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Dirac open quantum system dynamics: formulations and simulations
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We present an open system interaction formalism for the Dirac equation. Overcoming a complex-
ity bottleneck of alternative formulations, our framework enables efficient numerical simulations
(utilizing a typical desktop) of relativistic dynamics within the von Neumann density matrix and
Wigner phase space descriptions. Employing these instruments, we gain important insights into the
effect of quantum dephasing for relativistic systems in many branches of physics. In particular, the
conditions for robustness of Majorana spinors against dephasing are established. Using the Klein
paradox and tunneling as examples, we show that quantum dephasing does not suppress negative
energy particle generation. Hence, the Klein dynamics is also robust to dephasing.

PACS numbers: 03.65.Pm, 05.60.Gg, 05.20.Dd, 52.65.Ff, 03.50.Kk

I. INTRODUCTION.

The Dirac equation is a cornerstone of relativistic
quantum mechanics [1]. It was originally developed to
describe spin 1/2 charged particles playing an essential
role in the field of high energy physics [2–4]. Recently,
there is resurging interest in the Dirac equation because
it was found to be an effective dynamical model of unex-
pectedly diverse phenomena occurring in high-intensity
lasers [5], solid state [6–9], optics [10, 11], cold atoms
[12, 13], trapped ions [14, 15], circuit QED [16], and the
chemistry of heavy elements [17, 18]. However, there is
a need to go beyond coherent dynamics offered by the
Dirac equation alone in order to model the effects of im-
perfections, noise, and interaction with a thermal bath
[19]. To construct such models, we will first review how
these effects are described without relativistic considera-
tions [20].

In the non-relativistic regime, the Schrödinger equa-
tion describes a quantum systems isolated from the rest
of the universe. This is a good approximation for certain
conditions. For example, an atom in a dilute gas can be
considered to be a closed system if the time scale of the
dynamics is much faster than the mean collision time.
If we would like to include collisions in the picture, we
need to keep track of the quantum phases of each atom
in the gas. This is unfeasible. This type of dynamics
motivated development of the theory of open quantum
systems [21], where a single particle picture is retained
albeit with more general dynamical equations. There are
two methods to introduce interactions with an environ-
ment: (i) the Schrödinger equation with an additional
stochastic force, or (ii) the conceptually different density
matrix formalism [20]. In the latter, a state of an open
quantum system is represented by a self-adjoint density
operator ρ̂ with non-negative eigenvalues summing up to
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one. The master equation, governing evolution of ρ̂, reads

i~
d

dt
ρ̂ = [Ĥ, ρ̂] +D(ρ̂), (1)

where Ĥ is the quantum Hamiltonian and the dissipator
D(ρ̂) encodes the interaction with an environment. The
von Neumann equation [20] describing unitary evolution
is recovered by ignoring the dissipator. When D(ρ̂) 6= 0,
Eq. (1) generally does not preserve the von Neumann
entropy S = −Tr (ρ̂ log ρ̂), which measures the amount of
information stored in a quantum system. We note that
effective elimination of D(ρ̂) is a fundamental challenge
in order to develop many quantum technologies [22, 23].

The non-relativistic theory of open quantum systems
provided profound insights into some fundamental ques-
tions of physics such as the emergence of the classical
world from the quantum one [24–31], measurement the-
ory [24, 32–34], quantum chaos [27, 30, 31, 35] and syn-
chrotron radiation [36–38].

To study the quantum-to-classical transition, it is in-
strumental to put both mechanics on the same mathe-
matical footing [24, 25, 28, 32, 39–46]. This is achieved by
the Wigner quasi-probability distribution W (x, p) [47],
which is a phase-space representation of the density op-
erator ρ̂. Note that the Wigner function serves as a basis
for a self-consistent phase space representation of quan-
tum mechanics [43, 48], which is equivalent to the density
matrix formalism.

Previous attempts to construct the relativistic theory
of open quantum system relied on the relativistic exten-
sion of the Wigner function without introducing the cor-
responding density matrix formalism. In Sec. II, we
will first present the manifestly covariant density ma-
trix formalism for a Dirac particle and then construct
the Wigner representation. The development of the rela-
tivistic Wigner function was motivated by applications
in quantum plasma dynamics and relativistic statisti-
cal mechanics [3]. The manifestly covariant relativistic
Wigner formalism for the Dirac equation was put forth
in Refs. [2, 49–51] (see Ref. [3] for a comprehensive re-
view). In addition, exact solutions for physically relevant
systems were reported in Refs. [52, 53]. In addition to
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the formulation of the Wigner function for spin 1/2 par-
ticles described by the Dirac equation, there are analo-
gous developments for spinless particles [54–56]. The fol-
lowing conceptual difference between the non-relativistic
and relativistic Wigner functions (spin 1/2 particles in
the relativistic case) was elucidated in Ref. [57]: In non-
relativistic dynamics, Hudson’s theorem states that the
Wigner function for a pure state is positive if and only
if the underlying wave function is a Gaussian [58]. In
other cases, the Wigner function contains negative val-
ues. However, this statement does not carry over to the
relativistic regime. In particular, there are many physi-
cally meaningful spinors whose Wigner function is pos-
itive [57]. Note that the Wigner function’s negativity
is an important resource in quantum information theory
[59, 60].

The limit ~→ 0 of the generator of motion for the non-
relativistic Wigner function is non-singular and recovers
classical dynamics. (Note that the classical limit ~ → 0
of quantum states is a subtle issue that may involve quan-
tum chaos and open system interactions [31].) The same
limiting property is expected from the relativistic exten-
sion. However, the manifest covariance of the equations
of motion of the relativistic Wigner function needed to be
broken in order to perform the ~ → 0 limit [51, 61, 62].
From a different perspective, the covariant classical limit
was obtained in Refs. [42, 63]. In Appendix B of the
current work, we provide a simpler manifestly-covariant
derivation of the classical limit. Contrary to the previ-
ous work, our derivation recovers two decoupled classical
equations of motion: one governing the dynamics of pos-
itive energy particles and the other describing negative
energy particles (i.e., antiparticles).

An alternative quantum field theoretic formulation of
the Wigner function for Dirac fermions has also been put
forth [61, 64–69].

As mentioned before, the current interest in the Dirac
equation goes far beyond relativistic physics. These new
opportunities come along with new challenges. It is the
aim of the current Article to overcome some of those
problems by furnishing a new formulation of traditional
(i.e., closed system) relativistic dynamics enabling effi-
cient numerical simulations as well as physically consis-
tent inclusion of open system interactions. We believe
that the developed formalism and numerical methods will
influence the following fields:

1. Understanding the role of the environment for the
classical world emergence. In particular, we eluci-
date the influence of decoherence (i.e., loss of quan-
tum phase coherence) on relativistic dynamics in
Secs. VI and VII, where Klein tunneling [7] and
the associated paradox are analyzed along with the
Majorana fermion dynamics.

2. Development of the quantum relativistic theory of
energy dissipation. Based on existing models of
non-relativistic quantum friction [70, 71], we expect
a relativistic model of energy damping to obey: (i)

the mass-shell constraint, (ii) translational invari-
ance (in particular, the dynamics should not de-
pend on the choice of the origin), (iii) equilibra-
tion (the model should reach a steady state at long
time propagation. In particular, the final energy
at t→ +∞ should be bounded thereby preventing
runaway population of the negative energy contin-
uum), (iv) thermalization (i.e., the achieved steady
state should represent thermal equilibrium), (v) rel-
ativistic extension of Ehrenfest theorems (i.e., see
the dynamical constraints for expectation values
encompassing energy drain in Ref. [71]). Some
preliminary steps towards the desired relativistic
model are reported in Ref. [72].

3. Modeling environmental effects in Dirac materi-
als such as topological insulators [8, 73, 74], Weyl
semimetals [75, 76], and graphene [6]. In these
cases, open system dynamics models sample impu-
rities and imperfections as well as external noise.
Recently, the Dirac equation with an additional
stochastic force was utilized for this purpose [19].
To the best of our knowledge, a more general mas-
ter equation formalism is yet to be explored.

