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We present controlled numerical results for the ground state spectral function of the resonant
Fermi polaron in three dimensions. We establish the existence of a “dark continuum”—a region
of anomalously low spectral weight between the narrow polaron peak and the rest of the spectral
continuum. The dark continuum develops when the s-wave scattering length is of the order of the
inverse Fermi wavevector, a . 1/kF, i.e. in the absence of a small interaction-related parameter
when the spectral weight is not expected to feature a near perfect gap structure after the polaron
peak.
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Ultracold atomic fermions are a versatile and pow-
erful tool to study quantum phenomena in many-body
systems. Excellent experimental control and tunability
of fermionic mixtures not only provide insight into the
physics of such complex systems as electrons in materi-
als or nuclear matter, but also enable a direct realization
of fundamental quantum mechanical models. The key
observation here is that short-range pairwise interactions
near a broad Feshbach resonance [1] are universally char-
acterized by a single dimensionless parameter kFa, where
kF is the Fermi wavevector and a the s-wave scattering
length, with kFa = ∞ corresponding to the so-called uni-
tary limit.

An important system realized in this way is the reso-
nant Fermi polaron—a spin-down fermion (impurity) in
a sea of spin-up fermions [2, 3] (here we consider three
dimensions and equal mass m). As a limiting case, it
is central for understanding properties of strongly imbal-
anced Fermi mixtures. It is also the archetypal example
of the dynamic impurity problem featuring strong renor-
malization of quasiparticle parameters, including changes
of fundamental quantum numbers and statistics. At low
temperature used in ultracold atom experiments the spin-
up subsystem can be regarded as non-interacting, while
the impurity gets dressed with particle-hole excitations
from the Fermi sea. For sufficiently strong interactions,
kFa ≤ (kFa)c = 1.11(2) [4–8], a molecular bound state
forms between the impurity and one spin-up fermion from
the environment.

Most theoretical studies of the Fermi polaron concen-
trate on computing its ground state energy Ep, effective
mass, and quasiparticle residue Z (modulus square of the
overlap between the non-interacting and exact ground
state wavefunctions) [4, 5, 9–16]. Experiments, on the
other hand, probe the spectral function using radiofre-
quency (rf) and photoemission spectroscopy [17–20]. The
quantities of interest are then extracted from the mea-
sured spectrum; for instance, Ep and Z are given by
the frequency and spectral weight of the lowest-frequency
sharp peak [17]. So far experiments have not yet resolved

all the details of the polaron spectral function.
Approximate calculations of the polaron spectral func-

tion [21–24], which lack control in the absence of a small
parameter, report an interval of low spectral weight im-
mediately after the polaron peak, if kFa . 1. Since, kine-
matically, there is no restriction on the energy of excited
states, the suppressed spectral weight can only be due to
anomalously small matrix elements. This is highly sur-
prising given that the quasiparticle residue remains large
at kFa . 1. Only deep in the molecule regime (kFa ≪ 1)
would a near-perfect spectral gap emerge naturally.
In this Rapid Communication, we present controlled

diagrammatic Monte Carlo (DiagMC) results for the po-
laron Green’s function, G↓, and its spectral density, A↓,
at zero momentum, see Eq. (2). The latter is obtained
by the method of Stochastic Optimization with Consis-
tent Constraints (SOCC) [25]. We take particular care
to establish what features of the spectrum can be recov-
ered reliably and what information is inaccessible. Our
results show that the interval of anomalously low spectral
weight (“dark continuum”) is indeed an unusual physical
property of the spectrum.
The simplest effective Hamiltonian of the system reads

(~ = 1) [3]:

H =
∑

k,σ=↑,↓

ǫkσc
†
kσckσ +

+
∑

k,k′,q

g0 c
†

k+q/2,↑c
†

−k+q/2,↓c−k′+q/2,↓ck′+q/2,↑ . (1)

