Role of syndrome information on a one-way quantum repeater using teleportation-based error correction

Ryo Namiki, Liang Jiang, Jungsang Kim, and Norbert Lütkenhaus

Phys. Rev. A 94, 052304 — Published 3 November 2016
DOI: 10.1103/PhysRevA.94.052304
Role of syndrome information on a one-way quantum repeater using teleportation-based error correction

Ryo Namiki, Liang Jiang, Jungsang Kim, and Norbert Lütkenhaus

1 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo ON, Canada N2L 3G1
2 Department of Applied Physics, Yale University, New Haven, CT 06511 USA
3 Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA

We investigate a quantum repeater scheme for quantum key distribution based on the work by Muralidharan et al., Phys. Rev. Lett. 112, 250501 (2014). Our scheme extends that work by making use of error syndrome measurement outcomes available at the repeater stations. We show how to calculate the secret key rates for the case of optimizing the syndrome information, while the known key rate is based on a scenario of coarse-graining the syndrome information. We show that these key rates can surpass the Pirandola-Laurenza-Ottaviani-Banchi bound on secret key rates of direct transmission over lossy bosonic channels.

I. INTRODUCTION

To explore the possibility of quantum communication schemes over a long distance [1–5], an essential question is whether the secret key generation rate of quantum key distribution (QKD) with the help of intermediate stations could be better than any key generation scheme without intermediate stations. A clear criterion for this is to surpass the Takeoka-Guha-Wilde (TGW) bound [6, 7]. This is an upper bound of the secret key rate per optical mode over a pure lossy channel, and given by

\[R_{\text{TGW}} = \log_2 \frac{1 + \eta}{1 - \eta}, \]

(1)

where \(\eta \in (0,1] \) is the transmission of the lossy channel. Hence, any key generation over a distance corresponding to the transmission \(\eta \) cannot surpass \(R_{\text{TGW}} \) when there are no intermediate stations. While the TGW bound was suggested to be unachievable, Pirandola, Laurenza, Ottaviani, and Banchi (PLOB) have reported that the corresponding tight bound is given by \([8, 9]\)

\[R_{\text{PLOB}} = \log_2 \frac{1}{1 - \eta}. \]

(2)

It has been shown that the TGW bound cannot be overcome if we are only able to use Gaussian channels as intermediate stations in a one-way structure [10]. This no-go statement for Gaussian repeaters holds also for the PLOB bound. An open question is whether there are other simple intermediate stations facilitating quantum repeater behavior.

Recently, various quantum repeater architectures have been studied [11–14]. Ultimately, one-way schemes with a teleportation-based error correction (TEC) approach [15, 16] have an advantage in terms of achievable rates. Due to the structure of the error correction, the syndrome information of all intermediate stations is available for optimizing the key rate. In Ref. [12], the syndrome measurement was used to flag success or failure events, and to reduce the effective errors in the success case. The secret key rate was then analyzed by calculating the probability that all intermediate stations show success events and by calculating the expected remaining error rates. No further details of the syndrome measurements have been used. Hence, an attainable key rate is immediately determined without the need for keeping track of every combination of possible syndrome outcomes coming through all intermediate stations. This theoretical simplicity also suggests a relatively low technical difficulty for a practical implementation. On the other hand, such a coarse-grained treatment of the syndrome outcomes will discard some of useful information, and the key rate will be lower than potentially achievable performance of a one-way protocol that makes use of the fine-grained syndrome information. In other words, we can obtain a better key rate when we keep the syndrome information and optimize its use. The question is how significant this improvement is so that one can decide whether it is worthwhile to invest the additional processing overhead required for the fine-grained treatment.

In this paper, we show how to calculate the secret key rate of one-way schemes when the syndrome measurement outcomes are taken into account, and address the question of whether they can be potentially useful in overcoming the PLOB bound. We positively answer this question by showing that one can beat the PLOB bound by making an appropri-
ate choice of the parameters. We also point out that our intermediate stations are regarded as quantum channels, and there exist simple quantum-channel stations which facilitate the behavior of a quantum repeater. Although a fine-grained treatment of the syndrome outcomes is not necessary to surpass the PLOB bound, it turns out to be useful to extend the transmission distance and improve error tolerance for a high rate key generation above the PLOB bound.

This paper is organized as follows. After an introduction of the models and related basic notions of one-way stations, we show how to calculate the secret key rate with the use of syndrome information in Sec. II. We compare the key rates for various parameters and identify the area where the performance of the TEC stations surpasses the PLOB bound in Sec. III. There, we also describe the design of a quantum channel station that is sufficient to surpass the PLOB bound. We summarize the results in Sec. IV.

II. STRUCTURE OF INTERMEDIATE STATIONS AND SECRET KEY RATE

A. One-way stations and basic mechanism

Let us consider transmission of a logical qubit using a set of single photon polarization qubits with repeater stations that perform quantum error correction as in Fig. 1. Suppose that the error correction works with a success probability P_0 and gives a logical error rate E_0 (averaged over phase and bit) for a lossy segment of transmission $\eta_0 \in (0,1)$. A concatenation of N segment-and-station pairs, consisting of loss segments and repeater station units, has the net success probability

$$P_{\text{succ}} = P_0^N,$$

and the net average logical error rate

$$Q_N = \frac{1 - (1 - 2E_0)^N}{2}.$$ \hfill (4)

Up to a factor of the protocol efficiency $1/2$, the key rate for the BB84 protocol with this concatenated transmission is given by [17]

$$K = P_{\text{succ}} \max \{1 - 2h(Q_N), 0\},$$

where $h(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)$ is the binary entropy function. The net error of Eq. (4) comes from the fact that a link of two binary symmetric channels with the error rates ϵ_1 and ϵ_2 becomes another binary symmetric channel with the error rate

$$G(\epsilon_1, \epsilon_2) := \epsilon_1 (1 - \epsilon_2) + \epsilon_2 (1 - \epsilon_1).\hfill (6)$$

