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The mechanism of decoherence for a mesoscopic quantum system with rotational degrees of free-
dom is studied. From a simple model of elastic scattering, we show that the non-diagonal density
matrix elements of the system exponentially decay. The decay rate depends on the difference of
scattering amplitudes for different rotational configurations, leading to the gradual loss of quantum
coherence between the pointer states in the orientational space. For a dielectric ellipsoid immersed
in a photon-gas environment (assuming no absorption), the decay rate is found to be proportional to
the seventh power of the temperature. For an ellipsoidal object interacting with massive particles,
the decay rate is proportional to the 5/2 power of the temperature. Both are different from the case
of translational decoherence induced by the same environment scattering. For photon scattering,
the coherence time in the rotational degrees of freedom is shown to be much shorter than that in
the translational degrees of freedom.

PACS numbers: 03.65.Yz, 03.65.Ud

I. INTRODUCTION

Decoherence refers to the process of a quantum system
losing its quantum coherence between pointer states. De-
coherence is not only of great importance to the founda-
tions of quantum physics [1–4], but also of vital interests
for the realization of quantum applications, such as quan-
tum computers [5], and other coherent manipulations [6]
etc. The key idea of decoherence is simple and clear, that
a quantum system in reality is essentially open because
it could never be completely isolated from its environ-
ment. Thus, this open quantum system is not expected
to follow the Schrödinger equation, instead, it evolves
non-unitarily according to a master equation [1, 2]. For
large quantum systems, the density matrix will quickly
become mixed, causing the quantum to classical transi-
tion [3, 4, 7].

With fast technological developments in all areas of
physics, quantum phenomena become controllable at
larger and larger scales [8–13]. For large systems, the ro-
tational or vibrational degrees of freedom is significant.
However, in the past decades, most of the attention of
mesoscopic systems has been concentrated on decoher-
ence of the translational degrees of freedom [2, 14–16],
where environmental interactions can produce exponen-
tially localized wave packets. In this paper, we focus on
the mechanism of decoherence for a mesoscopic system
with rotational degrees of freedom. The answer to these
questions should provide a guidance in the growing num-
ber of experiments probing and controlling the internal
degrees of freedom of a mesocopic system [17].

In a recent work [18], Fischer considered the interaction
of a rigid body with an environment through the coupling
of a dipole moment and a fluctuating field. Based on
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the method of quantum stochastic differential equation
(SDE), Fischer derived a master equation

∂tρ ∝

∫ ∞

0

ds

∫∫
dn̂1dn̂2γ(s)(eifs̄(Ω̂)ρe−ifs̄(Ω̂) − ρ), (1)

which describes the dynamics of an extended object in-
teracting with random pulsed fields (the unitary part is
not included). ρ is the system density operator, s is ran-
dom number, n̂1, n̂2 give the direction of the dipole (in
the body-fixed frame) and the field (in the space-fixed
frame of reference), γ(s) is proportional to a normalized

distribution function and eifs(Ω̂) is the jump operator.
The master equation gives an exponential decay of an-
gular coherence, with the decay rate proportional to the
distance measure in orientational space. In Ref. [18], it
is worth mentioning that the master equation was also
used to discuss the pointer states of the orientational de-
coherence, and solitonic solutions were identified as the
pointer states, which is instrumental for the analysis of
rotational dynamics.

In this paper, we extend the first results of Ref. [18] to
include rotational decoherence due to interaction with an
environment of discrete particles. The derivation is based
on a model of scattering which has been widely applied
to the decoherence for translational degrees of freedom
[1, 2, 14, 15, 19]. The single scattering event is treated
in a non-perturbative way [2, 14, 15]. If the system is
initially prepared in a rotational superposition state, the
coherence in the density matrix is effectively decreased
by scattering. For a spherically symmetric environment,
the rotational decoherence rate is found to depend only
on the difference of the scattering amplitudes for differ-
ent rotational configurations and can be shown to only
depend on the difference in the angles of orientation. To
illustrate the effect, we calculate the decoherence rate for
the situation with the environment being a photon gas
or massive particles. In the long wavelength limit, the
rotational decoherence rate is found to have a tempera-
ture dependence different from that for translational de-
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coherence. For photon scattering by systems of the same
size, the rotational decoherence rate is shown to be much
larger than that in the translational degrees of freedom.