We use standard notation for fermionic creation and
annihilation operators at momentum k and spin σ.
The kinetic energy is ǫkσ = k2/2m − µσ, where
µ↑ = εF = k2F/2m at zero temperature, and µ↓ < −εF
is an auxiliary control parameter. In what follows we
use εF as the unit of energy. The resonant regime cor-
responds to the zero-range limit, when the (vanishing)
attractive coupling g0 together with the (diverging) ul-
traviolet cutoff result in a constant value of the s-wave
scattering length a via an appropriate regularization [26].
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Diagrammatically, this limit is reached by replacing bare
interaction vertices with resonant T-matrix propagators,
which are based on the sum of ladder diagrams. The
resulting diagrammatic series is then sampled with Di-
agMC [4, 5].
For polaron problems formulated in imaginary time τ

the diagrammatic series converge at any fixed τ due to
the explicit time ordering of interaction vertices, which
leads to the τ2n/(2n)! scaling for the contribution of an
individual diagram of order n, where n is the number
of interaction propagators in a diagram. This scaling
overcomes the factorial growth in the number of dia-
grams. Series convergence is further accelerated by the
fact that diagrams have different sign, which leads to
strong cancellations of high-order diagrams and reduces
their combined contribution [27]. Nevertheless, compu-
tational complexity does not allow us to sample arbitrar-
ily high orders, and for a controlled solution a systematic
extrapolation to the infinite diagram-order limit is neces-
sary. Here we use Abelian resummation that has already
been successfully applied to the polaron problem [15].
The resulting relative error of the polaron Green’s func-
tion is O(10−7−10−9) at τ close to zero, O(10−4−10−3)
around τ = 1/εF, and a few percent at the largest τ
considered.
The relation between G↓(k, τ) = −θ(τ)〈ck↓(τ)c

†
k↓(0)〉,

where ck↓(τ) = eHτ ck↓e
−Hτ and the average is over the

ground state of the system, and A↓(k, ω) is standard for
linear response theory,

−G↓(k, τ) =

∫ ∞

0

A↓(k, ω)e
−ωτdω . (2)

The polaron ground state energy, Ep, and Z-factor con-
trol the asymptotic imaginary-time decay of the impurity
Green’s function at zero momentum,

−G↓(0, τ → ∞) → Ze−(Ep−µ↓)τ . (3)

This implies that the spectral function starts with a sharp
peak, Zδ(ω+µ↓−Ep). Deep in the weak-polaron regime
kFa ≫ (kFa)c the Z-factor approaches unity, mean-
ing that the spectral weight is nearly exhausted by the
ground state peak. The particle-hole continuum emerges
at higher frequencies and carries the rest of the spectral
weight. As there is no kinematic restriction on the al-
lowed energy of excited states, the continuous spectrum
starts right after Ep − µ↓. Its functional form right after
the polaron peak is expected to be quadratic in frequency
[17] (starting at zero spectral density) with gradual accu-
mulation of the spectral weight towards higher frequen-
cies.
The SOCC method, described in detail in Ref. [25],

produces a smooth solution for the spectrum. But it also
allows one to apply additional constraints to explore to
what degree the spectrum A↓(0, ω) can be altered with-
out compromising the accuracy of the DiagMC data for
G↓(0, τ). Our philosophy is that the analysis of poten-
tial spectral features hidden in the smooth solution is as
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FIG. 1. Spectral function in the molecule regime. The red
solid lines show the maximally smooth solution for A↓(0, ω)
without a δ-function ansatz. The polaron peak is consistent
with a δ-function (black short-dashed lines) for all values of
kFa studied. While the smoothest possible solution for the
second peak is broad, on the molecule side there exist solu-
tions consistent with a narrow peak, shown by the blue dashed
lines.
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FIG. 2. Spectral function in the polaron regime, using an
explicit δ-function ansatz for the ground state peak. As ex-
pected, for kFa ≫ (kFa)c the continuous spectrum starts right
after the peak, with vanishing spectral density on the ap-
proach to the peak, consistent with a vanishing density of
states. At sufficiently small kFa, the smoothest possible solu-
tion (red solid lines) for the continuous spectrum is a broad
peak with preceding plateau. Within the accuracy of the in-
put data, this structure can be split into two separate peaks
(blue dashed lines). The arrow indicates the highest frequency
after which the spectrum is incompatible with zero.
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important as the solution itself. If a feature cannot be
changed through additional constraints, the solution is
considered robust and its error bars are justified. Other-
wise, the feature cannot be reliably resolved.