FIG. 1. Encoded transmission of a logical qubit based on a block of $N_p = nm$ single photons (physical qubits). (a) Transmission through a concatenation of intermediate stations. Each station is composed of a decoder and an encoder. A unit segment is connected with the number of nm optical-loss channels whose transmission is η_0 and a qubit-error rate is ϵ. The efficiency of the unit segment can be described by the success probability P_0 the logical qubit is received and the average error E_0 of the successfully received logical qubit. (b) It is not necessary for the intermediate stations to physically execute a decoding operation to output a logical qubit. But, an error correction — a syndrome measurement followed by a recovery operation— can be performed effectively by keeping the syndrome information of intermediate stations $\{i_1, i_2, \cdots i_N\}$. A syndrome outcome of a single station i assigns conditional success probability w_i and a conditional logical error ϵ_i. The set $\{w_i, \epsilon_i\}$ and the measured sequence $\{i_1, i_2, \cdots i_N\}$ determine the net performance of the transmission.
Suppose that the number of the photonic qubits transmitted per logical qubit is \(N_p \). Since a polarization qubit uses two modes, the number of modes physically used in this transmission is \(2N_p \). This implies that the key rate per mode is given by

\[
R = \frac{K}{2N_p}.
\]

(7)

On the other hand, the key rate due to a direct transmission of a single photon over the pure lossy line with the transmission \(\eta = 2^N \) is given by

\[
R_d = \frac{1}{2} \max \left\{ \eta(1 - 2h(0)), 0 \right\} = \frac{1}{2}\eta^N,
\]

(8)

where the factor 2 is due to the number of optical modes, again. For a long distance \(\eta \ll 1 \), the PLOB bound also gives the key rate proportional to the overall transmission

\[
R_{\text{PLOB}} = \log_2 \frac{1}{1-\eta} \simeq 1.44\eta = 1.44\eta^N.
\]

(9)

By comparing \(R_{\text{PLOB}} \) and the expression in Eqs. (7), the transmission with the intermediate stations beats the PLOB bound if the condition \(K > 2N_p R_{\text{PLOB}} \) is satisfied. With the help of Eqs. (3) and (5), this condition can be rewritten for a long distance as

\[
P_0 > \eta_0 \left(\frac{2.88N_p}{1 - 2h(0)} \right)^{1/N},
\]

(10)

whenever \(1 - 2h(Q_N) > 0 \) holds. If the logical error rate is zero, i.e., \(Q_N = 0 \), we have

\[
P_0 > \eta_0 (2.88N_p)^{1/N}.
\]

(11)

Since the \(N \)-th root rapidly converges to one as \(N \) becomes larger, we have a simple relation for \(N \to \infty \):

\[
P_0 > \eta_0.
\]

(12)

Therefore, an essential necessary condition to beat the PLOB bound is that the success probability of the station is larger than the transmission of the associated segment. We can interpret the success probability as the success of the transmission, and \(P_0 \) is regarded as an effective transmission of the channel. Thereby, the main role of the intermediate stations is to boost the effective transmission. Another essential point is that it becomes easier to beat the PLOB bound when more stations are placed along the total transmission line as seen in Eq. (11). An important model of the transmission line that fulfills \(Q_N = 0 \) is the pure bosonic lossy channel. In such a case, an efficient loss error correction to fulfill Eq. (12) is sufficient to beat the PLOB bound. Note that \(N \) is associated with the total distance of the transmission as

\[
L_{\text{tot}} = -L_{\text{att}} \ln \eta = -NL_{\text{att}} \ln \eta_0.
\]

(13)

where \(L_{\text{att}} \) is the attenuation length. In all following numerical results we will use

\[
L_{\text{att}} = 20\text{km}.
\]

(14)

Note also that essentially the same discussion holds when we replace the PLOB bound in Eq. (2) with the TGW bound in Eq. (1) as it holds, for \(\eta \ll 1 \), that

\[
R_{\text{TGW}} = \log_2 \frac{1+\eta}{1-\eta} \simeq 2.89\eta = 2.89\eta^N.
\]

(15)

B. Error model

Although the loss in the bosonic channel has the dominating impact on the quantum repeater performance, there will also be finite errors associated with controlling matter qubits in the intermediate stations [12]. As an effective error model, we assume that all errors are induced through the channel and the operations in intermediate stations are perfect. For clarity, we assume each physical qubit suffers a physical error \(e \) as in Fig. 1(a). The qubit channel is described by

\[
E_{\text{qubit}}(\rho) = (1 - 2e)\rho + eZ\rho Z + eX\rho X.
\]

(16)

In our simple error model we assume the error rate to be symmetric in the sense that the qubit bit error is \(e_z = e \) and the qubit phase error is also \(e_x = e \). Similar analysis can be performed for a depolarizing channel [12].

C. Protocol

We consider the one-way scheme [12] based on a teleportation-based error correction (TEC) [18, 19]. This scheme is designed to transmit a logical qubit, such as \(|\psi_L\rangle = \alpha |0_L\rangle + \beta |1_L\rangle \), encoded in the number of \(N_p = nm \) photons with

\[
|0_L\rangle = \frac{1}{\sqrt{2}}(|+L\rangle + |-L\rangle)
\]

\[
|1_L\rangle = \frac{1}{\sqrt{2}}(|+L\rangle - |-L\rangle)
\]

(17)
Incoming photons

Photon loss

Outgoing photons

FIG. 2. A quantum-teleportation-based error-correction process transfers the logical qubit of incoming photons in the block \(R \) into a fresh logical qubit in the block \(R' \), and recovers the photon loss. (i) A quantum non-demolition (QND) measurement of the photon number is performed to each of the physical qubits in \(R \), and the position of the photon loss in the incoming photon block \(R \) is identified. (ii) A control-not (CNOT) gate is applied between each of the surviving photons in the block \(R \) and corresponding photons in the block \(S \) whose logical qubit is prepared to be maximally entangled with the outgoing logical qubit in the block \(R' \) as \(\frac{1}{\sqrt{2}} (|00\rangle_{SR'} + |11\rangle_{SR'}) \). (iii) A Bell measurement is implemented by logical \(X \) and logical \(Z \) measurements performed on the blocks \(R \) and \(S \), respectively. The Pauli operators of logical qubits are decomposed into products of Pauli \(\sigma_X, \sigma_Z \). (iv) Finally, the Pauli frame [16] is adjusted by a unitary operation based on the Bell measurement outcome.

and

\[|\pm L\rangle = \frac{1}{\sqrt{2}} (|00\cdots 0\rangle \pm |11\cdots 1\rangle)^\otimes n, \quad (18) \]

where \(n, m \geq 2 \). The smallest code uses four photons, and the unit photon block of this case is \((n, m) = (2, 2)\). We will use the pair \(“(n, m)” \) to specify the block size and thus the code.

