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Abstract

High finesse frequency combs (HFC) with large ratio of the frequency spacing to the width of the

spectral components have demonstrated remarkable results in many applications such as precision

spectroscopy and metrology. We found that low finesse frequency combs having very small ratio

of the frequency spacing to the width of the spectral components are more sensitive to the exact

resonance with absorber than HFC. Our method is based on time domain measurements reviling

oscillations of the radiation intensity after passing through an optically thick absorber. Fourier

analysis of the oscillations allows to reconstruct the spectral content of the comb. If the central

component of the incident comb is in exact resonance with the single line absorber, the contribution

of the first sideband frequency into oscillations is exactly zero. We demonstrated this technique

with gamma-photon absorption by Mössbauer nuclei providing the spectral resolution beyond the

natural broadening.

PACS numbers: 42.50.Gy, 76.80.+y
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I. INTRODUCTION

Techniques using femtosecond-laser frequency combs allow to measure extremely narrow

optical resonances with high resolution [1–4]. This is achieved by comparison of one of

the spectral components of the calibrated frequency comb with the frequency of extremely

stable laser, which is tuned in resonance with the narrow absorption line under investigation.

Broadband high-resolution X-ray frequency combs were proposed to generate by the X-ray

pulse shaping method, which imprints a comb on the excited transition with a high photon

energy by the optical-frequency comb laser driving the transition between the metastable

and excited states [5, 6]. Enabling this technique in the X-ray domain is expected to result

in wide-range applications, such as more precise tests of astrophysical models, quantum

electrodynamics, and the variability of fundamental constants.

Special kind of gamma-ray frequency combs were generated much earlier by Doppler

modulation of the radiation frequency, induced by mechanical vibration of the source or

resonant absorber [7–15]. They were observed in frequency domain and appear only if the

source and absorber were used in a couple. Contrary to the optical and X-ray combs,

discussed above, gamma-ray frequency combs do not produce sharp, short pulses in time

domain, except the cases if some additional conditions are satisfied [16, 17].

These special gamma-ray frequency combs with high finesse F ≫ 1, where F is the ratio

of the comb-tooth spacing to the tooth width, demonstrated that in many cases determina-

tion of small energy shifts between the source and absorber can be made more accurately

in time domain by transient and high-frequency modulation techniques than by conven-

tional methods in frequency domain [12, 13, 18]. In time-domain-spectroscopy technique

the gamma-ray frequency comb is transmitted through a single line absorber whose reso-

nant transition is studied. Out of resonance the phase modulation of the field, generating

the frequency comb, does not produce the modulation of the field intensity at the exit of

the absorber. If one of the comb components comes to resonance with the absorber, the

intensity of the transmitted radiation acquires oscillations. Their pattern is very sensitive

to the resonant detuning.

We have to emphasize that in gamma domain even standard spectroscopic measurements

with such a popular Mössbauer isotopes as 57Fe and 67Zn have already demonstrated ex-

tremely high frequency resolution in measurements of gravitational red-shift [19–21]. This is
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because the quality factor Q, which is the ratio of the resonance frequency to the linewidth,

is very high for these nuclei. For example, 14.4 keV transition in 57Fe has Q = 3 × 1012

and 93.3 keV resonance in 67Zn demonstrates Q = 1.8× 1015. Appropriate sources emitting

resonant or very close to resonance γ-photons with high Q are available for both nuclei.

They are 57Co for 57Fe and 67Ga for 67Zn.

Here we show that a low finesse comb (LFC) with F ≪ 1 is more sensitive to the small

resonant detuning between the fundamental of the radiation field and the absorber compared

with the high finesse comb (HFC).

II. FREQUENCY COMBS IN GAMMA DOMAIN: FREQUENCY AND TIME

DOMAIN MEASUREMENTS

The basic idea of the modulation technique in gamma-domain is that the piston-like

vibration of an absorber leads to a periodic modulation of the resonant nuclear transition

frequency with respect to the frequency of the incident photons owing to the Doppler effect.