4. Understanding robustness of a Majorana particle,
which is defined as being its own antiparticle. Ex-
perimental implementation of solid-state analogues
of Majorana fermions [77–79] opens up possibili-
ties to study the physics of these unusual states.
In particular, Majorana bound states are well
suited components of topological quantum com-
puters [80]. Due to its topological nature, Ma-
jorana states are expected to be robust against
perturbations and imperfections [81]. Dissipa-
tive dynamics modeled within a Lindblad mas-
ter equation confirmed a significant degree of ro-
bustness in a specific optical lattice [82]. How-
ever, the robustness is not universal [83] and there
is a need for enhancement (e.g., employing error
correction techniques [84]). Note that Majorana
states studied in condensed matter physics [77–79],
do not strictly coincide with the authentic Majo-
rana spinors [85], albeit sharing common features.
In the present paper, we consider original Dirac
Majorana spinors [85]. In Sec. VI, we demon-
strate that a single-particle Majorana spinor ex-
hibits robustness even for strong couplings to the
dephasing environment, which otherwise quickly
washes out interferences for particle-particle super-
positions (aka, Schrödinger cat states). Moreover,
this phenomenon has an intuitive explanation in
the phase-space representation, where quantum de-
phasing turned out to be equivalent to Gaussian
filtering over the momentum axis (detailed expla-
nation in Secs. IV and V). The applicability of
this insight to condensed matter systems should be
a subject of further studies.

5. Development of manifestly covariant quantum open
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system interaction. Coupling a Dirac particle to the
environment generally introduces a preferred frame
of reference, thereby breaking the Lorentz invari-
ance. However, coupling to the vacuum, causing
spontaneous emission, Lamb shift etc. [86], and ra-
diation reaction [87, 88], needs to be manifestly co-
variant because the vacuum has no preferred frame
of reference. Solid state physics holds a promise to
implement many exotic quantum effects experimen-
tally not yet verified [89], e.g., the Unruh effect and
Hawking radiation. Solid state dynamics naturally
includes the interaction with the environment, thus
the need to include open system interaction into the
dynamics of interest. A relativistic quantum theory
of measurements also requires development of man-
ifestly covariant master equations. Currently, ap-
proaches based on axiomatics [90], stochastic Dirac
and Lindblad master equations [91] are explored.
Nevertheless, the proposed equations are computa-
tionally unfeasible at present. In the current work,
we lay the ground for a computationally efficient
technique by introducing a manifestly covariant von
Neumann equation (see Sec. II) based on Refs.
[2, 3, 49–51].

This paper is organized in seven sections and two ap-
pendices. Section II provides the general mathematical
formalism including the manifestly relativistic covariant
von Neumann equation. Section III is concerned with the
relativistic Wigner function and related representations.
Section IV introduces open system interactions by con-
sidering a model of dephasing, environmental interaction
leading to the loss of quantum phase. Numerical algo-
rithms are developed in Sec. V and illustrated for the
dynamics of Majorana spinors and the Klein paradox in
Secs. VI and VII, respectively. The final section VIII
provides the conclusions. Appendix A treats the concept
of relativistic covariance, and Appendix B elaborates the
classical limit (~→ 0) of the Dirac equation in manifestly
covariant fashion.

II. GENERAL FORMALISM

Note that throughout the paper, x and x denote dif-
ferent variables; likewise, x̂ and x̂ denote different oper-
ators. In addition, Greek characters (e.g., µ, ν), used
as indices for Minkowski vectors, are assumed to run
from 0 to 3; while, Latin indices (e.g., j, k) run from
1 to 3. The Minkowski metric is a diagonal matrix
diag(1,−1,−1,−1). This implies that x0 = x0 and
xk = −xk.

The manifestly covariant Dirac equation reads

D(x̂µ, p̂µ)|ψ〉 = 0, (2)

where the Dirac generator D(x̂µ, p̂µ) and the commuta-

tion relations are defined as

D(x̂µ, p̂µ) = γµ[cp̂µ − eAµ(x̂)]−mc2, (3)

[x̂µ, p̂ν ] = −i~δµν . (4)

Note that the negative sign in the right hand side of Eq.
(4) occurs due to the fact

[x̂k, p̂j ] = −i~δkj ←→ [x̂k, p̂j ] = i~δkj , (5)

in agreement with non-relativistic dynamics where the
momentum is expressed in contravariant components p̂j .

From the well established work on relativistic statisti-
cal quantum mechanics [2, 3, 49–51], the manifestly co-
variant von Neumann equation can be written as

D(x̂µ, p̂µ)P̂ = 0, P̂D(x̂µ, p̂µ) = 0, (6)

where P̂ represents the density state operator acting
on the Manifestly Covariant Spinorial Hilbert space
(MCS). Equation (6) is the foundation for all the sub-
sequent developments.

Following Ref. [92, 93], we introduce the Manifestly
Covariant Hilbert Phase space (MCP) where the algebra
of observables consists of (x̂, p̂µ) [see Eq. (4)] along with

the mirror operators (x̂′µ, p̂′µ) obeying

[x̂µ, p̂ν ] = −i~δµν , [x̂′µ, p̂′ν ] = i~δµν , (7)

and all the other commutators vanish. In MCP the role
of density operator P̂ is taken over by the ket state |P 〉
according to

Ô(x̂µ, p̂µ)P̂ ←→ −→
O (x̂µ, p̂µ)|P 〉, (8)

P̂ Ô(x̂µ, p̂µ) ←→ |P 〉←−O ( x̂′µ, p̂′µ ), (9)

where the arrows indicate the direction of application
of the operators O(x̂µ, p̂µ) and O( x̂′µ, p̂′µ ). Thus, the
relativistic von Neumann equation (6) reads in MCP as

−→
D(x̂µ, p̂µ)|P 〉 = 0, |P 〉←−D( x̂′µ, p̂′µ ) = 0. (10)

A summary of the two introduced formulations is given
in Table I.

The manifest covariance of Eq. (10) can be relaxed to
implicit covariance by separating the time according to
the 3 + 1 splitting x̂µ = (ct̂, x̂k) [94]. This means that
the underlying relativistic covariance is maintained but
it is no longer evident. In the spirit of the 3 + 1 scheme
we define the Dirac Hamiltonian as

Ĥ = αk[cp̂k − eAk(t̂, x̂k)] +mc2γ0 + eA0(t̂, x̂k). (11)

The von-Neumann equation (10) in the Implicit
Covariant Hilbert Phase space (ICP) becomes

[
c
−→̂
p0 −

−→
H (t̂, x̂k, p̂k)

]
|P 〉γ0 = 0, (12)

|P 〉γ0
[
c
←−
p̂′0 −

←−
H (t̂

′
, x̂′k, p̂′k)

]
= 0. (13)
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Manifestly Covariant
Spinorial Hilbert space

MCS

Manifestly Covariant
Hilbert Phase space

MCP

State P̂ |P 〉

Operators Ô(x̂µ, p̂µ)
−→
O (x̂µ, p̂µ),

←−
O (x̂′µ, p̂′µ)

Equation D(x̂µ, p̂µ)P̂ = 0
−→
D(x̂µ, p̂µ)|P 〉 = 0

of motion

P̂D(x̂µ, p̂µ) = 0 |P 〉←−D( x̂′µ, p̂′µ ) = 0

TABLE I: Two manifestly covariant formulations of relativis-
tic quantum mechanics.

ICP operators Mirror ICP operators

Space-time

Momentum-energy

t̂ = t̂− 1
2
τ̂

x̂k = x̂k − ~
2
θ̂k

p̂0 = Ω̂ + 1
2c
Ê

p̂k = p̂k + ~
2
λ̂k

t̂
′

= t̂+ 1
2
τ̂

x̂′k = x̂k + ~
2
θ̂k

p̂′0 = Ω̂− 1
2c
Ê

p̂′k = p̂k − ~
2
λ̂k

TABLE II: Operators in the Implicitly Covariant Hilbert
Phase space (ICP) where (t̂, τ̂ , Ω̂, Ê, x̂k, p̂k, λ̂k, θ̂

k) represent
the ICP Bopp operators.