Each intermediate station performs a process of the TEC as in Fig. 2. First, we perform a quantum non-demolition (QND) measurement for the incoming qubit block \(R \) and identify the positions in the block where the photon is lost. Second, we apply control-not (C-NOT) gates between each of the surviving photons and corresponding photons of the block \(S \). The state of the \(S \) block is assumed to be prepared maximally entangled with the outgoing qubit block \(R' \), \((|00\rangle_{SR'} + |11\rangle_{SR'})/\sqrt{2} \) before the C-NOT application. Third, we perform a physical \(X \) measurement on each photon of the block \(R \) and a physical \(Z \) measurement on each photon of the block \(S \). We obtain the measurement outcomes \(\sigma^R_{i,j} = \{\pm 1\} \) and \(\sigma^S_{i,j} = \{\pm 1\} \) with \(i \in \{1, 2, \cdots, n\} \) and \(j \in \{1, 2, \cdots, m\} \), while \(\sigma^R_{i,j} = \sigma^S_{i,j} = 0 \) is assigned if the index \((i, j)\) corresponds to the position of lost photons. Finally, a unitary operation is performed based on the Bell measurement outcome \((\tilde{M}^R_X, \tilde{M}^S_Z)\) determined by

\[\tilde{M}^R_X = \text{sign} \left[\sum_{i=1}^{n} \prod_{j=1}^{m} \sigma^R_{i,j} \right], \quad (19) \]
\[\tilde{M}^S_Z = \prod_{i=1}^{n} \text{sign} \left(\sum_{j=1}^{m} \sigma^S_{i,j} \right). \quad (20) \]

Here, \(\text{sign}(x) \) is associated with the majority vote and assigns \(\{-1, 0, 1\} \) depending on \(x < 0, x = 0, \) or \(x > 0 \), respectively, while the product \(\Pi \) is associated with the parity. If either \(\tilde{M}^R_X = 0 \) or \(\tilde{M}^S_Z = 0 \), we say the Bell measurement is inconclusive, and discard the transmission attempt through the quantum repeater chain.

We may classify the statistics of the outgoing qubit based on the pattern of the QND outcomes, namely, the number of lost photons and their location. We refer to this information as the pattern component of the syndrome. Let \(S_{\text{all}} \) be the set of all possible patterns. The performance of the TEC process will be characterized by the syndrome probability \(\{w_i\} \) and logical error rates \(\{\epsilon_i\} \) associated with the pattern \(i \in S_{\text{all}} \). To be specific, we are interested in the joint probability that a recoverable pattern appears and the following Bell measurement is conclusive, i.e., \(\tilde{M}_{X,Z} \neq 0 \), and the logical error rate of such an event. We may call the subset of the patterns being responsible for such events the informative syndromes, \(S_0 \). A detailed note how to determine this set will be presented in Appendix A.
As we will see in the next section, the key rate over a sequence of stations is determined by the observed sequence of patterns.

D. Key rate

We will sketch how to calculate the key rate for a sequence of N loss-segment-and-station pairs whose structure is described in Fig. 1(b). We assume the BB84 protocol corresponding to Sec. II A.

Let $S_0 = \{1, 2, 3, \ldots, l\}$ be the set of informative syndromes of a given intermediate station. We denote by $\{w_i\}_{i \in S_0}$ the set of the success probability, and by $\{\epsilon_i^{(z)}, \epsilon_i^{(x)}\}_{i \in S_0}$ the associated logical bit error and phase error rates. The total measurement probability and the average error rate over the syndromes S_0 can be associated with P_0 and E_0 in Eqs. (3) and (4) as

$$P_0 = \sum_{i \in S_0} w_i,$$
$$E_0 = \frac{1}{P_0} \sum_{i \in S_0} w_i \left(\frac{\epsilon_i^{(z)} + \epsilon_i^{(x)}}{2} \right).$$

In what follows we may refer to the scenario using these averages as the coarse-graining (CG) scenario that discards the index of informative syndromes. Note that the analysis in Refs. [12, 13] is based on the CG scenario. On the other hand, we may refer to the scenario using all indices of informative syndromes as the fine-grained (FG) scenario.

For a sequence of two stations, each transmission of a logical qubit comes with a pair of outcomes i_1 and i_2. This formally specifies the process having a set of a probability $w_{i_1,i_2}^{(2)}$ and logical bit-and-phase errors $\epsilon_{i_1,i_2}^{(2,\gamma)}$ with $\gamma \in \{z, x\}$. Here, "^2" in the superscript indicates the number of total stations, and the last station is Bob’s station in our notation. By construction we can write

$$w_{i_1,i_2}^{(2)} = w_{i_1} w_{i_2},$$
$$\epsilon_{i_1,i_2}^{(2,\gamma)} = \epsilon_{i_2,i_1}^{(2,\gamma)} = G(\epsilon_{i_1}^{(\gamma)}, \epsilon_{i_2}^{(\gamma)}),$$

where the function $G(\epsilon_{i_1}, \epsilon_{i_2})$ is given in Eq. (6).

For a sequence of N stations, each transmission of a logical qubit comes with N outcomes i_1, i_2, \ldots, i_N and its statistical property is formally specified by a probability $w_{i_1,i_2,\ldots,i_N}^{(N)}$ and logical error rates $\epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)}$ with $\gamma \in \{z, x\}$. This implies the following expression of the secure key rate

$$K = \sum_{i_1,i_2,\ldots,i_N} w_{i_1,i_2,\ldots,i_N} \max \left[0, 1 - \sum_{\gamma \in \{z, x\}} h(\epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)}) \right].$$

(23)

For N stations, the number of possible outcomes is l^N. Hence, it seems difficult to calculate the key rate for a large N since the number of the relevant terms $\{w_{i_1,i_2,\ldots,i_N}^{(N)}, \epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)}\}$ increases exponentially with regard to N as $2^N l^N$. However, as we can see from Eq. (6), the permutation of indices does not change the value of $\epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)}$. This means that we only need to calculate the triplets whose indices are different under the permutation. By focusing on the number of the same outcomes we can rewrite the key rate of Eq. (23) as

$$K = \sum_{\sum_{i=1}^{N} N_i = N} \max \left[1 - \sum_{\gamma \in \{z, x\}} h(\epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)}) , 0 \right],$$