In the sections that follow, we first introduce the
derivation of rotational decoherence, present the exam-
ples of a system immersed in a photon gas or massive
particles environment, compare the result to our expec-
tations, and comment on their implications and possible
guidance for future experiments.

II. ROTATIONAL DECOHERENCE DUE TO

SCATTERING

We focus on the rotational degrees of freedom of an
object (system S), which interacts with the environment
(environment E), and they are assumed to be initially
uncorrelated. The combined system (SE) is described
by a product state

ρ̂SE = ρ̂S ⊗ ρ̂E , (2)

where ρ(S) is the system density operator. ρE describes
the environment state, which is discussed in the next
subsection. We denote the orientational eigenstate of the
system by |Ω〉 = |α, β, γ〉 [18, 20], where α, β, and γ are
the Euler angles. In the orientation space, the system
density operator takes the form

ρ̂S =

∫
dΩ

∫
dΩ′ρS(Ω,Ω′) |Ω〉 〈Ω′| . (3)

In the following, we will show how the system state is
affected by a single scattering event. The derivation for-
mally follows the steps of the model of collisional deco-
herence [1, 2, 21].

A. Correlation established by scattering

Our discussion is confined to elastic scattering through-
out the paper. The state |Ω〉 = |α, β, γ〉 can be repre-
sented as a state |0, 0, 0〉 rotated by an operator

|Ω〉 = D̂S(Ω) |0, 0, 0〉 , (4)

where D̂S(Ω) = exp(− i
~
L̂zα) exp(− i

~
L̂yβ) exp(− i

~
L̂zγ)

[22]. If we denote the incoming particle by |χ〉, then
the effect of the scattering event can be described by the
scattering operator Ŝ acting on the initial state,

|Ω〉 |χ〉 → Ŝ |Ω〉 |χ〉 . (5)

Then we have,

Ŝ |Ω〉 |χ〉 → ŜD̂SE(Ω) |0, 0, 0〉 D̂†
E(Ω) |χ〉

→ D̂SE(Ω)Ŝ |0, 0, 0〉 D̂†
E(Ω) |χ〉 ,

(6)

where D̂E(Ω) is the rotational operator acting only on

the environment and D̂SE(Ω) is the rotational operator

for the combined system. Obviously, we have D̂SE(Ω) =

D̂S(Ω)D̂E(Ω). In the last line, we used the fact that the
scattering operator commutes with the rotation of the
combined system

[Ŝ, D̂SE(Ω)] = 0. (7)

In the scattering model, an important step is to include
the non-recoil approximation, which states that the scat-
tering event essentially does not disturb the system, ex-
cept establishing entanglement between the system and
the incoming particle [2]. In the situations we are consid-
ering, the system is much more massive than the environ-
ment particles, such as photons scattered by a mesoscopic
dielectric or air molecules scattered by more massive ob-
jects. This justifies the non-recoil approximation, which
gives

Ŝ |Ω〉 |χ〉 → D̂SE(Ω) |0, 0, 0〉 ŜD̂†
E(Ω) |χ〉

→ |Ω〉 Ŝ(Ω) |χ〉 → |Ω〉 |χ(Ω)〉 ,
(8)

where Ŝ(Ω) = D̂E(Ω)ŜD̂†
E(Ω). |χ(Ω)〉 = Ŝ(Ω) |χ〉 is in-

troduced to denote the state of the outgoing particle,
which now carries the orientational information of the
system. The first line used the non-recoil approximation.
From Eq. (8), we see the scattering event establishes
correlations between the system and the environment.
Accordingly, the initial separable density matrix of the
combined system ρSE = ρS ⊗ ρE is transformed into the
following entangled density matrix

ρSE =

∫
dΩ

∫
dΩ′ρS(Ω,Ω′) |Ω〉 〈Ω′| ⊗ |χ(Ω)〉 〈χ(Ω′)| ,

(9)
where ρS(Ω,Ω′) is typically non-diagonal. The system is
described by a reduced density matrix ρS , which is ob-
tained by tracing over the environmental degree of free-
dom,

trE(ρSE) =

∫
dΩ

∫
dΩ′ρS(Ω,Ω′) |Ω〉 〈Ω′| 〈χ(Ω′)|χ(Ω)〉 .