Inspired by the Bopp transformations in the non-
relativistic quantum mechanical phase space [95, 96], a
representation of the algebra (7) can be constructed in

terms of ICP Bopp operators (t̂, τ̂ , Ω̂, Ê, x̂k, p̂k, λ̂k, θ̂
k) in

Table II, obeying

[t̂, Ê] = −i~, [Ω̂, τ̂ ] = −i~, (14)

[x̂j , λ̂k] = −iδjk, [p̂j , θ̂
k] = −iδkj , (15)

where all the other commutators vanish, in particular
[x̂k, p̂j ] = 0. A graphical illustration of the relation be-
tween the time variables t−t′ and t−τ is shown in Fig. 1.
Adding and substracting Eqs. (12) and (13), and uti-
lizing the Bopp operators, we obtain the von-Neumann

t

τ

-4 -2 0 2 4

-4

-2

0

2

4

t

t
'

FIG. 1: (Color online) Graphical illustration of the relation
between the double time variables in the ICP space as de-
fined in Table II. The color gradient is directed along the t
coordinate.

equation in the ICP space

Ê|P 〉γ0 =
−→
H

(
t̂− τ̂

2
, x̂k − ~

2
θ̂k, p̂k +

~
2
λ̂k

)
|P 〉γ0

(16)

− |P 〉γ0←−H
(
t̂+

τ̂

2
, x̂k +

~
2
θ̂k, p̂k −

~
2
λ̂k

)
,

2cΩ̂|P 〉γ0 =
−→
H

(
t̂− τ̂

2
, x̂k − ~

2
θ̂k, p̂k +

~
2
λ̂k

)
|P 〉γ0

(17)

+ |P 〉γ0←−H
(
t̂+

τ̂

2
, x̂k +

~
2
θ̂k, p̂k −

~
2
λ̂k

)
.

Ê and Ω̂ can be realized in terms of differential operators
as

t̂ = t Ê = i~
∂

∂t
, (18)

τ̂ = τ Ω̂ = i~
∂

∂τ
, (19)

turning Eqs. (16) and (17) into a system of two differen-
tial equations that can be solved by either propagating
along t while keeping τ fixed, or moving along τ with t
constant. In particular, setting τ = 0 in Eq. (16), we ob-
tain the relativistic von-Neumann equation in the Sliced
Covariant Hilbert Phase space (SCP)

i~
d

dt
|P 〉γ0 =

−→
H

(
t̂, x̂k − ~

2
θ̂k, p̂k +

~
2
λ̂k

)
|P 〉γ0 (20)

− |P 〉γ0←−H
(
t̂, x̂k +

~
2
θ̂k, p̂k −

~
2
λ̂k

)
.

It is well known that a Lorentz transformation mixes the
space and time degrees of freedom, as recapitulated in
Appendix A. In particular, the time-evolution of the
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FIG. 2: (Color online) Schematic illustration of a quantum
state propagating along time t within the slice ⌧ = 0 accord-
ing to Eq. (20). A di↵erent inertial reference frame would
generate another slice.

III. RELATIVISTIC WIGNER FUNCTION

This section is devoted to study specific representa-
tions of the von-Neumann equation in the SCP space
(20) in order to derive the time-evolution of the relativis-
tic Wigner function.

Following Table II, there are four representations of
interest:

• The double configuration space is defined by setting

x̂k = xk, ✓̂k = ✓k, �̂k = i
@

@xk
, p̂k = �i

@

@✓k
. (22)

Hence, the equation of motion (20) becomes

i~
@B�0

@t
=
�!
H

✓
t, xk � ~

2
✓k, p̂k +

~
2
�̂k

◆
B�0�

B�0 �H
✓

t, xk +
~
2
✓k, p̂k �

~
2
�̂k

◆
, (23)

where B is defined as the relativistic Blokhintsev
function

B�0 =
1p
~
hxk, ✓k|P i�0 = hxk � ~

2
✓k|P̂�0|xk +

~
2
✓ki.

(24)

For pure states, B is expressed in terms of the four-
column Dirac spinor  as

B(t, xk, ✓k)�0 =  (t, xk � ~
2
✓k) †(t, xk +

~
2
✓k). (25)

Therefore, B is a 4⇥4 complex matrix-valued func-
tion of two degrees of freedom x � ✓. The non-
relativistic version of the Blokhintsev function was
introduced in Refs. [91–93].

*
Fourier Transform

+

TABLE III: (Color online) Relation between the double con-
figuration (xk�✓k) and the double momentum (�k�pk) spaces
as defined in Table II. The dashed axes along pk and �k in-
dicate that they are related via a direct Fourier transform.
The solid axes along xk and ✓k indicate a similar connection.
These relations are also schematically presented in Eq. (39).

• The phase space is defined by

x̂k = xk, p̂k = pk, �̂k = i
@

@xk
, ✓̂k = i

@

@pk
. (26)

The underlying equation of motion (20) reads

i~
@W�0

@t
=
�!
H

✓
t, xk � ~

2
✓̂k, pk +

~
2
�̂k

◆
W�0�

W�0 �H
✓

t, xk +
~
2
✓̂k, pk �

~
2
�̂k

◆
, (27)

where W is the sought relativistic Wigner function

W�0 =
1

2⇡~
hxk, pk|P i�0, (28)

FIG. 2: (Color online) Schematic illustration of a quantum
state propagating along time t within the slice τ = 0 accord-
ing to Eq. (20). A different inertial reference frame would
generate another slice.

state in a different reference frame corresponds to a dif-
ferent slicing in the t−τ plane. Therefore, the state prop-
agated by Eq. (20) with τ = 0 does not contain enough
information to deduce the observations from a different
inertial frame of reference. Nevertheless, Eq. (20) rep-
resents a consistent relativistic equation of motion de-
scribing dynamics from the particular frame of reference
(corresponding to the τ = 0 slice) free of any nonphysical
artifacts, e.g., superluminal propagation. A schematic il-
lustration of slicing dynamics at τ = 0 is shown in Fig.
2. Note that equations of motion containing two time
variables also appear in non-relativistic dynamics [97].

Using Table II, we rewrite Eq. (20) in the Hilbert
Spinorial space

i~
d

dt
P̂ γ0 =[H(t, x̂k, p̂k), P̂ γ0]. (21)

Note that this equation resembles Eq. (1) with D = 0.
In other words, we obtain a straightforward relativistic
extension of the density matrix formalism for the Dirac
equation. Migdal [98] employed Eq. (21) to describe the
effect of multiple scattering on Bremsstrahlung and pair
production.

III. RELATIVISTIC WIGNER FUNCTION

This section is devoted to study specific representa-
tions of the von-Neumann equation in the SCP space
(20) in order to derive the time-evolution of the relativis-
tic Wigner function.

Following Table II, there are four representations of
interest:

FIG. 3: (Color online) Relation between the double configu-
ration (xk − θk) and the double momentum (λk − pk) spaces
as defined in Table II. The dashed axes along pk and λk in-
dicate that they are related via a direct Fourier transform.
The solid axes along xk and θk indicate a similar connection.
These relations are also schematically presented in Eq. (39).

• The double configuration space is defined by setting

x̂k = xk, θ̂k = θk, λ̂k = i
∂

∂xk
, p̂k = −i ∂

∂θk
. (22)

Hence, the equation of motion (20) becomes

i~
∂Bγ0

∂t
=
−→
H

(
t, xk − ~

2
θk, p̂k +

~
2
λ̂k

)
Bγ0−

Bγ0
←−
H

(
t, xk +

~
2
θk, p̂k −

~
2
λ̂k

)
, (23)

where B is defined as the relativistic Blokhintsev
function

Bγ0 =
1√
~
〈xk, θk|P 〉γ0 = 〈xk − ~

2
θk|P̂ γ0|xk +

~
2
θk〉.