(24)

where N_i indicates the number of stations whose measurement outcome is i and

$$w_{i_1,i_2,\ldots,i_N}^{(N)} = \frac{N!}{N_1!N_2!\cdots N_l!} \prod_{i=1}^{l} w_{i_i}^{N_i},$$
$$\epsilon_{i_1,i_2,\ldots,i_N}^{(N,\gamma)} = G(\cdots G(G(\epsilon_{i_1}^{(\gamma)}), \epsilon_{i_2}^{(\gamma)}), \epsilon_{i_3}^{(\gamma)}), \cdots, \epsilon_{i_l}^{(\gamma)}),$$

$$= \frac{1}{2} \left(1 - \prod_{i=1}^{l} (1 - 2\epsilon_i^{(\gamma)})^{N_i} \right),$$

(25)

where $\gamma \in \{z, x\}$ and

$$\epsilon_i^{(N,\gamma)} = \frac{1 - (1 - 2\epsilon_i^{(\gamma)})^{N_i}}{2}.$$

(26)

Now, we can calculate the key rate for an arbitrary N sequence of intermediate stations from the set of the success probability and logical error rates $\{w_i, \epsilon_i^{(z)}, \epsilon_i^{(x)}\}$. A detailed procedure to determine this set for the case of the TEC station with a given set of the physical parameters (e, η_0, N) and the code (n,m) is described in Appendix A. In the following numerical calculations, we use a Monte-Carlo method to determine the success probability of the whole sequence of intermediate stations $w_{i_1,i_2,\ldots,i_N}^{(N)}$ from the set of success probabilities $\{w_i\}_{i \in S_0}$.
III. RESULTS

We will calculate the key rate of the TEC stations based on the formula derived in the previous section and show their potential as a genuine quantum repeater to provide a higher key rate above the PLOB bound.

Our main questions are (i) whether or not the one-way protocol due to the TEC stations can surpass the PLOB bound and (ii) to what extent the syndrome information is significant to boost the key rate. In addition, if the answers are affirmative, we would ask (iii) how small a code could we use, and whether the syndrome information helps us to keep the code size smaller? To this end, we will make a comparison between the following three different quantities per channel use for a couple of small size codes: (a) the fine-grained key rate with retaining all syndrome information, which we refer to as the key rate of the FG scenario, \(R_{FG} \), (b) the coarse-grained key rate of the CG scenario \(R_{CG} \), and (c) the PLOB bound \(R_{PLOB} \) in Eq. (2). To be specific, as in Eq. (7), we define the FG rate per mode as

\[
R_{FG} = \frac{K}{2nm} \tag{27}
\]

with \(K \) as defined in Eq. (24). Moreover, we define the key rate per mode for the CG scenario

\[
R_{CG} = \frac{P_0^N \max\{1 - 2h(Q_N), 0\}}{2nm} \tag{28}
\]

with \(P_0 \) and \(Q_N \) as defined in Eqs. (4) and (21). This key rate \(R_{CG} \) is the rate averaging all informative syndromes.

A. The smallest block encoding (2,2)

Figures 3, 4, and 5 show typical behavior of the key rates for the smallest code (2, 2) with the physical error of \(e = 5 \times 10^{-4} \), where the unit transmission is \(\eta_0 = 0.97 \), \(\eta_0 = 0.90 \) and \(\eta_0 = 0.81 \), respectively (On the basis of Eqs. (13) and (14), the unit transmission distance is \(L_0 = 0.61 \text{km}, 2.1 \text{km}, \) and \(4.2 \text{km} \), respectively). In each of the three graphs, we can observe regimes where \(R_{FG} \) beats \(R_{PLOB} \). In Fig. 4 \((\eta_0 = 0.90) \) there is also a regime where \(R_{CG} \) beats \(R_{PLOB} \) while we could not observe such a regime in Fig. 3 \((\eta_0 = 0.97) \) and Fig. 5 \((\eta_0 = 0.81) \). Hence, the use of the syndrome information results in a substantial difference in the parametric regime to beat the PLOB bound.

These numerical results positively answer the question (i), namely, the one-way protocol with the TEC intermediate stations beats the PLOB bound in certain parametric regime. Interestingly, even the smallest code of intermediate stations can beat the PLOB bound. Moreover, the CG scenario has a lower key rate than the FG scenario by construction, but still has the ability to surpass the PLOB bound. These numerical results also imply that these statements remain essentially the same when we use the TGW bound instead of the PLOB bound. One can
see that the TGW bound stays slightly above the PLOB bound in Figs. 3, 4, and 5.

Regarding the second question (ii), we can see from Figs. 3, 4, and 5 that the scenario utilizing the syndrome information substantially extends the distance where we can find a positive key. Note that the number of stations \(N \) is proportional to the distance \(L_{\text{tot}} \) through the relations in Eqs. (13) and (14). Figure 6 shows an overview of the whole parameter regime where \(R_{\text{FG}} \) and \(R_{\text{CG}} \) surpass the PLOB bound \(R_{\text{PLOB}} \) in terms of the total distance \(L_{\text{tot}} \) and the unit transmission \(\eta_0 \) for \(e = 5 \times 10^{-4} \). In the shade area, \(R_{\text{FG}} > R_{\text{PLOB}} \) is satisfied, while it is inside of the dashed loop that \(R_{\text{CG}} > R_{\text{PLOB}} \) holds. The distance where the key rate starts to beat the PLOB bound is not so different between \(R_{\text{FG}} \) and \(R_{\text{CG}} \). In contrast, the distance where the key rate falls again below the PLOB bound for the FG scenario is substantial longer than that for the CG scenario. Typically, additionally gained distance is about 200km.

It would be worth noting that this specific example of our scheme beats the PLOB bound in a middle distance, such as 200km \(\sim \) 1000km, while the key rate of a practical single-photon BB84 protocol using threshold detectors rapidly drops away around 300km with a moderate dark count rate [17]. Therefore, the code (2,2) provides a possible architecture to gain a higher key rate at such a middle distance although it requires a substantial number of stations \((\sim 200) \), as shown in Figs. 3, 4, and 5.