(10)
As a result, the density matrix element of the system
after the scattering event becomes

ρS(Ω,Ω′, 0) → ρS(Ω,Ω′, 0) 〈χ(Ω′)|χ(Ω)〉 , (11)

where 〈χ(Ω′)|χ(Ω)〉 = 〈χ|Ŝ†(Ω′)Ŝ(Ω)|χ〉. Thus, a sup-
pression is attached to the system density matrix ele-
ments, and the value is determined by the average of the
operator Ŝ†(Ω′)Ŝ(Ω) over the state of the incoming parti-
cle. The overlap 〈χ(Ω′)|χ(Ω)〉 is trivially one for Ω = Ω′,
which indicates no influence on the diagonal elements
from the scattering.

B. Time evolution of the system density matrix

To derive how the system density matrix evolves in
time, we first need to calculate the overlap 〈χ(Ω′)|χ(Ω)〉
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and then determine how the system density matrix is
affected by successive scattering events. According to
Eq. (11), The suppression of the system density ma-
trix element is determined by the average of the oper-
ator Ŝ†(Ω′)Ŝ(Ω) in terms of the incoming environment
particles. To calculate this average, the state of the in-
coming particle needs to be specified. We first confine
the environment particle in a box with periodic bound-
ary conditions. The box volume has a finite value V and

the momentum eigenstate in this space is denoted by | ~K〉.
Then we push the box size to the limit of infinity, such
that the momentum eigenstate becomes continuous and

is denoted by |~k〉. Considering the normalization con-
dition, these eigenstates have the following simple well
known connections

| ~K〉 =

√(
(2π)3

V

)
|~k〉 ,

(2π)3

V

∑
=

∫
d3~k. (12)

Thus, the state of the incoming particle is described by
the density operator,

ρE =
(2π)3

V

∑
µ(~k) | ~K〉 〈 ~K| , (13)

where the summation runs over the set of momenta that
satisfy the periodic boundary condition. µ(~k) is the wave
number distribution. We assume that the environment
is spherically symmetric such that µ(~k) depends only on

the magnitude of ~k. Then the average of the operator
Ŝ†(Ω′)Ŝ(Ω) can be written as

〈χ|Ŝ†(Ω′)Ŝ(Ω)|χ〉 →
(2π)3

V

∑
µ(k) 〈 ~K| Ŝ†(Ω′)Ŝ(Ω) | ~K〉 .

(14)

To proceed, the identity Ŝ = Î+iT̂ is used to express the
scattering operator Ŝ in terms of T̂ operator. Recall the

definition Ŝ(Ω) = D̂E(Ω)ŜD̂†
E(Ω), the above expression

is written as

〈χ(Ω′)|χ(Ω)〉 → 1 −
(2π)3

V

∫
d3~kµ(k) 〈~k| T̂ †T̂ −DE(Ω′)T̂ †D†

E(Ω′)DE(Ω)T̂D†
E(Ω) |~k〉 , (15)

where the identities −iT̂ † + iT̂ = −T̂ †T̂ ,
∫
d3~kµ(k) =

1 and Eq. (12) are used. While obtaining the above
expression, we also used the fact that the environment is
spherically symmetric, which is equivalent to state that

the environment density operator ρE commutes with the
environmental rotation DE(Ω). For the same reason, the
above expression can be written in a more symmetric
form

〈χ(Ω′)|χ(Ω)〉 →1 −
(2π)3

2V

∫
d3~kµ(k) 〈~k| T̂ †

ΩT̂Ω + T̂ †
Ω′ T̂Ω′ − T̂ †

Ω′ T̂Ω − T̂ †
Ω′ T̂Ω |~k〉 , (16)

where we denote T̂Ω = DE(Ω)T̂D†
E(Ω), which is the ro-

tated T̂ operator. Next, we connect the T̂ operator with
the scattering amplitude by the following familiar for-
mula [22]