(24)
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For pure states, B is expressed in terms of the four-
column Dirac spinor ψ as

B(t, xk, θk)γ0 = ψ(t, xk − ~
2
θk)ψ†(t, xk +

~
2
θk). (25)

Therefore, B is a 4×4 complex matrix-valued func-
tion of two degrees of freedom x − θ. The non-
relativistic version of the Blokhintsev function was
introduced in Refs. [99–101].

• The phase space is defined by

x̂k = xk, p̂k = pk, λ̂k = i
∂

∂xk
, θ̂k = i

∂

∂pk
. (26)

The underlying equation of motion (20) reads

i~
∂Wγ0

∂t
=
−→
H

(
t, xk − ~

2
θ̂k, pk +

~
2
λ̂k

)
Wγ0−

Wγ0
←−
H

(
t, xk +

~
2
θ̂k, pk −

~
2
λ̂k

)
, (27)

where W is the sought after relativistic Wigner
function

Wγ0 =
1

2π~
〈xk, pk|P 〉γ0, (28)

which can be recovered from the Blokhintsev func-
tion through a Fourier transform

W (t, xk, pk) =
1

(2π)3

∫
B(t, xk, θk) exp(ip · θ)d3θ. (29)

Note that only contravariant components are used
in Eqs. (28) and (29).

• The reciprocal phase space is defined as

x̂k = −i ∂

∂λk
, p̂k = −i ∂

∂θk
, λ̂k = λk, θ̂k = θk.

(30)

The corresponding equation of motion is

i~
∂Aγ0
∂t

=
−→
H

(
t, x̂k − ~

2
θk, p̂k +

~
2
λk

)
Aγ0−

Aγ0←−H
(
t, x̂k +

~
2
θk, p̂k −

~
2
λk

)
, (31)

where A is the relativistic ambiguity function

Aγ0 =
1√
~
〈λk, θk|P 〉γ0, (32)

which is recovered from the Blokhintsev function
according to

A(t, λk, θk) =

∫
B(t, xk, θk) exp(−ix · λ)d3x. (33)

• The double momentum space is introduced as

x̂k = −i ∂

∂λk
, p̂k = pk, λ̂k = λ, θ̂k = i

∂

∂pk
. (34)

The corresponding equation of motion is

i~
∂Zγ0

∂t
=
−→
H

(
t, x̂k − ~

2
θ̂k, pk +

~
2
λk

)
Zγ0−

Zγ0
←−
H

(
t, x̂k +

~
2
θ̂k, pk −

~
2
λk

)
, (35)

where

Zγ0 =
1√
~
〈λk, pk|P 〉γ0 = 〈pk +

~
2
λk|P̂ γ0|pk − ~

2
λk〉,

(36)

which is related with the Wigner function via

W (t, xk, pk) =
1

(2π)3

∫
Z(t, λk, pk) exp(ix · λ)d3λ. (37)

Similarly, we also have

A(t, λk, θk) =

∫
Z(t, λk, pk) exp(−ip · θ)d3p. (38)

In summary, all these four functions are connected

through Fourier transforms as visualized in the follow-

ing diagram:

W (x, p)
Fx→λ // Z(λ, p)

B(x, θ)

Fθ→p

OO

Fx→λ // A(λ, θ)
Fθ→p

OO
(39)

where vertical arrows denote the direct Fθ→p Fourier

transforms while horizontal arrows indicate the direct

Fx→λ Fourier transforms. A similar diagram can be

drawn in terms of the inverse Fourier transforms as

W (x, p)

Fp→θ
��

Z(λ, p)Fλ→xoo

Fp→θ
��

B(x, θ) A(λ, θ)Fλ→xoo

(40)

Since the relativistic Wigner function W is a 4 × 4
complex matrix, its visualization is cumbersome. Never-
theless, most of the information is contained in [57]

W 0(t, xk, pk) ≡ Tr [W (t, xk, pk)γ0]/4. (41)

In fact, this zero-th component is sufficient to obtain the
probability density j0 ≡ ψ†(t, xk)ψ(t, xk) as

∫
W 0(t, xk, pk)d3p = ψ†(t, xk)ψ(t, xk) (42)

∫
W 0(t, xk, pk)d3x = ψ̃†(t, pk)ψ̃(t, pk), (43)
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where ψ̃ is the Dirac spinor in the momentum represen-
tation, i.e. the Fourier transform of ψ.

Equations (42) and (43) reveal that the zero-th com-
ponent of the relativistic Wigner function (41) acts as a
quasi-probability distribution – a real valued non-positive
function, whose marginals coincide with the coordinate
and momentum probability densities, respectively.

IV. OPEN SYSTEM INTERACTIONS

Inspired by non-relativistic quantum mechanics [see
Eq. (1)], we add a dissipator to the relativistic von Neu-
mann equation (21) to account for open system dynamics

i~
d

dt
P̂ γ0 = [H(t, x̂k, p̂k), P̂ γ0] + i~D(P̂ γ0). (44)

The operator P̂ γ0 must remain non-negative at all times
in order to represent a physical system. This restricts
the form of the dissipator i~D(P̂ γ0). In particular, the
Lindblad form

i~D(P̂ γ0) = AP̂γ0A† +
1

2

(
A†AP̂γ0 + P̂ γ0A†A

)
, (45)

guarantees the non-negativity. We note that Eq. (44)
does not need to comply with relativistic covariance.
Nevertheless, this is not a deficiency when dealing with
environments such as thermal baths that are typically
furnished with a preferred frame of reference.

The following Lindbladian dissipator describes the
transversal spreading of a relativistic electron beam un-
dergoing multiple scattering [102] (e.g., Bremsstrahlung
and pair production in the bulk [98])

i~D[P̂ γ0] = −D
~2

[x̂k, [x̂k, P̂ γ0]], (46)

where no summation on k is implied and D shall be
refered to as the decoherence coefficient. In the non-
relativistic case this interaction is utilized to describe the
loss of coherence due to the interaction with a high tem-
perature bath [20, 25, 29, 41, 103]. In addition, a system
undergoing continuous measurements in position follows
the same decoherent dynamics [28, 104].

The dynamical effect of an interaction can be charac-
terized by calculating the time derivative of the expecta-
tion value of an observable Ô

d

dt
〈Ô〉 = Tr

[
d

dt
(P̂ γ0)Ô

]
. (47)

Assuming that the equation of motion is of the form

d

dt
P̂ γ0 =M(P̂ γ0), (48)

the time derivative of 〈Ô〉 is expressed as follows

d

dt
〈Ô〉 = Tr

[
M(P̂ γ0)Ô

]
= Tr

[
P̂ γ0M†(Ô)

]
, (49)

where M† is the adjoint operator of M with respect to
the Hilbert-Schmidt scalar product.

The particular dephasing dissipator (46) is self-adjoint,

D†[Ô] = D[Ô]; (50)

as a result,

D†[x̂k] = D†[p̂k] = 0. (51)

This means that the dephasing does not change the
Heisenberg equations of motion for position and momen-
tum observables. The open system interaction affects the
dynamics of the second order momentum

D†[x̂kx̂j ] = 0 D†[p̂kp̂j ] = 2Dδkj , D†[x̂kp̂j ] = 0,
(52)

which in turn leads to a momentum wavepacket broad-
ening. Moreover, considering that the free Dirac Hamil-
tonian (11) is linear in momentum, we obtain from Eqs.
(51) and (49)

d

dt

〈
γ0γkp̂k +mcγ0

〉
= 0. (53)

In other words, the energy is conserved under the action
of the dephasing dissipator (46). This is in stark contrast
to non-relativistic dephasing, which is characterized by
monotonically increasing energy.

The classical limit of dephasing (46) is diffusion. Rel-
ativistic extensions of diffusion face fundamental chal-
lenges [105]. For instance, large values of D may induce
dynamics leading to superluminal propagation, which
breaks down the causality of the Dirac equation (see,
e.g., Theorem 1.2 of Ref. [106]). The length-scale of dif-

fusion is
√
〈x2〉 =

√
2Dt; hence, the characteristic speed√

〈x2〉/t =
√

2D/t must be smaller than the speed of
light. The shortest time interval for which the single par-
ticle picture is valid t ∼ ~/(2mc2), i.e., the zitterbewegung
time scale. Considering all these arguments, we obtain
the constrain: D � ~/(4m), or equivalently, 4D/c � λ
(where λ = ~/(mc) is the reduced Compton wavelength)
in order to maintain causal dephasing dynamics.