In order to view the distinctive role of the syndrome information for gaining a higher key rate over a set of the parameters, we may focus on the ratio between the FG key and the CG key

\[
 r = \frac{R_{\text{FG}}}{R_{\text{CG}}} \tag{29}
\]

In Fig. 6, we also show the lines where this ratio \(r \) becomes 2, 4, and 10. While a higher value of \(r \) does not necessarily mean a substantially higher key rate (because \(R_{\text{CG}} \) itself may be considerably small), we can ensure a moderate key rate in some cases where we otherwise would not be able to pass the PLOB bound at all. Figure 6 clearly shows there exists the parameter regime where the following two conditions are simultaneously satisfied: (i) the use of the syndrome information keeps a high key rate which cannot be achieved by any direct transmission and (ii) boosts the key rate significantly compared with the key rate of the CG scenario.

For a fixed total distance \(L_{\text{tot}} \), we expect a higher number of intermediate stations \(N \) would be powerful when there is no physical error. This is because a
shorter distance between nearest stations implies a higher success probability. If there is a finite physical error \(e > 0\), a higher number of stations results in a higher total logical error rate because the total logical error accumulates through the action of many stations (recall the unit transmission is \(\eta_0\) and the number of stations is the total distance \(L_{tot}\) divided by the unit distance \(L_0 = -L_{att} \ln \eta_0\)). On the other hand, if we separate the intervals further from each other, the loss will increasingly reduce the probability of successful photon detection. Hence, given the physical error \(e\) and total distance \(L_{tot}\), there is an intermediate optimal value of \(\eta_0\) to maximize the key rate. In fact, Fig. 6 shows that neither too short unit distance nor too long unit distance gives the key rate better than the PLOB bound.

As the physical error rate \(e\) increases, it becomes harder to beat the PLOB bound as illustrated in Fig. 7. The blue-outer solid loop and outer-dashed loop indicate the regimes \(R_{FG} > R_{PLOB}\) and \(R_{CG} > R_{PLOB}\) respectively, for \(e = 5 \times 10^{-4}\) (The same areas shown in Fig. 6). Both areas shrink for higher physical errors; The shown examples are the red-inner solid loop and the inner dashed loop for \(e = 7.5 \times 10^{-4}\). Moreover, for \(e = 1.0 \times 10^{-3}\), there is no area to beat the PLOB bound for the CG scenario, while we can observe a small area for the FG scenario. We could not find such an area when \(e = 1.5 \times 10^{-3}\) for the FG scenario.

Fig. 7. Areas beating the PLOB bound for the smallest block size \((n, m) = (2, 2)\). The two largest areas for the physical error rate \(e = 5 \times 10^{-4}\) (the ones in Fig. 6) shrink as \(e\) becomes higher. For \(e = 1.0 \times 10^{-3}\) in the case of the CG scenario \(R_{CG}\), there is no area where the PLOB bound can be beaten, while there still exists a substantial area to beat the PLOB bound for the FG scenario \(R_{FG}\). The right end of the loops for the FG scenario are slightly rugged due to a numerical instability in estimating \(R_{FG}\).

Fig. 8. Areas the FG key \(R_{FG}\) beating the PLOB bound in the presence of a coupling loss for the smallest code \((n, m) = (2, 2)\) with the physical error rate of \(e = 5 \times 10^{-4}\). The largest loop shows the case without coupling loss \((\eta_c = 1)\). The area shrinks for an existence of coupling loss. For a three-percent coupling loss \((\eta_c = 0.97)\) we could not find the area.

Fig. 9. The areas the CG key \(R_{CG}\) beating the PLOB bound in the presence of a coupling loss for the smallest code \((n, m) = (2, 2)\) with the physical error rate of \(e = 5 \times 10^{-4}\). The largest loop shows the case without coupling loss \((\eta_c = 1)\). The area shrinks due to coupling loss. We could not find the area when the coupling loss is 2.4% \((\eta_c = 0.976)\).

Coupling loss—For practical applications, it is crucial to estimate the effect of the coupling loss. Suppose that every station exhibits the same coupling efficiency \(\eta_c\) for coupling physical qubits into the channel. Then, the coupling loss will modify the unit transmission as \(\eta_{eff} = \eta_c \eta_0\). In the calculation of logical errors while we keep the unit distance \(L_0 = -L_{att} \ln \eta_0\) being the same as in Eq. (13). In Fig. 8, we show the area surpassing the PLOB bound for \(e = 5 \times 10^{-4}\) and \((n, m) = (2, 2)\) with the coupling efficiency of \(\eta_c\) = 0.98 and \(\eta_c\) = 0.975, whereas
the largest loop is the lossless case. For a three percent coupling loss ($\eta_c = 0.97$) we could not find such an area. Similar behavior can be observed for the case of the CG scenario in Fig. 9. The area vanishes when $\eta_c = 0.976$. Consequently, we require a high coupling efficiency $\eta_{\text{eff}} \sim 99\%$ and a lower physical error rate $e \sim 10^{-4}$ in order that the one-way scheme with the smallest code $(n, m) = (2, 2)$ is experimentally feasible to beat the PLOB bound.

B. Other small-block codes [(3,2),(3,3),(4,3)]

As we have observed in Fig. 7, the physical error rate has to be rather small to beat the PLOB bound via the smallest code $(2, 2)$. More specifically, there are almost no hope to beat the PLOB bound for this block size when the physical error rate is $e \geq 1.5 \times 10^{-3}$, even without coupling loss. Fortunately, we can observe better error tolerance for larger block codes.

Compared with the $(2, 2)$ code, we can find a substantially wider area to surpass the PLOB bound for both the FG scenario and the CG scenario with $e = 1.0 \times 10^{-3}$ (the green-solid middle loop and the green-dashed middle loop, respectively). It also gives a finite area for a larger physical error rate of $e = 1.5 \times 10^{-3}$, while there is no such area when the error rate is $e = 2.0 \times 10^{-3}$. The shape of areas becomes wider in vertical direction compared with the $(2, 2)$ code. This implies that the unit transmission distance between the nearest stations could be larger. Intuitively, the $(3, 2)$ code has a better loss tolerance than the $(2, 2)$ code. This is because the $(2, 2)$ code is unable to maintain the qubit information for loss of two photons while the $(3, 2)$ code still has certain potential for recovering from two photon loss. Note that the right end of the loops for the FG scenario are rugged due to the numerical instability in estimating R_{FG}.

The second smallest block size is $(n, m) = (3, 2)$. Figure 10 shows the areas that surpass the PLOB bound for a couple of different physical errors e.