Figures 1 and 2 show our results for the spectral func-
tion in the molecule and polaron regimes, respectively.
For all the studied values of kFa, we observe asymp-
totic exponential decay of the impurity Green’s func-
tion with Z-factors gradually decreasing as one moves
deeper into the molecule regime. This means that the
polaron remains a well-defined quasiparticle even well be-
low the transition point. At (kFa) ≥ (kFa)c, when the
polaron is a stable quasiparticle, we use the SOCC pro-
tocol with a δ-function ansatz for the polaron peak. At
(kFa) < (kFa)c, we make no ansatz for the polaron peak,
which then acquires a finite width and height determined
by the frequency resolution. As kFa is decreased, the po-
laron peak moves to lower and lower negative energies,
while the bulk of the continuous spectrum only slightly
shifts down on the ω + µ↓ ∈ (0, 1) interval, and a gap-
like region of anomalously low spectral weight develops
in between.

The positive energy peak on the molecule side, see
Fig. 1, is usually interpreted in the context of the re-
pulsive polaron state [18, 20–24, 28]. It is extremely de-
sirable to resolve the width of the peak, as the latter
can only be associated with a well-defined quasiparti-
cle if the width is much smaller than the characteristic
energy scale εF. Unfortunately, the accuracy of our in-
put data is not sufficient to achieve this goal. While the
maximally smooth solution indicates a broad peak with
width ∼ εF, the data for kFa < 1.1 is consistent also
with a much narrower solution. The latter can be found
by applying an additional “pulling” constraint, which
forces the solution to go up (or down) at any specified
point, while remaining as structureless as possible oth-
erwise [25]. Experimental measurements [20] show that
the positive frequency excitation is indeed long-lived in
the molecule regime and even on approach to unitarity.
This implies a narrow peak, which was however not seen
explicitly in the measured spectral response, apparently
due to collisional broadening. The measured energies of
the second peak agree within error bars with our results
for the pulled narrow spectrum, see Fig. 3.

On the polaron side the picture is radically different,
see Fig. 2. On approach to the transition point, the broad
continuous spectrum (the solution obtained under the
constraint of maximal smoothness) develops a shoulder
preceding the second peak. SOCC analysis reveals that
this shoulder could also correspond to a distinct peak.
For (kFa) ≤ 1.5 the broad second peak can potentially
be split into two separate peaks by applying an appro-
priate pulling constraint. The first of these two peaks is
small and, within the limits of our resolution, disappears
for kFa < 1.1. A potential double peak structure in the
polaron regime was not seen or resolved in the experi-
ment Ref. [20]. With the SOCC protocol, we establish
that our input data in the polaron regime are incom-
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FIG. 3. Second peak maximum, E2, of the pulled narrow solu-
tion in the molecule regime (blue squares) in comparison with
experiment Ref. [20] (red circles). Black crosses (connected
by dashed line to guide the eye) mark the maximal frequency
for the onset of the positive spectrum. Green triangles denote
the energy of the polaron peak, Ep.

patible with a scenario where the shoulder or the small
intermediate peak are absent, as opposed to the situa-
tion at kFa < 1.1. The highest frequency after which
the spectrum must be larger than zero is marked by an
arrow in the panels of Fig. 2 and plotted in Fig. 3. This
frequency is substantially lower than the position of the
major second peak, in contrast to what we see on the
molecule side. Deep in the polaron regime, see top left
panel of Fig. 2, the spectrum can no longer be split into
two clearly distinct peaks. The spectral weight starts
accumulating right after the polaron peak, as expected.