This dephasing interaction (46) can be expressed in the
SCP space, leading to a very simple expression [93]

∂

∂t
〈xjθj |P 〉 = −Dθkθkδkj〈xjθj |P 〉, (54)

which is convenient for numerical propagation, as shown
in Sec. V.

V. NUMERICAL ALGORITHM

Stimulated by the resurgent interest in the Dirac equa-
tion, a plethora of propagation methods were recently de-
veloped [107–112]. However, to the best our knowledge
Ref. [113] is the only work devoted to propagation of the
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relativistic von Neumann equation (21), albeit without
open system interactions. The purpose of this section is
to develop an effective numerical algorithm to propagate
the master equation (44) describing quantum dephasing
(46). The computational effort with the proposed algo-
rithm scales as the square of the Dirac equation propa-
gation complexity. This algorithmic development enables
the relativistic Wigner function simulations, which were
previously hindered by the complexity of the underlying
integro-differential equations [49, 51].

The evolution governed by Eq. (21)

i~
d

dt
Q̂ =[H(t,xk, p̂k), Q̂], (55)

with Q̂ = P̂ γ0 is equivalent to

Q̂t+dt = e−idtH(t,x̂,p̂)/~Q̂te
idtH(t,x̂,p̂)/~, (56)

where dt is an infinitesimal time step.
Considering that the Hamiltonian can be decomposed

as

Ĥ = K(p̂) + V (x̂), (57)

K(p̂) = cαkp̂k +mc2γ0/2, (58)

V (x̂) = eA0(t, x̂k)− eαkAk(t, x̂k) +mc2γ0/2, (59)

where the mass term contributes to both K(p̂) and V (x̂).
The first order splitting with error O(dt2) is then

Q̂t+dt = e−idtV (x̂)/~e−idtK(p̂)/~Q̂te
idtK(p̂)/~eidtV (x̂)/~,

(60)

which implies a two step propagation

Q̂1/2 = e−idtK(p̂)/~Q̂te
idtK(p̂)/~ (61)

Q̂t+dt = e−idtV (x̂)/~Q̂1/2eidtV (x̂)/~ (62)

Using Eqs. (8) and (9) we move to SCP

|Q1/2〉 = e−idt
−→
K(p̂)/~|Qt〉eidt

←−
K(p̂′)/~, (63)

|Qt+dt〉 = e−idt
−→
V (x̂)/~|Q1/2〉eidt

←−
V (x̂′)/~. (64)

Note that |Qt〉 is a complex 4 × 4 matrix reflecting the
spinor degrees of freedom. The arrows can be eliminated
by choosing suitable bases

〈pp′|Q1/2〉 = e−idtK(p̂)/~〈pp′|Qt〉eidtK(p̂′)/~, (65)

〈xx′|Q1/2〉 = Fpp′→xx′〈pp′|Q1/2〉, (66)

〈xx′|Qt+dt〉 = e−idtV (x̂)/~〈xx′|Q1/2〉eidtV (x̂′)/~, (67)

〈pp′|Qt+dt〉 = Fxx′→pp′〈xx′|Qt+dt〉, (68)

where Fpp′→xx′ and Fxx′→pp′
stand for Fourier trans-

forms from the momentum representation to the posi-
tion representation and vice versa. Considering that the
state is a 4 × 4 matrix, the Fourier transform is inde-
pendently applied to each matrix component. From the

FIG. 4: (Color online) Schematic representation of the itera-
tive steps to propagate the quantum state according to Eqs.
(72)-(75).

computational perspective, the fast Fourier transform is
employed. Further details about the phase space prop-
agation via the fast Fourier transform can be found in
Sec. III of Ref. [93].

Having described the propagation algorithm in SCP
(x̂k, x̂k′, p̂k, p̂k′), one can apply a similar strategy to the

Bopp operators (x̂k, p̂k, θ̂k, λ̂k) (see Table II). There are
multiple advantages of the latter representation. Impor-
tantly, some open system interactions (e.g., the dephas-
ing model explained in detail in Sec. IV) take simpler

forms in terms of (x̂k, p̂k, θ̂k, λ̂k). The momentum and

coordinate grids in (x̂k, x̂k′, p̂k, p̂k′) are interdependent
such that if the discretization step size dx and the grid
amplitude of x are specified, then the momentum in-
crement dp and the amplitude of p are fixed and vice
versa. However, the momentum and position grids in

(x̂k, p̂k, θ̂k, λ̂k) are independent, thus allowing the flexi-
bility to choose dx, dp, and amplitudes of x and p, in
order to resolve the quantum dynamics of interest.

The following equation of motion is obtained from Eq.
(20):

i~
d

dt
|Q〉 =

−→
K

(
p̂k +

~
2
λ̂k

)
|Q〉 − |Q〉←−K

(
p̂k −

~
2
λ̂k

)
,

+
−→
V

(
x̂k +

~
2
θ̂k

)
|Q〉 − |Q〉←−V

(
x̂k −

~
2
θ̂k

)
.

(69)

The first order splitting leads to the two step propagation

|Q1/2〉 = e−
idt
~
−→
K(p̂+ ~

2 λ̂)|Qt〉e
idt
~
←−
K(p̂− ~

2 λ̂), (70)

|Qt+dt〉 = e−
idt
~
−→
V (x̂− ~

2 θ̂)|Q1/2〉e idt~
←−
V (x̂+ ~

2 θ̂). (71)

The employment of the appropriate basis at each step
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removes the need for arrows

〈λp|Q1/2〉 = e−
idt
~ K(p+ ~

2 λ)〈λp|Qt〉e
idt
~ K(p− ~

2 λ), (72)

〈xθ|Q1/2〉 = Fλp→xθ〈λp|Q1/2〉, (73)

〈xθ|Qt+dt〉 = e−
idt
~ V (x− ~

2 θ)〈xθ|Q1/2〉e idt~ V (x+ ~
2 θ), (74)

〈λp|Q1/2〉 = Fxθ→λp〈λp|Q1/2〉, (75)

where the Fourier transform conform with Eq.(39) and
Eq. (40) according to

Fxθ→λp ≡ Fx→λFθ→p = Fθ→pFx→λ, (76)

Fλp→xθ ≡ Fλ→xFp→θ = Fp→θFλ→x. (77)

A schematic view of the sequence of steps (72)-(75) is
shown in Fig. 4. Note that to maintain consistency,
the propagator must be solely expressed in terms of con-
travariant components, e.g.,

K(p± ~
2
λ) = cαk

(
pk ± ~

2
λk
)

+mc2γ0/2. (78)

The matrix exponentials in Eq. (72) can be evaluated
analytically. For instance, assuming a two dimensional
quantum system (ignoring x3 and p3) we obtain

e−
idt
~ [cαkpk+mc2γ0] =



K11 0 0 K14

0 K11 K23 0
0 K32 K∗11 0
K41 0 0 K∗11


 , (79)

with

K11 = cos(cdtF/~)− imc sin(cdtF/~)

F
, (80)

K14 =
sin(cdtF/~)

F

(
−ip1 − p2

)
, (81)

K23 = −U∗14, (82)

K32 = U14, (83)

K41 = −U∗14, (84)

F =
√

(mc)2 + (p1)2 + (p2)2. (85)

Likewise, the exponential in Eq. (74) yields

e−
idt
~ [αµeAµ+mc2γ0] = e−

ieA0dt
~



A11 0 A13 A14

0 A11 A23 A24

A31 A32 A∗11 0
A41 A42 0 A∗11


 ,

(86)

with

A11 = cos(dtG/~)− imc2 sin(dtG/~)

G
, (87)