![Figure 10](image)

FIG. 10. Areas beating the PLOB bound for the block size of $(n, m) = (3, 2)$ with physical error rates of $e = 7.5 \times 10^{-4}$, $e = 1.0 \times 10^{-3}$, and $e = 1.5 \times 10^{-3}$. For this block size, we can observe wider areas to beat the PLOB bound compared with Fig. 7. In particular, we find a relatively wide area for the CG scenario with $e = 1.0 \times 10^{-3}$ beating the PLOB bound (the middle green-dashed loop), and there exists such regime even for a higher error rate of $e = 1.5 \times 10^{-3}$ (the smallest yellow-dashed loop). The right most boundaries for the FG scenario are jagged due a numeric instability. Again, for each of the physical error rates, the FG scenario always extends the longest distance to beat the PLOB bound compared with the CG scenario.

The second smallest block size is $(n, m) = (3, 2)$. Figure 10 shows the areas that surpass the PLOB bound for a couple of different physical errors e. Compared with the $(2, 2)$ code, we can find a substantially wider area to surpass the PLOB bound for both the FG scenario and the CG scenario with $e = 1.0 \times 10^{-3}$ (the green-solid middle loop and the green-dashed middle loop, respectively). It also gives a finite area for a larger physical error rate of $e = 1.5 \times 10^{-3}$, while there is no such area when the error rate is $e = 2.0 \times 10^{-3}$. The shape of areas becomes wider in vertical direction compared with the $(2, 2)$ code. This implies that the unit transmission distance between the nearest stations could be larger. Intuitively, the $(3, 2)$ code has a better loss tolerance than the $(2, 2)$ code. This is because the $(2, 2)$ code is unable to maintain the qubit information for loss of two photons while the $(3, 2)$ code still has certain potential for recovering from two photon loss. Note that the right end of the loops for the FG scenario are rugged due to the numerical instability in estimating R_{FG}.

We can observe wider areas for beating the PLOB bound with relatively higher errors by using larger codes. Figure 11 shows the case of the $(3, 3)$ code. In this case, the CG scenario results in smaller areas to beat the PLOB bound when it is compared with the areas for the $(3, 2)$ code of Fig. 10. Notably, the area vanishes when we use the $(3, 3)$ code for $e = 1.5 \times 10^{-3}$, although the use of the syndrome...
information smoothly widens the area. In general, the CG scenario unnecessarily smears out the qubit information kept by the measurement outcomes of intermediate stations, and thus we find that making the use of fine-grained information can be valuable. Nevertheless, the CG scenario has already shown a significant performance improvement over a long distance for high coupling efficiency and low error rates [13].

![Graph showing areas beating the PLOB bound](image)

FIG. 12. Areas beating the PLOB bound for the block size of $(n,m) = (4,3)$. Solid loops are for the FG scenario whereas the dashed loops are for the CG scenario. The physical error rates are respectively $e = 1.0 \times 10^{-3}$, $e = 1.5 \times 10^{-3}$, and $e = 2.5 \times 10^{-3}$, from largest loops to smallest loops. A distinguishing feature is the growth of the areas toward the distance direction around $\eta_0 \sim 0.97$. This suggests that one can obtain better performance by using many intermediate stations with a short unit distance. The right most boundaries are jagged due to numeric instability.

The shape of the areas depends on both the block size and the error rate. Figure 12 shows the area to beat the PLOB bound for the case of the $(4,3)$ code. An interesting feature observed in this code is that the area at a higher unit transmission grows significantly towards longer distance, and covers relatively wide range of η_0 and L_{tot}, although it still require an order of 10^{-3} physical error rate. In the case of $e = 1.0 \times 10^{-3}$, we observe a relatively slow decay of the upper end of the loop along with the line $\eta_0 = 1$, which sustains over the distance of 1000km. As we have already mentioned in Sec. II A, a better signal transmission over a long distance can be achieved when there are no channel errors by using many stations with short unit distances. This is because the loss errors can be corrected well if the distance between the stations is short. The growth and slow decay along the line $\eta_0 = 1$ here is regarded as a concrete example of such an advantage invoking the PLOB bound. The slow decay has also been observed for the codes $(3,2)$ and $(3,3)$, although it does not reach the long distances over 1000km (There, the longest distance to surpass the PLOB bound is achieved with rather lower unit transmission, $\eta_0 \sim 0.85$). Therefore, the graphs in Figs. 10, 11, and 12 signify the main advantage of using intermediate stations for a high rate secret key generation with relatively small block-size codes.

C. Interpretation as effective quantum channels

The performance of the CG scenario can be obtained by a modification of the procedure of the intermediate stations such that they do not announce the success or fail but send vacuum states for the case of inconclusive events. With this modification the stations act as quantum channels. This constructively proves that there exists a quantum channel (completely positive trace-preserving map) which works as a repeater station, namely, a sequence of intermediate stations which works without transmission of classical information can beat the TGW bound as well as the PLOB bound. This is in a sharp contrast to the no-go result for the Gaussian-channel stations [10].

IV. SUMMARY

We have analyzed potential protocols to utilize TEC one-way quantum repeater stations to increase the key rate over lossy channels beyond the fundamental bounds as given by the TGW bound and the PLOB bound. We have shown how to calculate the secret key rate of one-way intermediate stations when the syndrome information of each station is fully available. As a general benchmark for potential quantum repeaters, we have compared the performance of the one-way scheme with the PLOB bound, and numerically identified the parametric area in which our scheme surpasses the PLOB bound for a couple of small block-size codes. We have observed that even the smallest block-size code $(n,m) = (2,2)$ with the CG scenario enables us to beat the PLOB bound in a middle distance, although one needs low physical errors $e \sim 10^{-4}$ and small coupling loss such as 1%. The number of the intermediate stations is typically a few hundred. In our observation, the use of syndrome information helps us to beat the PLOB bound for longer distances, and enables
obtaining substantially higher secret key rate. Our results suggest that the error tolerance will be improved by using larger blocks. For instance, it has been shown that there is a substantially broad area to surpass the PLOB bound with the (4, 3) code for physical errors around $e \sim 10^{-3}$. In this block size, we have observed that the distance attained by making use of the syndrome information is significantly longer than the CG scenario. In turn, the performance of the CG scenario has constructively proven an existence of a quantum channel that works as a quantum repeater. In our construction with the (2, 2) code, the quantum channel acts on four photonic qubits, and is regarded as an eight-mode quantum channel, while it was known [10] that Gaussian channels cannot work as quantum repeaters even we are allowed to use arbitrary many modes. It remains open whether our construction is the smallest possible one-way channel stations with respect to the number of modes. Overall, we have observed several different aspects to overview the potential performance for QKD with one-way intermediate stations by delving into a couple of small block-size codes with a set of specific physical error rates. We believe our results are helpful to design a useful architecture for QKD with one-way intermediate stations in a long run.

