

SL,s(|ψ〉〈ψ|) = 〈ψ|L2|ψ〉 − 〈ψ|L|ψ〉2. (6.12)

For a general mixed state, a nonzero variance over L
does not attest to there being coherence between the L
eigenspaces because it can also be explained by an inco-
herent mixture of the latter. The function SL,x, on the
other hand, seems to succeed in quantifying the amount
of variance over L that is coherent, which one might call
the “coherent spread” over the eigenspaces of L. It is also
worth mentioning that recently, Ref. [83] has proposed a
method for measuring this quantity.

Interestingly, it has been noted that the function which
is the average over s of the Wigner-Yasane-Dyson skew

information for index s,
∫ 1

0
ds SL,s(ρ), has a natural inter-

pretation as the quantum fluctuations of the observable
L, i.e., as the difference between the total fluctuations
〈δ2L〉 and the (classical) thermal fluctuations [50]. Fur-
thermore, it has been shown that this quantity can be
calculated in several interesting examples of many-body
systems [50].

(v) If the relative Renyi entropy is used in Eq. (6.2),
we can prove that the function

Ss(ρ) ≡ 1

s− 1
log
[
tr
(
ρs[D(ρ)]1−s

)]
(6.13)

for 0 < s < 1 is a measure of DC-coherence.
(vi) Following an argument presented in Ref. [10], we

can use Eq. (6.1) to show that the function

FL(ρ) ≡ ‖[ρ, L]‖1 (6.14)

where ‖·‖1 is the trace norm (i.e., the sum of the singular
values) is a measure of TC-coherence. This measure for-
malizes the intuition that the coherence of a state with
respect to the eigenspaces of L can be quantified by the
extent to which the state fails to commute with L. The
state ρ has coherence relative to the eigenspaces of L if
and only if [ρ, L] 6= 0 so in retrospect one would natu-
rally expect that some operator norm of the commutator
[ρ, L] should be a measure of TC-coherence. This intu-
ition does not, however, tell us which operator norm to
use. Our result shows that it is the trace norm that does
the job 14.

14 Note that for s = 1/2, we have SL,s=1/2 = ‖[ρ1/2, L]‖2/2 where
‖·‖2 is the Frobenius norm, that is, the sum of the squares of the
singular values. So, both ‖[ρ1/2, L]‖2 and ‖[ρ, L]‖1 are measures
of asymmetry.
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The function FL reduces to a simple expression for
pure states: it is proportional to the square root of the
variance of the observable L, that is,

FL(|ψ〉〈ψ|) = 2
(
〈ψ|L2|ψ〉 − 〈ψ|L|ψ〉2

)1/2
. (6.15)

Again, we see that a mixture over the eigenspaces of L
has vanishing FL, while a coherent superposition over
these eigenspaces has FL that depends only on the vari-
ance over L. Consequently, this coherence measure, like
SL,s, in some sense quantifies the coherent spread over
the eigenspaces of L.

We see that, when restricted to pure states, the func-
tion FL is a monotonic function of SL,s. Given that the
latter is neither a measure of DC-coherence nor a mea-
sure of IP-coherence, as argued above, it follows that the
former is not either.

(vi) Arguments in Refs. [9] and [10] show that the func-
tion

Rp(ρ) ≡ ‖ρ−Dp(ρ)‖1 (6.16)

is a measure of TC-coherence for an arbitrary probability
distribution p on the reals.

In the special case where p is the uniform distribution,
the function becomes

R(ρ) ≡ ‖ρ−D(ρ)‖1. (6.17)

The latter is a measure of DC-coherence, as we show
in the next section. However, for a general distribu-
tion p, the function Rp can increase under dephasing-
covariant operations, and hence it is not a measure of
DC-coherence. This can be seen, for instance, using the
same example which showed that Γp is not in general a
measure of DC-coherence. It then follows from proposi-
tion 15 that Rp for general distribution p is not a measure
of IP-coherence either.

B. Measures of coherence based on mode
decompositions

In Sec. III A 5, we introduced the concept of the mode
decomposition of states and operations, first introduced
in Ref. [8] as a useful method in the resource theory of
asymmetry. In the language of mode decompositions, the
translationally-covariant operations are those such that
a given mode component of the input state is mapped to
the corresponding mode component of the output state
(proposition 6). This implies, in particular, that one can
only generate a given output if the input contains all of
the necessary modes.