〈~k| T̂Ω |~k′〉 = −
~
2

2πm
δ(E − E′)fΩ(kk̂, kk̂′), (17)

and use the identity operator Î =
∫
d3~k′ |~k′〉 〈~k′|. After

several steps of algebra, we obtain

〈χ(Ω′)|χ(Ω)〉 →1 −
(2π)3

2V

∫
d3~k′

∫
d3~kµ(k)

~
4

(2πm)2
δ2(E − E′)

{
f∗
Ω(~k′, ~k)fΩ(~k′, ~k) + f∗

Ω′(~k′, ~k)fΩ′(~k′, ~k)

− f∗
Ω′(~k′, ~k)fΩ(~k′, ~k) − f∗

Ω′(~k′, ~k)fΩ(~k′, ~k)

}
,

(18)

where we are encountered with a squared delta function.
Inspired by the usual approach in deriving the Fermi’s

Golden rule, the squared delta function can be evaluated
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by the following formula [2, 15, 19],

δ2(E′ − E) =
t

2π~
δ(E′ − E) =

t

2π~

m

~2k
δ(k′ − k), (19)

where the parameter t is interpreted as the time when
the interaction is on during the scattering event and is as-
sumed to be much shorter than the system’s decoherence
time induced by a large number of collisions [2]. Using
Eq. (19) and integrating the magnitude of momentum
k′, we get

〈χ(Ω′)|χ(Ω)〉 →1 −
t

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

{
f∗
Ω(kk̂′, kk̂)fΩ(kk̂′, kk̂) + f∗

Ω′(kk̂′, kk̂)fΩ′(kk̂′, kk̂)

− f∗
Ω′(kk̂′, kk̂)fΩ(kk̂′, kk̂) − f∗

Ω′(kk̂′, kk̂)fΩ(kk̂′, kk̂)

}
.

(20)

The above expression in the integral can be fur-
ther simplified. Since the scattering amplitude

satisfies fΩ(kk̂′, kk̂) = f∗
Ω(kk̂, kk̂′) and kk̂, kk̂′

are symmetric in swapping the integral index,

the double solid angle integral of each term is

real. It means
∫∫

d2k̂d2k̂′f∗
Ω′(kk̂′, kk̂)fΩ(kk̂′, kk̂) =∫∫

d2k̂d2k̂′fΩ′(kk̂′, kk̂)f∗
Ω(kk̂′, kk̂). Thus the above

formula can be expressed in a more symmetric form,

〈χ(Ω′)|χ(Ω)〉 →1 −
t

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

∣∣∣fΩ(kk̂′, kk̂) − fΩ′(kk̂′, kk̂)
∣∣∣
2

. (21)

Equation (21) gives the suppression of the system density
matrix element by one single elastic scattering event. The
result depends on the difference of the elastic scattering
amplitudes for different orientations. When Ω = Ω′, the
overlap is trivially one, which indicates no suppression
on the diagonal elements of the system density matrix.
Next we can proceed to derive the time evolution of the

system density matrix. By substituting the above result
into Eq. (11) and taking the limit t → 0, the following
formula is obtained

∂ρS(Ω,Ω′, t)

∂t
= −Λ ∗ ρS(Ω,Ω′, t), (22)

where the factor

Λ =
1

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′|fΩ(kk̂′, kk̂) − fΩ′(kk̂′, kk̂)|2. (23)

The above expression shows an exponential decay in the
off diagonal elements of the system density matrix. Λ is
the decay rate. Eq. (22) describes the decoherence effect
by one environment particle scattering. An ensemble of

N particles will build up the decoherence effect in a way
that the decoherence rate is multiplied by the number of
particles N , thus

Λ =
N

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

∣∣∣fΩ(kk̂′, kk̂) − fΩ′(kk̂′, kk̂)
∣∣∣
2

, (24)

where ~k
m is the environment particle velocity. Thus, we

derive the general expression for the decoherence rate of
a quantum rotational system from the elastic scattering
model. Equations (22) and (24) are our main results in

this section. The expression is general for elastic scatter-
ing, since we have not specified any concrete form of the
scattering amplitude. Taking into account the spherical
symmetry of the environment, we could further rewrite
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Eq. (24). Denote the scattering amplitude as

fΩ(kk̂′, kk̂) = D†
E(Ω)f(kk̂′, kk̂)DE(Ω). (25)

f(kk̂′, kk̂) is the scattering amplitude for a specific con-
figuration of the system, from which the other scattering

amplitude fΩ(kk̂′, kk̂) can be obtained by performing a
rotation DE(Ω). This greatly simplifies our calculations
in the following sections. Several operations yield