The region of low spectral weight between the two
peaks has been seen in variational calculations [22, 23]
and functional Renormalization Group studies [21, 24].
Our calculations confirm that it is indeed a physical ef-
fect in the 3D broad-resonance equal-mass case, not an
artifact of uncontrolled approximations. The integrated
spectral weight of this region remains anomalously low
even when a pulling constraint is applied in the SOCC
protocol attempting to maximally increase it. This struc-
ture can thus be well resolved from the input data and
the error bars are controlled.

The “dark” spectral continuum refers to few-body
states (containing a polaron or molecule plus a number of
particle-hole pairs) that are expected to get excited with
substantial probability when the impurity particle is cre-
ated, but instead remain invisible in the spectral func-
tion. In the absence of a small (or large) dimensionless
parameter at kFa ∼ 1, an a priori order-of-magnitude
estimate of the overall spectral weight associated with
this few-body continuum is that of the polaron Z-factor.
With the gradual decrease of the latter, the dark con-
tinuum states are not expected to have their integrated
spectral weight dramatically smaller than that of the sta-
ble or metastable polaron, provided kFa is not small.

To quantify the dark continuum, we establish con-
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FIG. 4. Integrated spectral weight of the dark continuum,
I2, in the units of integrated spectral weight of the polaron
peak, I1.

trolled estimates on its integrated spectral weight, see
Fig. 4. We start by determining the positions of the
two maxima in the spectral function, Ep and E2, and
the interval ∆E = E2 − Ep. Without a δ-function
ansatz, the polaron peak has a finite width due to the
frequency-resolution. We characterize its spectral weight

as I1 =
∫ Ep−µ↓+∆E/4

0
A↓(0, ω)dω, which is very close to

the value of the Z-factor. The dark continuum region is
then defined to extend from Ep−µ↓+∆E/4 to the mid-
point between the peaks, Ep − µ↓ + ∆E/2. Our choice
of intervals is rather arbitrary, but illustrates well the
orders of magnitude difference between the spectral inte-
grals of the polaron peak, I1 ≈ Z, and the dark contin-

uum, I2 =
∫ Ep−µ↓+∆E/2

Ep−µ↓+∆E/4
A↓(0, ω)dω.

In conclusion, we have presented controlled first-
principles evidence for an unusual shape of the spec-
tral function of resonant Fermi polaron. Based on the
kinematics of the problem and the absence of small pa-
rameters, one would expect to see the following features

on the molecular side kFa < (kFa)c: (i) a significant
broadening of the polaron peak due to the decay into the
molecule state for kFa ≪ (kFa)c; (ii) the spectral contin-
uum starting directly after the (broadened) polaron peak;
(iii) progressive loss of the spectral weight of the po-
laron peak to the surrounding molecule-hole continuum
as kFa decreases. Instead, essentially the opposite hap-
pens: the polaron peak stays sharp and contrasts even
stronger with the suppressed background. In particular,
this means that the spectral function alone is insufficient
to determine the molecule transition point.
The accuracy of our numerical data is sufficient

to establish the existence of the dark continuum for
kFa < (kFa)c. What we cannot reliably resolve is the
width and the structure of the higher-frequency part of
the spectral function. A substantial increase in the res-
olution of the numerical spectral analysis would require
a reduction of the error bars on the input data by at
least an order of magnitude (implying a several orders of
magnitude increase of computation time), which is not
feasible at present. Experimental measurements of the
decay rate reveal a metastable repulsive polaron state
with long lifetime even near unitarity [20]. This suggests
a very simple scenario when the spectral density is es-
sentially exhausted by two narrow quasiparticle peaks.
The results of Fig. 1 show that this picture is consis-
tent with our data at kF a ≤ 1. However, the results of
Fig. 2 clearly indicate that it fails at kFa ≥ 1.1. Here,
the higher-frequency part of the spectral function cannot
be reduced to a single narrow peak. Even if a peak is
present, there should be additional contributions to the
spectral density.
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