ACKNOWLEDGMENTS

This work was supported by the DARPA Quiness program under prime Contract No. W31P4Q-12-1-0017, the NSERC Discovery Program, and Industry Canada.

Appendix A: Success probabilities and error rates of a TEC station

In this appendix, given a code of the TEC stations (n, m) and the error model of Sec. II B, we show how to determine the set of the success probability and logical error rates for a TEC station described in Fig. 2. See Ref. [12] further detail of the TEC stations.

a. Classification of photon-loss patterns

We consider a unit of $n \times m$ block of photonic qubits. We may call sub-block for a row, which has m qubits, hence, the total number of sub-blocks is n. We may also use the notation (n, m) to specify the block size. In what follows, suppose that a block size (n, m) with $n, m \geq 2$ is given.

Due to the transmission loss, each qubit arrives at the station can be written as

$$\eta_n \cdot (1 - \eta_L)^m \cdot n_{\text{arr}}$$

where η_n denotes the number of lost photons. For a block of $n \times m$ photons, the probability that $n_{\text{arr}} = n \cdot m - n_{LP}$ photons arrives at the station can be written as

$$p_{n_{LP}} := \text{Prob}[n_{\text{arr}} = n \cdot m - n_{LP}]$$

$$= \binom{n \cdot m}{n_{LP}} \eta_0^{n \cdot m - n_{LP}} (1 - \eta_0)^{n_{LP}}. \quad (A1)$$

FIG. 13. Classification of patterns. The white circles indicate the position of lost photon. For this example, the block size is $(n, m) = (7, 6)$ and the classifying index is determined to be $\vec{u} = (u_0, u_1, u_2, u_3, u_4, u_5)^T = (3, 1, 2, 1, 0, 0)^T$. This implies $n_{LP} = \sum_{k=0}^{m-1} ku_k = 8$. All patterns of arrived photonic qubits can be classified by a vector $\vec{u} := (u_0, u_1, \cdots, u_{m-1})^T$ where u_k represents the number of sub-blocks (rows) with $(m-k)$-arrived photons (See Fig. 13). We will sort a given pattern into a sorted form, by moving the position of lost photons right side within each of sub-blocks and shifting sub-blocks that have larger number of photons upward. Then, from the sorted form we can determine the vector \vec{u} as in Fig. 13. It has to fulfill $\sum_{k=0}^{m-1} u_k = n$ and $u_0 \geq 1$ in order to satisfy (i) at least one qubit must arrive for each sub-block and (ii) at least one sub-block must arrive with no loss, respectively. This condition also implies an acceptable number of lost photons is

$$n_{LP} \leq (n - 1)(m - 1), \quad (A2)$$

where the number of lost photons can be expressed in terms of \vec{u} as

$$n_{LP}(\vec{u}) = \sum_{k=0}^{m-1} ku_k. \quad (A3)$$
We refer to the patterns that fulfill the conditions (i) and (ii) as “acceptable” or “informative” patterns. For the informative patterns, one can basically correct loss errors and recover the logical qubit in the absence of other types of errors [12]. In practice, there are inconclusive events that the slot is discarded although the pattern is acceptable. We define the rate that a sorted pattern corresponding to \(\bar{u} \) results in a conclusive event \(q_{\text{conc}}|\bar{u} \). We set \(q_{\text{conc}}|\bar{u} = 0 \) if \(\bar{u} \) cannot be assigned from acceptable patterns. Complete form of this rate is determined later in Eq. (A21).

Given an expression of the vector \(\bar{u} \), any acceptable pattern can be generated from the sorted form by combining (i) permutation of sub-blocks and (ii) permutation of the photon locations within each of sub-blocks. Hence, the number of the possible patterns that gives a specific form of \(\bar{u} \) can be written as

\[
\Omega[\bar{u}] := \left(\begin{array}{c} n \\ n_0, u_1, u_2, \ldots, u_{m-1} \end{array} \right) \prod_{s=1}^{m-1} \left(\begin{array}{c} m \\ s \end{array} \right) u_s
\]
\[
= \left(\begin{array}{c} n \\ u_0 \end{array} \right) \prod_{s=1}^{m-1} \left(\begin{array}{c} n - \sum_{k=1}^{s} u_{k-1} \\ u_s \end{array} \right) \left(\begin{array}{c} m \\ s \end{array} \right). \tag{A4}
\]

Given the number of photon loss \(n_{LP} \), the patterns associated with \(\bar{u} \) appear with the probability of

\[P_{\bar{u}|n_{LP}} = \frac{\Omega[\bar{u}]}{n_{LP}}. \tag{A5} \]

Let \(E_Z|\bar{u} \) and \(E_X|\bar{u} \) be logical bit error rate and phase error rate associated with \(\bar{u} \), respectively. The key rate for a single station can be calculated as

\[
\sum_{\bar{u}} q_{\text{conc}}|\bar{u} P_{\bar{u}|n_{LP}} \max \left[1 - h(E_Z|\bar{u}) - h(E_X|\bar{u}), 0 \right]
\]
\[
= \sum_{\bar{u}} q_{\text{conc}}|\bar{u} \Omega[\bar{u}] \eta_0^{n_{LP}} (1 - \eta_0)^{n_{LP}} \times \max \left[1 - h(E_Z|\bar{u}) - h(E_X|\bar{u}), 0 \right], \tag{A6}
\]

where we use Eqs. (A1) and (A5), and \(n_{LP} \) is given as a function of \(\bar{u} \) as in Eq. (A3). In the following part of this appendix, we show how to determine \(q_{\text{conc}}|\bar{u} \), \(E_Z|\bar{u} \), and \(E_X|\bar{u} \).