A31 = A13 = iA3 sin(dtG/~)

G
, (88)

A41 = A23 = (−A2 + iA1)
sin(dtG/~)

G
, (89)

A32 = A14 = −A∗41, (90)

A42 = A24 = A∗31, (91)

G =
√

(mc2)2 + (A1)2 + (A2)2 + (A3)2. (92)

Having described the propagation for closed system
Dirac evolution, we now proceed to introduce quantum
dephasing (46), a particular open system interaction. Ac-
cording to Eq. (54), the dephasing dynamics enters into
the exponential of the potential energy, thereby modify-
ing the propagation step (74) as

〈xθ|Qt+dt〉 = e−
idt
~ Ṽ (x− ~

2 θ)〈xθ|Q1/2〉e idt~ Ṽ (x+ ~
2 θ), (93)

with

− idt
~
Ṽ

(
x± ~

2
θ

)
= − idt

~
V

(
x± ~

2
θ

)
− Ddt

2
θ2. (94)

The replacement of Eq. (74) by Eq. (93) is mathemat-
ically equivalent to Gaussian filtering along the momen-
tum axis (i.e., convolution with a Gaussian in momen-
tum) of the coherently propagated W (t, x1, p1). This
simple interpretation of the dephasing dynamics plays
a crucial role in Sec. VI.

The presented algorithm can be implemented with the
resources of a typical desktop computer and are well
suited for GPU computing [114]. In particular, the illus-
tration in the next section were executed with a Nvidia
graphics card Tesla C2070.

VI. MAJORANA SPINORS

Hereafter, assuming a one dimensional dynamics, the
Wigner function takes the functional form W (t, x1, p1).
Furthermore, natural units (c = ~ = 1) are used through-
out. In this section we employ a 512 × 512 grid for x1

and p1 as well as a time step dt = 0.01.
Majorana spinors, characterized for being their own

antiparticles, are the subject of interest in a broad range
of fields including high energy physics, quantum informa-
tion theory and solid state physics [115]. In particular,
the solid state counterpart of the relativistic Majorana
spinors is known to be robust against perturbations and
imperfections due to peculiar topological features [81].

In this section we study the dynamics of the original
Majorana spinor [85] in the presence of dephasing noise
(46). Let

ψ =



ψ1

ψ2

ψ3

ψ4


 (95)

be an arbitrary spinor, then there are two underlying
Majorana states (see, e.g., Chapter 12, page 165 of Ref.
[116])

ψM± =



ψ1

ψ2

ψ3

ψ4


±



−ψ∗4
ψ∗3
ψ∗2
−ψ∗1


 . (96)
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FIG. 5: (Color online) The relativistic Wigner function
W 0(t, x1, p1) for a potential-free Majorana spinor ψM+ asso-
ciated with the spinor in Eq. (97) at (a) t = 0 and (b) at
t = 12, upon propagation with Eq. (44). Note that the par-
ticle undergoes dephasing with coefficient D = 0.01, without
an external electromagnetic field. An animated illustration
can be found in [117].

In particular, we propagate the Majorana spinor ψM+
[shown in Fig. 5(a)] obtained from

ψ0 = e−
(x1)2

2 +ix1p̃1(p̃0 +mc, 0, 0, p̃1)T , (97)

with p̃0 =
√

(p̃1)2 + (mc)2 and the numerical values p̃1 =
5, m = 1 and the dephasing coefficient D = 0.01 in
natural units. The resulting time propagation of ψM+ is
shown in Fig. 5 (b).

Figure 5 reveals that the particle-antiparticle super-
position of the Majorana state generates a strong inter-
ference in the phase space, which survives an even very
intense dephasing interaction. The reason of such robust-
ness is that both the particle component (with a posi-
tive momentum) and the antiparticle component (with a
negative momentum) move in parallel along the positive
spatial direction. This is in agreement with the interpre-
tation of antiparticles as particles moving backwards in
time. In other words, the velocity and momentum are co-
linear for particles (see animation [118]) but anti-colinear
for antiparticles (see animation [117]). The interference
fringes, consisting of negative and positive stripes, also
remain parallel to the momentum axis (i.e., Majorana
spinors carry its interference). Considering the remark
after Eq. (93), the action of dephasing is equivalent to the
Gaussian filtering along the p1 axis only. This mixes neg-
ative values with negative, positive values with positive,
but never positive with negative values of the Wigner

FIG. 6: (Color online) The relativistic Wigner function
W 0(t, x1, p1) for a potential-free particle-particle superposi-
tion corresponding to the spinor in Eq. (98) at (a) t = 0 and
(b) at t = 12, upon propagation with Eq. (44). Note that
the particle undergoes dephasing with coefficient D = 0.01,
without an external electromagnetic field. An animated illus-
tration can be found in [118].

function. Hence, this leaves the interference stripes in-
variant. In other words, free Majorana spinors evolve in
a decoherence-free subspace [119] for the bath model in
Eq. (46).

The described Majorana state dynamics is fundamen-
tally different from the evolution of a cat-state, i.e., a
particle-particle superposition. For example, up to a nor-
malization factor, consider the following initial cat-state,
composed of mostly particles:

ψ0 = e−
(x1)2

2

[
eix

1p̃1 + e−ix
1p̃1
]

(p̃0 +mc, 0, 0, p̃1)T .

(98)

Figure 6 depicts the evolution of this state under the in-
fluence of the same dephasing interaction as in Fig. 5.
Contrary to the Majorana case, the negative momentum
components of the cat state are made of particles; there-
fore, we observe in Fig. 6 that they move along the nega-
tive spatial direction. The interference stripes connecting
the positive (moving to the right) and negative (moving
to the left) momentum components no longer remain par-
allel with respect to the p1 axis. Thus, dephasing occurs
as the Gaussian filtering averages over positive and neg-
ative stripes, thereby washing interferences out.

We note that the distortion from the original Gaussian
character of particle and antiparticle states at initial time
in Figs. 5 and 6 is due to the momentum dispersion.

The total integrated negativity of the Wigner function
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FIG. 7: (Color online) Negativity (99) of the Majorana state
(a particle-antiparticle superposition) in solid line correspond-
ing to the free evolution presented in Fig. 5 in comparison
with the negativity of the cat state (a particle-particle super-
position) in dashed lines corresponding to Fig. 6.

is

N(t) =

∫

W 0(t,x1,p1)<0

W 0(t, x1, p1)dx1dp1. (99)

In non-relativity [58, 59] the negativity of the Wigner
function is widely regarded as a measurement of the
quantum coherence because interferences are associated
with negative values. In relativity, there are three
physically distinct types of interferences: (i) particle-
particle (e.g., the cat state in Fig. 6), (ii) antiparticle-
antiparticle, and (iii) particle-antiparticle, aka zitterbe-
wegung (e.g., the Majorana state in Fig. 5). A positive
Wigner function is an indicator of classicality in non-
relativity. In relativity, however, there is a broad range of
pure states, containing both particles and antiparticles,
with underlying positive Wigner functions [57]. This im-
plies that a single snapshot of a relativistic Wigner func-
tion does not offer enough information to distinguish par-
ticles from antiparticles. This difference becomes evident
only during time evolution since the momentum direction
coincides with the direction of motion for portions of the
Wigner function associated with particles, whereas the
momentum direction is opposite to the direction of mo-
tion for antiparticles.

Figure 7 shows that the negativity of the cat state
reduces, while the negativity of the Majorana state is
constant. Moreover, the negativity of the free Majorana
spinor remains constant even for extreme values of the
decoherences. Therefore, this robustness is not a per-
turbative effect with respect to the dephasing coefficient
D. Note that Majorana spinor’s initial negativity is more
pronounced than that of the cat state (Fig. 7). Hence,
Majorana states are more coherent than cat-states.