Λ =
N

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

∣∣∣f(kk̂′, kk̂) −D†
E(ω)f(kk̂′, kk̂)DE(ω)

∣∣∣
2

, (26)

where we define DE(ω) = D†
E(Ω′)DE(Ω), and ω can be

interpreted as the absolute angle distance between the
two rotational configurations. Equation (26) shows that
the decoherence rate only depends on the absolute angle
difference ω of the configurations, which must result for
the case for a spherically symmetric environment. Equa-
tion. (26) could greatly simplify our following evaluations
since we can always fix one configuration of the system,
and fully use its possible symmetry when choosing the
coordinates. The other configuration is obtained by just
rotating the absolute angle ω from the fixed configura-
tion.

C. Comparison with translational decoherence

In this subsection, we briefly compare the results of
the preceding section to the decoherence of the transla-

tional degrees of freedom. Recall the case of collisional
decoherence for a system’s translational degrees of free-
dom [2, 14–16], the system density matrix exponentially
decays in terms of time

∂ρS(~x, ~x′, t)

∂t
∝ −ΛρS(~x, ~x′, t). (27)

The decoherence factor Λ is given by

Λ =
N

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

∣∣∣f~x(kk̂′, kk̂) − f~x′(kk̂′, kk̂)
∣∣∣
2

, (28)

where f~x(kk̂, kk̂′) = ei
~k~xf(kk̂, kk̂′)e−i~k′~x. The above for-

mula (28) takes a similar form as the Eq. (24), where the
decoherence rate of the system density matrix depends
on the difference of the scattering amplitudes at differ-
ent values of the pointer variable. The difference of the

scattering amplitudes quantifies the distance measure in
translational or orientational space. After some opera-
tions, one can show that the above decoherence factor is
equivalent to

Λ =
N

V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

(
1 − eik(k̂−k̂′)(~x−~x′)

)∣∣∣f(kk̂, kk̂′)
∣∣∣
2

, (29)

which is the familiar form for the translational decoher-
ence rate. More details can be found in Ref. [15, 16].
In the long wavelength limit, one finds that the trans-
lational decay rate is proportional to the position differ-
ence square. Similarly, we are expecting the rotational
decoherence rate to depend on the angular distance in
corresponding orientational space, which is shown in the

following sections.
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III. DECOHERENCE DUE TO SCATTERING

OF THERMAL PHOTONS AND MASSIVE

PARTICLES

In this section, we will explore the theory of rotational
decoherence by calculating the decoherence rate for two
different sources of decoherence: thermal photons and
massive particles.

A. Thermal photon scattering

We first consider a dielectric ellipsoid immersed in a
photon-gas environment. Assuming black-body radia-
tion at temperature TE , the average occupation number
of photons with energy ~ck is given by the Planck dis-
tribution, thus the probability distribution of k with N
photons in volume V is

µ(k) =
V

N

2

exp( ~ck
kBTE

) − 1
, (30)

where c is the speed of light. To get the decoherence
rate, a key task is to evaluate the scattering amplitude
difference. For a dielectric object, the cross section is
determined by the scattered radiation from the induced
dipole. Detailed discussion can be found in Ref. [23]. If

we have an incoming field ~Einc = ~ξE exp(−ikk̂ · ~r) with

a polarization vector ~ξ, the far field approximation gives
a scattering amplitude

f(kk̂′, kk̂) =
k2

4πǫ0E
~ξ′ · ~p, (31)

where ~ξ′ is the polarization of the outgoing radiation,
and ~p is the induced dipole moment. The induced dipole
moment is given by

~p = ¯̄αΩ · ~Einc, (32)

where ¯̄αΩ is the polarizability of the ellipsoid with con-
figuration Ω = (α, γ, β). According to Eq. (26), we can
always choose a configuration with the semi-axis of the
ellipsoid aligned with the coordinate axis, such that the
polarizability is diagonal