Based on this observation, Ref. [8] noted that one
can define a family of asymmetry measures which quan-
tify the amount of asymmetry in each mode. By con-
sidering translational symmetry, we obtain measures of
TC-coherence. In particular, using the monotonicity of

the trace-norm under trace-preserving completely posi-
tive maps, we find that for each ω 6= 0, the function∥∥∥P(ω)(ρ)

∥∥∥
1

(6.18)

is a measure of TC-coherence (the ω = 0 case yields a
constant function and so is uninteresting). Indeed, we
find that any linear function of modes can lead to a dif-
ferent measure of TC-coherence. In other words, for any
set of complex numbers {c(ω)}, the function∥∥∥∥∥∑

ω∈Ω

c(ω)P(ω)(ρ)

∥∥∥∥∥
1

, (6.19)

is a measure of TC-coherence, where Ω is the set of modes
corresponding to the generator L.

Proposition 13 established that dephasing-covariant
operations preserve the diagonal and off-diagonal modes
of a state. It follows that∥∥ρoffd

∥∥
1

= ‖[Iid −D](ρ)‖1 (6.20)

is nonincreasing under dephasing-covariant operations
and hence is a measure of DC-coherence. Eq. (6.20) is
just R(ρ) of Eq. (6.17), and so these considerations have
only provided an independent way of seeing that it is a
measure of DC-coherence.

Recall that the space of off-diagonal operators is equal
to the direct sum of the spaces of mode-ω operators for
ω 6= 0, Boffd =

⊕
ω 6=0 Bω (Eq. (4.18)), which implies that

the superoperator that projects on the one space also
projects onto the other, that is,

Iid −D =
∑
ω 6=0

Pω. (6.21)

It follows that the function (6.20) is a special case of the
function (6.19) where we choose c(0) = 0 and c(ω) = 1 for
all ω 6= 0, thereby confirming that this particular mea-
sure of DC-coherence is also measure of TC-coherence,
as Proposition 15 requires.

However, measures of TC-coherence based on
Eq. (6.19) will not, in general, be measures of DC-
coherence or IP-coherence. In particular, the function
(6.18) for some particular ω is an example. It can increase
under dephasing-covariant or incoherence-preserving or
incoherent operations because these can move weight
from other mode components into the mode-ω compo-
nent. This is yet another proof of the strictness of the
inclusion in proposition 15.

Interestingly, measures of TC-coherence of the form of
Eq. (6.18) are closely related to a method which is reg-
ularly used in NMR for characterizing the coherence of
states. Here, the relevant observable L is the magnetic
moment in the direction of the quantization axis. The
modes corresponding to this observable, i.e., the differ-
ences of its eigenvalues, are integers. Then, using NMR
techniques, one can experimentally measure functions∥∥∥P(k)(ρ)

∥∥∥
2

=
√

Tr(P(k)(ρ)P(−k)(ρ)) , (6.22)



25

for integer k, where ‖ · ‖2 is the Frobenius norm [47–49].
Strictly speaking, these functions are not measures of
TC-coherence, i.e. they can increase by translationally-
covariant operations such as partial trace. However,
these functions provide useful lower and upper bound
on

∥∥P(k)(ρ)
∥∥

1
, which are measures of TC-coherence,

namely,∥∥∥P(k)(ρ)
∥∥∥

2
≤
∥∥∥P(k)(ρ)

∥∥∥
1
≤
√
d
∥∥∥P(k)(ρ)

∥∥∥
2
, (6.23)

where d is the dimension of the Hilbert space.

VII. CONCLUDING REMARKS

We have shown that the translationally-covariant op-
erations define a useful resource theory of unspeakable
coherence. The constraint of translationally covariance
is seen to arise naturally in many physical scenarios, each
motivated by a different application of unspeakable co-
herence. In the case of speakable coherence, we have ex-
plored two sorts of approaches, one based on dephasing-
covariant operations and the other based on operations
that are incoherence-preserving (the BCP approach is a
variant of the latter where a free operation is one that has
a Kraus decomposition each term of which is incoherence-
preserving). It is currently unclear whether there are
physical scenarios that pick out one of these sets of oper-
ations as the freely-implementable ones. We have, how-
ever, constrained the shape of a putative physical justi-
fication.