Having studied free evolution, we now proceed to a
Majorana state evolving under the influence of the spa-
tially modulated mass m → m + 0.05(x1)2. This type
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FIG. 8: (Color online) (a) Initial Majorana state extracted
from (97), along with its marginal distribution in position
where the gray area represents the underlying mass modu-
lated potential m→ m+0.05(x1)2. (b) Propagated Majorana
state at time t = 14. An animated illustration can be found
in [120].

of system also maintains a high coherence despite signif-
icant dephasing D = 0.01. The initial Majorana state is
shown in Fig. 8 (a) while the propagated state at time
t = 14. is shown in Fig. 8 (b). The latter figure shows
that interference is preserved. (See the Majorana state
animation in Ref. [120] and the corresponding cat state
animation in Ref. [121]) A comparison of the negativi-
ties for Majorana and cat-states as functions of time are
shown in Fig. 9, where the Majorana state negativity os-
cillates albeit with some decay, which is much slower than
the cat-state decay. Figure 10, showing the full Wigner
dynamics, sheds light on the revival of the Majorana’s
negativity: When the particle and antiparticle compo-
nents merge and separate, the negativity disappears and
appears, respectively.

VII. KLEIN TUNNELING

As the second numerical example, we examine the
Klein paradox [122], an unexpected consequence of the
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FIG. 9: (Color online) Negativity of the Majorana state of
Fig. 8 in solid line, compared to the negativity of the corre-
sponding cat state.

Dirac equation, predicting that a positive energy parti-
cle colliding with a sharp potential barrier of the height
V > mc2 is transmitted as a negative energy state. For
example, the initial state (97) with p̃1 = 5, m = 1 is
shown in Fig. 12 (a) along with the potential A0 =
10(1 + tanh[4(x − 5)])/2. We observe in Fig. 12 (b)
that most of the wavepacket has been transmitted as an-
tiparticles. (See animation in Ref. [123])

An important extension of the Klein paradox is the
Klein tunneling, where the step potential is replaced by
a finite width barrier. In this case, the theoretical pre-
diction specifies a high transmission even for a wide bar-
rier. Condensed matter analogies of this phenomenon
are a subject of active research [7, 124]. Three snapshots
of the Klein tunneling dynamics are shown in Fig. 13,
where (a) corresponds to the positive energy initial state,
(b) the state penetrating the potential barrier as antipar-
ticle, and (c) the final state emerging from the barrier as
particle. (See animation in Ref. [125])

The Dirac particle has a spinorial as well as a configu-
rational degree of freedom. The Klein tunneling can be
viewed as an interband transition between positive and
negative energy states [126]. Analogous effects exist in
non-relativistic dynamics. In particular, compared to the
structureless case, non-relativitic systems with many de-
grees of freedom manifest many unique peculiarities such
as, e.g., transmission rate enhancement [127, 128] and
directional symmetry breaking [129]. Thus, the energy
exchange between different degrees of freedom underlies
the counterintuitive dynamics of both the Klein and the
non-relativistic tunneling of particles with internal struc-
ture.

Furthermore, the Klein tunneling can be interpreted as
the Landau-Zener transition between positive and neg-
ative energy states. This conclusion is obtained, e.g.,
by comparing Eqs. (B8) and (B9) (setting Aµ = 0)
with Eqs. (19)-(21) in Ref. [130]. This observation un-

FIG. 10: (Color online) Time stacked relativistic Wigner func-
tion (0 ≤ t ≤ 20) for the Majorana dynamics shown in Fig.
8. The interferences, located in the middle, remain robust all
along the evolution despite of the presence of significant quan-
tum decoherence. The inteferences contain regions of negative
value in blue. The integrated negativity (99) as a function in
time is shown in Fig. 9.

derscores an analogy between solid state and relativistic
physics.

Simulations with different values of the dephasing coef-
ficient D have been performed in order to investigate the
effect of decoherence on the final transmission. Figure
14 depicts the integrated negativity (99) as a function of
time for three different values of D. The evolution with-
out decoherence generates high negativity that indicates
interference between the larger transmitted and smaller
reflected wavepackets. In the same figure we observe that
the decoherence eliminates negativity at later stages of
the propagation. Nevertheless, the effect of decoherence
on the final transmission rate is small in Fig. 15, where
the transmission as a function of time nearly coincides for
different values of D. We also note a weak dependence of
the antiparticle generation on the dephasing coefficient
as shown in Fig. 16. Contrary to non-relativistic quan-
tum dynamics [24, 25, 28–30, 32, 41, 93], decoherence in
the relativistic regime does not recover a single particle
classical description. Furthermore, we show in Appendix
B that the limit ~→ 0 of the Dirac equation leads to two
classical Hamiltonians: One describing particles with a
forward advancing clock (i.e., particles), while the other
– a particle with backward flowing proper time (i.e., an-
tiparticles). (This limit of the Dirac equation represents
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FIG. 11: (Color online) Time stacked relativistic Wigner func-
tion (0 ≤ t ≤ 20) for a cat state evolving in the same potential
as the Majorana spinor in Fig. 10. The interferences, fade
shortly after the initiation of the propagation due to the ac-
tion of quantum decoherence. The integrated negativity (99)
as a function in time is shown in Fig. 9.

an example of classical Nambu dynamics [131].) This ex-
plains the persistence of positive energy states even for
strong dephasing. We believe that the latter observation
should also hold in condensed matter physics.

VIII. CONCLUSIONS

We introduced the density matrix formalism for rel-
ativistic quantum mechanics as a generalization of the
spinorial description of the Dirac equation. This formal-
ism is employed to describe interactions with an envi-
ronment. Moreover, we presented concise and effective
numerical algorithms for the density matrix as well as
the relativistic Wigner function propagation.

As a particularly important case, a Lindbland model
of quantum dephasing was studied. While decoherence
eliminated interferences, the particular structure of a free
Majorana spinor remained robust. Partial robustness
was also observed for a coordinate dependent mass term
in the Dirac equation. This robustness represents yet an-
other remarkable attribute of Majorana spinors [132] not
presently acknowledged, which may be important exper-
imentally. Moreover, the dynamics of the Klein paradox
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FIG. 12: (Color online) Illustration of the Klein paradox in
terms of the relativistic Wigner function with an underlying
decoherence process with coefficient D = 0.05 . The step po-
tential A0 = 10(1 + tanh[4(x − 5)])/2. is depicted as a gray
area. The height of the step potential is V0 = 10 while the en-
ergy of the initial wavepacket is E = 5.01. (a) The initial state
W 0(t = 0, x1, p1) from Eq. (97) with p̃1 = 5. aimed towards
the barrier. (b) Final state of the relativistic Wigner function
at t = 12 made of mostly of a negative energy wavepacket
(antiparticle) being transmitted through the barrier. See the
animation in Ref. [123]

as well as Klein tunneling turned out to be weakly af-
fected by quantum dephasing.

The presented numerical approach opens new hori-
zons in a number of fields such as relativistic quantum
chaos [133], the quantum-to-classical transition, and ex-
perimentally inspired relativistic atomic and molecular
physics [134–136]. Additionally, our method can be used
to simulate effective systems modeled by relativistic me-
chanics, e.g., graphene [137, 138], trapped ions [14], op-
tical lattices [139], and semiconductors [140, 141]. Fi-
nally, the developed techniques can be generalized to
treat Abelian [51, 142, 143] as well as non-Abelian [2, 144]
(e.g., quark gluon) plasmas.
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FIG. 13: (Color online) Illustration of the Klein tunneling in
terms of the relativistic Wigner function with the potential
barrier A0 = 5(tanh[4(x + 4)] + tanh[4(−x + 4)]) depicted
as a gray area. The system undergoes a decoherence pro-
cess with D = 0.05. (a) The relativistic Wigner function
W 0(t = 0, x1, p1) for the initial state in Eq. (97) with p̃1 = 5.
and positioned around x1 = −10. (b) The relativistic Wigner
function at t = 6 in the process of entering the potential and
transforming into a negative energy wavepacket (antiparti-
cle). (c) The final relativistic Wigner function at t = 24,
where most of the initial wavepacket has been transmitted as
a positive energy wavepacket (particle). See the animation in
Ref. [125]
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FIG. 14: The integrated negative area in Eq. (99) as a func-
tion of time for the Klein tunneling process. Three different
values of the decoherence coefficient are considered for the
same initial state depicted in Fig. 13 (a). The first dip corre-
sponds to the first contact of the wave packet with the barrier
as shown in Fig. 13 (b). The second dip corresponds to the
main wavepacket emerging from the barrier. This emerging
packet comes along a smaller packet reflected inside the bar-
rier that later generates a third dip when it encounters the left
side of the barrier. This process continues generating smaller
and smaller dips for packets moving inside the barrier.
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FIG. 15: (Color online) The Klein transmission across the po-
tential barrier as a function of time for the initial wavepacket
shown in Fig. 13 (a), indicating a weak dependence on the
dephasing intensity.