¯̄α0 =




αx 0 0
0 αy 0
0 0 αz


 , (33)

where the subscript means the Euler angles are zero for
this situation. Then the polarizability with any configu-
ration can be easily derived through the following rota-
tion

¯̄αΩ′ = R†(Ω′)¯̄α0R(Ω′). (34)

Now we can calculate the difference of the scattering am-
plitudes in Eq. (26). Through combining the Eq. (31),
(32), (33) and (34), the integral becomes

Λ =
N

2V

∫
dkk2µ(k)

~k

m

∫∫
d2k̂d2k̂′

k4

(4πǫ0)2

∣∣∣~ξ′ · (¯̄α0 − ¯̄αΩ′ ) · ~ξ
∣∣∣
2

, (35)

where ~k
m = c. In order to evaluate the above integral, we

should first average over the polarization direction of the
incoming and outgoing field. The procedure is simplified
by adopting the following useful identity

∑

λ

ξ
(λ)
i ξ

(λ)
j = δij − k̂i · k̂j , (36)

where λ is the polarization index and {~ξ(1), ~ξ(2), k̂} form
a orthogonal basis set. Including the distribution given
by Eq. (30), the integral gives the final result

Λ = 6!
c

36ǫ20

(
kBTE

~c

)7

ζ(7) ∗  L, (37)

where

ζ(n) =
1

(n− 1)!

∫ ∞

0

dχ
χn−1

eχ − 1

is the Riemann ζ-function and ζ(7) ≃ 1.00835, c is the
speed of light, and the other parameters are




 L =A2a1 + B2a2 + C2a3 + ABa4 + ACa5 −BCa6,

A =αx − αy,

B =αx − αz,

C =αy − αz,

a1 =3 − 3 cos(2α) cos(2γ) − cos(2α) cos(2β) cos(2γ)

+ 4 cosβ sin(2α) sin(2γ),

a2 =a3 = 2 − cos(2β),

a4 =a5 = 2 cos(2α) sin2 β + 2 cos(2γ) sin2 β,

a6 =2 cos(2β).

(38)
In this expression, the polarizabilities αx, αy, and αz

should not be confused with the Euler angle α inside the
trigonometric functions. The above equation gives the
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general expression for the decoherence rate of a dielec-
tric ellipsoid, which depends on the Euler angles and the
components of polarizability. This expression gives  L = 0
when all angles are zero as befitting the requirement that
decoherence leaves the diagonal elements of the density
matrix unchanged.

If the ellipsoid is cylindrically symmetric, the polariz-
ability components αx = αy . In this case, only one angle
dependence is expected in the decoherence rate, and the
result emerges from the general expression. Consider a z
axis cylindrical symmetrical ellipsoid, we have αx = αy.
The above result can be reduced to

Λ = 6!
2c

9ǫ20

(
kBTE

~c

)7

ζ(7)(αx − αz)2 sin2 β, (39)

where β is the difference in angle between the two ori-
entations. First, we see that the decoherence rate only
depends on the angular difference between the two ori-
entations; the decay rate depends on the sine square of
the difference in angles, and it will get its maximal when
β = π/2. This is reasonable because, as β increases,
the configuration begins to repeat itself when β becomes
larger than π/2. Second, the decoherence rate strongly
depends on the temperature. Increasing the temperature
will greatly suppress quantum coherence. Also, we find
that the temperature dependence for rotational decoher-
ence is two powers lower in TE than that for center of
mass decoherence [2]. Third, if we totally symmetrize
the system by setting αx = αy = αz, the orientational
decoherence rate will equal to zero because the photon
scattering can not distinguish the rotational state of a
sphere.