b. The logical measurement outcomes

In the TEC process, we perform individual \(X \)-measurement whose outcomes denoted by \(X_{i,j}^R \) for the incoming block \(R \) and individual \(Z \)-measurement whose outcomes denoted by \(Z_{i,j}^S \) for the local block \(S \) (See Fig. 2). We set \(X_{i,j} = 0 \) and \(Z_{i,j} = 0 \) if no photon is detected at the position \((i, j)\) in the QND measurement. The logical measurement outcomes are determined by

\[
\tilde{M}_X^R = \text{sign} \left[\sum_{i=1}^{n} \left(\prod_{j=1}^{m} X_{i,j}^R \right) \right], \tag{A7}
\]
\[
\tilde{M}_Z^S = \prod_{i=1}^{n} \left[\text{sign} \left(\sum_{j=1}^{m} Z_{i,j}^S \right) \right]. \tag{A8}
\]

Here, \(\text{sign}(x) \) is associated with the majority vote, and assigns \(\{-1, 0, 1\} \) depending on \(x < 0, x = 0, \) or \(x > 0 \), respectively, while the product \(\Pi \) is associated with the parity. If \(M = 0 \), we discard the slot.

c. Logical \(X \) errors

According to our model in Sec. II B, each qubit of the \(R \) block suffers the phase error \(e_x \). Hence, \(X_{i,j}^R \) flips with the probability \(e_x \). If all \(m \) qubits of \(i \)-th sub-block arrive, the parity of \(i \)-th sub-block \(\prod_{j=1}^{m} X_{i,j}^R \) is faithfully observed with the probability of

\[
f_{X0} = \sum_{k=0}^{m} \binom{m}{2k} (1 - e_x)^{m-2k} e_x^{2k}, \tag{A9}
\]

where \(\lfloor \cdot \rceil \) stands for the floor function.

Let \(n_M \) be the number of sub-blocks whose photons all arrived. (Only those blocks join the majority vote.) The probability that the majority vote faithfully gives the logical \(X \) is

\[
F_X|\bar{u} = \sum_{k=0}^{n_M} \binom{n_M}{k} f_{X0}^{n_M-k}(1 - f_{X0})^k. \tag{A10}
\]

Recall that the number of full sub-blocks is specified by the first element \(u_0 \) of the vector \(\bar{u} \). The majority vote will result in a draw with the probability of

\[
D_X|\bar{u} = \begin{cases} \binom{n_M}{n_{M/2}} |e_x(1 - e_x)|^{n_M/2}, & \text{if } n_M \text{ is even} \\ 0, & \text{if } n_M \text{ is odd}. \end{cases} \tag{A11}
\]

Since we discard the draw events, the success probability changes by the factor of

\[P_{\text{conc}, X|\bar{u}} := 1 - D_X|\bar{u}. \tag{A12} \]
After discarding the draw results, the fidelity of the logical X is given by

$$F_{\text{tot}X|\bar{u}} = \frac{F_{X|\bar{u}}}{1 - D_{X|\bar{u}}}.$$ (A13)

This implies the logical X-error

$$E_{X|\bar{u}} = 1 - F_{\text{tot}X|\bar{u}} = \frac{1 - D_{X|\bar{u}} - F_{X|\bar{u}}}{1 - D_{X|\bar{u}}}.$$ (A14)

d. Logical Z errors

According to our model in Sec. II B, each qubit of the R block suffers the bit error e_z. This implies that qubits in the position of the arrived photons of the S block suffer the same bit errors e_z due to the action of the C-NOT gates. In order to determine logical Z we first execute a set of majority votes and then determine logical Z by taking the parity.

If the number of arrived photons of the i-th sub-block is $m_{M,i}$, the majority vote of this sub-block is faithfully obtained with the probability of

$$f_{Z,i|\bar{u}} = \sum_{k=0}^{\lfloor m_{M,i}/2 \rfloor} \binom{m_{M,i}}{k} (1 - e_z)^{m_{M,i} - k} e_z^k.$$ (A15)

For each sub-block, we can write the probability that the majority vote is a draw

$$d_{Z,i|\bar{u}} = \begin{cases} \binom{m_{M,i}}{\lfloor m_{M,i}/2 \rfloor} (1 - e_z)^{m_{M,i}/2}, & m_{M,i} \text{ is even} \\ 0, & m_{M,i} \text{ is odd} \end{cases}.$$ (A16)

Similarly to Eq. (A10) let us define

$$F_{Z,i|\bar{u}} = \frac{f_{Z,i|\bar{u}}}{1 - d_{Z,i|\bar{u}}}.$$ (A17)

Since we discard the draw events the success probability changes based on the set of factors:

$$P_{\text{conc},Z,i|\bar{u}} := 1 - d_{Z,i|\bar{u}}.$$ (A18)

where $i \in \{1, 2, \cdots, n\}$.

Since we take the parity of n sub-blocks, the fidelity of the logical Z after discarding the draw results is given by

$$F_{\text{tot}Z|\bar{u}} = \frac{F_{Z|\bar{u}}}{1 - D_{Z|\bar{u}}}.$$ (A19)

where $s^{(2k)} = \{s_j^{(2k)}\}_{j=1,2,\cdots,\lfloor n/2 \rfloor}$ denotes the set of all possible subsets of $s_0 = \{1, 2, 3, \cdots, n-1, n\}$ with the number of elements $2k$ (the length of each $s_j^{(2k)}$ is $2k$, and j runs from 1 to $\lfloor n/2 \rfloor$). Then, the logical Z-error is given by

$$E_{Z|\bar{u}} = 1 - F_{\text{tot}Z|\bar{u}}.$$ (A20)

e. Rate for conclusive events

Using Eqs. (A12) and (A18), for any acceptable pattern associated with \bar{u}, we can assign the pair of the logical bits (X,Z) with the rate

$$q_{\text{conc}|\bar{u}} = P_{\text{conc},X|\bar{u}} \prod_{i=1}^{n} P_{\text{conc},Z,i|\bar{u}},$$ (A21)

and we set $q_{\text{conc}|\bar{u}} = 0$ if \bar{u} is not associated with an acceptable pattern.

Now, the set of the success probability and logical error rates $\{w_i, \epsilon_i^{(z)}, \epsilon_i^{(x)}\}$ for our TEC stations is given by relabeling the index $i \rightarrow \bar{u}$ as

$$w_{\bar{u}} = p_{\text{LP}} q_{\text{conc}|\bar{u}} P_{\bar{u}|\text{LP}},$$

$$\epsilon_i^{(z)}_{\bar{u}} = E_{Z|\bar{u}},$$

$$\epsilon_i^{(x)}_{\bar{u}} = E_{X|\bar{u}}.$$ (A22)

From this triplet, we can determine the key rate for a sequence of intermediate stations by using Eqs. (24), (25), and (26).