Appendix A: Lorentz covariance of the Dirac
equation

A vector in Feynman’s slash notation reads

u/ = uµγµ, (A1)
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FIG. 16: (Color online) The antiparticle proportion as a func-
tion of time for three different values of the decoherence coef-
ficient in the Klein tunneling process. The initial state com-
posed of mostly particles is shown in Fig. 13 (a). The first
high plateau corresponds to the period of time when most of
the wavepacket travels within the potential barrier as an an-
tiparticle. Once this wavepacket emerges out of the barrier,
there is a smaller reflected packet that moves to the left inside
the barrier yielding the second plateau.

where the gamma matrices obey the following Clifford
algebra

γµγν + γνγµ = 2gµν1, (A2)

with gµν = diag(1,−1,−1,−1). The restricted Lorentz
transform does not carry out reflections and preserves
the direction of time and belongs to the group referred
as SO+(1, 3). In the present case the transformation for
the vector u/ is carried out in terms of Lorentz spinors
L belonging to the double cover group of SO+(1, 3), ac-
cording to

u/→ u′/ = Lu/L−1. (A3)

The concept of a spinor as an operator can be found for
example in chapter 10 of Ref. [116]. The double cover
of SO+(1, 3) is known as the Spin+(1, 3) group and is
precisely defined as

Spin+(1, 3) = {L ∈Matrices(4,C)|Lγ0L†γ0 = 1}
(A4)

For this type of Lorentz transform the inverse can be
obtained as [116]

L−1 = γ0L†γ0. (A5)

The restricted Lorentz transform can also be carried
out by the action of the complex special linear group
SL(2,C) ' Spin+(1, 3) [116, 145, 146], which is made
of 2 × 2 complex matrices with determinant one. The

proper orthochronous Lorentz transformations can be
parametrized by 6 variables denoting rotations and boots

L = exp

(
1

2
ηkγ

0γk
)

exp

(
1

4
εjklθ

jγkγl
)
, (A6)

where θj represent three rotation angles, ηk three boosts
(rapidity variables) and γµ = γ−1µ . The proper velocity
can be obtained as the active boost of the proper velocity
of a particle initially at rest with proper velocity u/rest =
γ0. This means that in general it is possible to find a
Lorentz spinor L such that

u/ = Lu/restL
−1 = LL†γ0. (A7)

This expression indicates that the information stored
in the 4-vector u/ can be carried out by the associated
Lorentz rotor L and the fixed reference 4-vector u/rest.

The Lorentz transformation in Eq. (A3) implies that

ūµγ
µ = Luµγ

µL−1. (A8)

Considering that uµ transforms as the components of a
covariant tensor, we obtain

uν
∂xν

∂x′µ
γµ = uνLγ

νL−1, (A9)

which implies that

LγνL−1 =
∂xν

∂x′µ
γµ. (A10)

The Lorentz transformation of a vector field that de-
pends on the spacetime position x is carried out in a
similar manner as (A3)

A(x)→ Ā(x̄) = LA(x)L−1. (A11)

Moreover, assuming that the origins of the reference
frames coincide,

Ā(x̄) = LA(L−1x̄L)L−1. (A12)

The Lorentz transformation of a spinorial field is con-
sistent accordingly

ψ(x)→ ψ̄(x̄) = Lψ(x) (A13)

The manifestly covariant Dirac equation is

ic~γµ
∂

∂xµ
ψ(x)− γµeAµ(x)ψ(x)−mc2ψ(x) = 0, (A14)

such that applying the Lorentz rotor L on the left we
obtain

ic~Lγµ
∂

∂xµ
L−1Lψ(x)− LγµeAµ(x)L−1Lψ(x)−mc2Lψ(x) = 0,

(A15)
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Employing Eq. (A10), the first term of this equation can
be written as

i~Lγµ
∂

∂xµ
L−1Lψ(x) =i~

∂xµ

∂x̄ν
γν

∂

∂xµ
ψ̄(x̄) (A16)

=i~γν
∂

∂x̄ν
ψ̄(x̄). (A17)

Therefore, maintaining the form for the Dirac equation
and demonstrating its relativistic covariance

i~γµ
∂

∂x̄µ
ψ̄(x̄)− γµeĀµ(x̄)ψ̄(x̄) = mcψ̄(x̄). (A18)

Furthermore, it follows that the relativistic density ma-
trix P (x, x′) = ψ(x)ψ†(x′)γ0 transforms as

P (x, x′)→ P̄ (x̄, x̄′) = ψ̄(x̄)ψ̄†(x̄′)γ0 (A19)

= Lψ(x)ψ†(x′)L†γ0 (A20)

= Lψ(x)ψ†(x′)γ0γ0L†γ0 (A21)

= LP (x, x′)L−1. (A22)

Appendix B: The classical limit of the Dirac
equation

The Dirac equation reads

Dψ =
[
γ0γµ(cp̂µ − eAµ(x̂))− γ0mc2

]
ψ = 0. (B1)

In the classical limit, we understand the situation when
the operators of the momenta p̂µ and coordinates x̂µ com-
mute [45, 147, 148]. Following the Hilbert phase space
formalism [45, 92], we separate the commutative and non-
commutative parts of the Dirac generator D by introduc-
ing the algebra of classical observables

[x̂µ, p̂ν ] = 0, [p̂µ, θ̂
ν ] = −iδνµ, (B2)

[x̂µ, λ̂ν ] = −iδµν , [λ̂µ, θ̂
ν ] = 0, (B3)

which is connected with the quantum observables as

x̂µ = x̂µ − ~θ̂µ/2, p̂µ = p̂µ + ~λ̂µ/2. (B4)

Substituting Eq. (B4) into Eq. (B1) and keeping the
terms up to the zero-th order in ~, we get a function of
x̂µ and p̂µ. Considering that x̂µ and p̂µ commute, we
drop the hat hereafter such that

D = γ0γµ(cpµ − eAµ)− γ0mc2 +O(~). (B5)

Utilizing the following unitary operator U

U =

√
Ep +mc2

2Ep

(
1− γk(cpk − eAk)

Ep +mc2

)
, (B6)

Ep =
√

(mc2)2 + (cp− eA)k · (cp− eA)k, (B7)

we finally obtain

lim
~→0

UDU† =



H+ 0

H+

H−
0 H−


 , (B8)

with

H± = cp0 − eA0 ± Ep. (B9)

According to Eq. (B9), the Dirac generator D in the
classical limit corresponds to a decoupled pair of classi-
cal time-extended Hamiltonians. The Hamiltonian H+

describes the dynamics of a classical relativistic parti-
cle; while, H− governs the dynamics of a particle travel-
ing backwards in time, which resembles an antiparticle.
These conclusions confirm the results of numerical sim-
ulations in the main text, where a Dirac particle was
coupled to a bath causing decoherence that physically
realizes the ~→ 0 limit.
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[64] I. Bialynicki-Birula, P. Górnicki, and J. Rafelski, Phys.

Rev. D 44, 1825 (1991).
[65] G.R. Shin, I. Bialynicki-Birula, and J. Rafelski, Phys.

Rev. A 46, 645 (1992).
[66] I. Bialynicki-Birula, EPJ Web of Conferences 78, 01001

(2014).
[67] F. Hebenstreit, A. Ilderton, M. Marklund, and J. Za-

manian, Phys. Rev. D 83, 065007 (2011).
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