For a specific example, we consider an ellipsoidal nano-
diamond, with the size about 100nm. The nano-diamond
shape typically is not elliptical but the following is an es-
timate and in the long wavelength limit the precise shape
isn’t important. In the evaluation, we pick 50nm and
75nm respectively as the short and long half axis of the
nano-diamond, which gives ellipticity e = 0.75. The po-
larizability satisfies [24]

αi ∼ ǫ0V
ǫd − ǫ0

ǫ0 + Li(ǫd − ǫ0)
, (40)

where ǫd ∼ 6ǫ0 and ǫ0 are the diamond, vacuum dielec-
tric constant respectively, and V is the volume of the
diamond. Li, where the index (i = x, y, z), is determined
by the ellipticity of the nano-diamond. For a ellipsoidal
diamond with ellipticity e = 0.75, one can get Lz ∼ 0.23,
and Lx = Ly ∼ 0.38. Thus, the decoherence rate is ap-

proximated by Λ ∼ 3.2 × 10−14(TE

K )7 sin2 β (1/s).
Refer to the translational degrees of freedom [21], the

decoherence rate is given by

L = 8!
1

2π3
V 2c(

ǫd − ǫ0
ǫd + 2ǫ0

)2(
kBTE

~c
)9ζ(9)∆x2, (41)

where ζ(9) = 1.002 and V is the volume of the system
particle. It is obvious that the ratio of rotational deco-

herence rate to translational decoherence rate is propor-
tional to ( ~c

kBTEr )2 ∼ 1
(kthr)2

≫ 1, where kth is a thermal

photon wave number. In order to roughly compare the
rotational and translational decoherence rates, we also
pick a nano-diamond with a radius r ∼ 50nm. The
spacial separation is chosen ∆x = r sinβ, which equals
to the ”distance” the tip of the ellipsoid move. Thus,
the translational decoherence rate is approximated by
L = 1.5 × 10−23(TE

K )9 sin2 β (1/s).
The following table shows the rotational (1/Λ) and

translational (1/L ) decoherence time scales for several
temperatures. First, one can see that the coherence time
drops dramatically as the temperature grows from a cold
environment to room temperature. Second, for the same
temperature, the translational coherence time is much
longer than that for rotational degrees of freedom. A
simple reason is that, when a nano-diamond is moved a
distance x having fixed orientation, the scattering hardly
changes because the dielectric polarizability stays the
same. However, if we rotate the nano-diamond, the pat-
tern of scattering changes dramatically due to the change
of the polarizability. Therefore, it is easier to entangle
photons with rotations than with translations.

TABLE I. Estimates of the rotational (1/Λ) and translational
(1/L ) decoherence time for different temperatures. The an-
glular separation β = π/20.

Temperature (K) Rotation (sec) Translation (sec)

3K 1011 1020

50K 103 109

100K 10 106

200K 10−1 103

300K 10−3 102

At last, it is worth mentioning that rotational deco-
herence is present whenever the different axes have dif-
ferent polarizabilities. A spherical birefringent, dielectric
will have different polarizabilities αi in different direc-
tions, leading to a non-zero decoherence rate in Eq. (39).
Thus, birefringence can been used to control nanoparti-
cles [25, 26] but will also lead to rotational decoherence
from the asymmetrically scattered photons as discussed
in this section.

B. Massive particle scattering

In this subsection, we will consider massive parti-
cles as the source of decoherence in an ellipsoidal sys-
tem. These types of massive particles typically have a
very short de Broglie wavelength, for example, the O2

molecule at room temperature has a de Broglie wave-
length λd ∼ 10−11m. The size of a system, such as a
nano-diamond or dust particles, is much larger than λd,
which trivially indicates that one single scattering could
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carry away a maximum orientational information. How-
ever, as pointed out in Ref. [2, 15], it is necessary to de-
termine the lower-bound of the decoherence rate. So we
still employ the long wave approximation in the following
evaluation. The massive particles are assumed to be in
thermal equilibrium which gives the Maxwell-Boltzmann
distribution

µ(k) =

(
~
2

2πmkBT

)3/2

exp(−
~
2k2

2mkBT
). (42)

Next, we will adopt the Born approximation to evaluate
the scattering amplitude. In the Born approximation, the
scattering amplitude is given by the following formula

f(~k′, ~k) = −
m

2π~2

∫
d3~r exp

{
− i(~k′−~k)~r

}
∗V (~r), (43)

in which V (~r) is the potential of the system. In a real sit-
uation, the potential can be very complicated. Here, we
consider a cylindrical symmetric ellipsoid which is mod-
eled by the following potential