A possibility worth considering is that speakable co-
herence, unlike its unspeakable counterpart, cannot be
usefully understood as a resource. Perhaps the resource
that powers tasks involving speakable information is not,
in fact, a resource of coherence, but rather a different
property of quantum states 15. Even if this different
property implied having some coherence in the state, it
might be that coherence was merely necessary but not
sufficient for acheiving the task. In this case, it would be
incorrect to identify coherence as the resource powering
the task.

This is indeed the case for at least one model of quan-
tum computation, namely, the state injection model [85].
Here, the circuit consists entirely of Clifford gates—i.e.,
those that take the set of Stabilizer states to itself—and
one allows injection of nonStabilizer states. The injec-
tion of nonStabilizer states is critical for achieving uni-
versal quantum computation because, as the Gottesman-
Knill theorem shows, a Clifford circuit can be efficiently
simulated classically [73]. Note that a Clifford circuit

acting only on Stabilizer states is efficiently simulatable
even though the states throughout the computation have
coherence relative to the computational basis. Clearly,
then, coherence is not sufficient for achieving universal
quantum computation in the state injection model. Fur-
thermore, for the case where the systems have dimension
corresponding to an odd prime, it has been shown that
a necessary condition on the injected states for achiev-
ing universal quantum computation is that the circuit
should fail to admit of a noncontextual hidden variable
model [86]. A Clifford circuit acting only on Stabilizer
states admits of such a model via Gross’s discrete Wigner
representation [87, 88]. As such, the failure of noncon-
textuality is a much more stringent requirement than the
presence of coherence and, unlike coherence, it is a viable
candidate for the resource that powers quantum compu-
tational advantages in the state injection model.

The prospects for speakable coherence as a resource
are better for cryptographic tasks. For instance, the
BB84 quantum key distribution protocol [89] requires
non-orthogonal states and therefore requires the prepara-
tion of states that have coherence relative to the preferred
basis (regardless of one’s choice of preferred basis). Fur-
thermore, the BB84 protocol uses only stabilizer states
and measurements, so that the latter are sufficient for
the protocol, unlike the situation for universal quantum
computation in the state injection model.

It seems, therefore, that speakable coherence may be a
resource for some quantum information-processing tasks
and not for others. Greater clarity on the applications of
speakable coherence would further the project of finding
which sets of free operations that can define speakable
coherence and which are physically justified.

VIII. ACKNOWLEDGEMENTS

We acknowledge helpful discussions with Gilad Gour,
Eric Chitambar, Paola Cappellaro, Tommaso Roscilde,
Gerardo Adesso, Alex Streltsov, Julio I. de Vicente, and
Martin Plenio. Research at Perimeter Institute is sup-
ported in part by the Government of Canada through
NSERC and by the Province of Ontario through MRI.
IM acknowledges support from grants ARO W911NF-
12-1-0541 and NSF CCF-1254119.

Note Added : During the preparation of this article, we
became aware of independent work by Gour and Chita-
mbar, which also studies the physical relevance of inco-
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[19] J. Åberg, Nature communications 4 (2013).
[20] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev.

Lett. 113, 140401 (2014), URL http://link.aps.org/

doi/10.1103/PhysRevLett.113.140401.
[21] I. Marvian, R. W. Spekkens, and P. Zanardi,

arXiv:1510.06474 (2015).
[22] B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral,

arXiv preprint arXiv:1512.02085 (2015).
[23] B. Yadin and V. Vedral, arXiv preprint arXiv:1505.03792

(2015).
[24] A. Ajoy and P. Cappellaro, Physical Review A 86, 062104

(2012).
[25] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.

Lett. 96, 010401 (2006).
[26] V. Giovannetti, S. Lloyd, and L. Maccone, Nature 412,

417 (2001).
[27] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Pho-

tonics 5, 222 (2011).
[28] R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K.

Lam, Nature communications 1, 121 (2010).
[29] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Reviews

of Modern Physics 79, 555 (2007).
[30] M. Lostaglio, K. Korzekwa, D. Jennings, and

T. Rudolph, Physical Review X 5, 021001 (2015).
[31] M. Lostaglio, D. Jennings, and T. Rudolph, Nature com-

munications 6 (2015).
[32] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth,

International Journal of Theoretical Physics 39, 2717
(2000).
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