V (~r) = D†(Ω)V0(~r)D(Ω), (44)

where V0(~r) = V0 exp
{
− a(x2 + y2) − bz2

}
, with its

symmetric axis placed at the z direction. The parameters
a and b are positive and unequal. Due to the cylindrical
symmetry, two Euler angles are enough to specify the
orientation. The symmetric axis of the potential V (~r)
is in any direction determined by the Euler angles. We
first calculate the scattering amplitude Eq. (43) with
the above potential V (~r). A convenient way to do the
integral is in Cartesian coordinates. We first perform a

coordinate rotation O(x, y, z) → Õ(x̃, ỹ, z̃) to get V (~r) →

Ṽ (~r), such that the symmetric axis of the potential Ṽ (~r)
is aligned with the z̃ axis, then calculate the integral in

the Õ coordinate. At last, the final scattering amplitude
is obtained by rotating the integral result back to the
original coordinate O. Finally, the scattering amplitude
is given by

fα,β(~k′, ~k) =
mV0

2π~2
π

a

√
π

b
exp

{
−

∆̃kx
2

4a
−

∆̃ky
2

4a
−

∆̃kz
2

4b

}
,

(45)

where the vectors
−→
∆̃k = (∆̃kx, ∆̃ky , ∆̃kz) and

−→
∆k =

(∆kx,∆ky ,∆kz) satisfy
−→
∆̃k = R−1

y (β)R−1
z (α)

−→
∆k, and

∆ki = k′i−ki, ∆̃ki = k̃′i−k̃i, (i = x, y, z). In the following
evaluation, we can Taylor expand Eq. (45) and keep the
first order term in the long wavelength limit. Substitute
Eq. (42) and Eq. (45) into Eq. (26), we get

Λ =
32π

15~8
N/V

√
2πm7(kbT )5

(a− b)2V 2
0

a4b3
sin2 β. (46)

First, we see that the decoherence rate only depends on
the polar angle, which specifies the angle difference for

the current situation. Second, the parameter
(a−b)2V 2

0

a4b3

is determined by the size and geometry of the system.
When we set a = b, the system becomes spherically
symmetric, which reduces the decoherence rate to zero.
Moreover, the rate has a dependence on the two and a
half power of the temperature, which is one power higher
than that for the case of center of mass decoherence
[2]. At last, the rate is also proportional to environment
particle density N/V , which is quite reasonable because
higher density increases the scattering rate.

IV. CONCLUSION

Decoherence, since the early 80s, has been used to
study a vast array of phenomena ranging from micro-
scopic to cosmological scales [27]. Much effort has been
devoted to obtain the pointer states of a given master
equation, which is important in establishing the quan-
tum to classical transition. Based on a scattering model
[15, 16], the decoherence of a mesoscopic system is widely
studied for the center of mass motion, where the environ-
mentally distinguished states become exponentially local-
ized wave packets [2, 15].

In this paper, we show that the same decoherence effect
holds for a mesoscopic quantum system with rotational
degrees of freedom. We developed the equations that
describe rotational decoherence due to random collisons
when a mesoscopic system interacts with an external en-
vironment. An environment consisting of a photon gas or
massive particles is able to exponentially localize the ro-
tational state, with the decoherence rate proportional to
the difference of rotational configurations. Interestingly,
the decay rate has a temperature dependence that is dif-
ferent from that for translational decoherence. The rota-
tional decoherence due to photons seems to be faster than
translational decoherence by a factor of 1/(kthr)

2 ≫ 1,
where kth is a thermal photon wave number and r is the
particle size.

The study of rotational decoherence is instrumental for
the growing interests in accurate quantum control over
a system’s internal motion. As more experimental ev-
idences for mesoscopic quantum phenomena are found,
to consider the decoherence in all degrees of freedom be-
comes critical. In Ref. [28], the decoherence of center
of mass motion induced by the interaction with a sys-
tem’s own internal degrees of freedom is even suggested.
For any accurate quantum control or the manufacture of
quantum devices, it is extremely important to identify
the decoherence mechanism and the corresponding deco-
herence time. In conclusion, the study of rotational de-
coherence, together with decoherence with other degrees
of freedom, will surely contribute as a useful guidance to
future mesoscopic-scale experiments and applications.
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