This modulation induces coherent Raman scattering of the incident radiation in the forward

direction transforming quasi-monochromatic field into a frequency comb at the exit of the

absorber [15]. The relative amplitudes and phases of the produced spectral components are

defined by the vibration amplitude d and frequency Ω, the detuning of the central frequency

of the radiation source ωS from the resonant frequency of the absorber ωA, the linewidths

of the source ΓS and absorber ΓA, and the absorber optical depth TA.

To describe the transformation of the quasi-monochromatic radiation field into a fre-

quency comb it is convenient to consider the interaction of the field with nuclei in the

reference frame rigidly bounded to the piston-like vibrated absorber. There, nuclei ‘see’ the

quasi-monochromatic source radiation with the main frequency ωS as polychromatic radi-

ation with a set of spectral lines ωS ± nΩ (n = 0, 1, 2, ...) spaced apart at distances that

are multiples of the oscillation frequency. The intensity of the nth sideband is given by the

square of the Bessel function J2
n(a), here a = 2πd/λ is the modulation index of the field

phase ϕ(t) = a sin(Ωt) and λ is the wavelength of the radiation.

If the modulation frequency Ω is much lager than ΓS, the power spectrum of the radiation

field, seen by the absorber nuclei, demonstrates HFC (F = Ω/ΓS ≫ 1). It is observed in

many Mössbauer experiments [7–15] by transmitting the radiation field through a single line
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absorber with resonant frequency ωA. The carrier frequency of the radiation frequency of the

source ωS is changed by a constant velocity Doppler shift. The intensity of the transmitted

radiation, showing a frequency-comb Mössbauer spectrum, is described by equation

IM(ωA − ωS) =

+∞
∫

−∞

〈IS(ω)〉t0 e
−α(ωA−ω)ldω, (1)

where α(ωA−ω) is the frequency dependent absorption coefficient of the single line absorber,

l is the absorber thickness, and 〈IS(ω)〉t0 is the power spectrum of the radiation field seen by

the vibrated nuclei. Here, the power spectrum is averaged over the random time of photon

emission t0 (see Section III for details).

Frequency-domain Mössbauer spectrum is measured by counting the number of photons,

detected within long time windows of the same duration for all resonant detunings, which are

varied by changing the value of a constant velocity of the Mössbauer drive moving the source.

Time windows are not synchronized with the mechanical vibration and their duration Tw is

much longer than the oscillation period Tosc = 2π/Ω.

If F ≪ 1, the spectral components of the frequency comb, seen by the absorber nuclei,

overlap resulting in the spectrum broadening of the radiation field (see Fig. 1a). Therefore

Mössbauer spectra for LFC show only the line broadening with increase of the modulation

index a, see Fig. 1b.

If time windows of the photon-count collection are synchronized with the phase oscilla-

tions and duration of the time-windows Tw is much shorter than the oscillation period Tosc,

then one can observe time dependence of the transmitted radiation.

For HFC the number of counts N(t), proportional to the radiation intensity I(t), is

described by the equation [12, 13, 16, 18]

N(t) = N0

∞
∑

n=0

Dn cos [nΩ(t− tn)] , (2)

where N0 is the number of counts without absorber, Dn and nΩtn are the amplitude and

phase of the nth harmonic. Here, nonresonant absorption is disregarded. Recoil processes

in nuclear absorption and emission are not taken into account assuming that recoilless frac-

tion (Debye-Waller factor) is f = 1. These processes can be easily taken into account in

experimental data analysis.

If the fundamental frequency ωS of the comb coincides with the resonant frequency of

the single line absorber (ωS = ωA), then the amplitudes of the odd harmonics are zero,
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FIG. 1: a. Power spectrum of the source radiation field, seen by the vibrated absorber (normalized

to the peak intensity). b. The absorption spectrum of the field, normalized to unity. The vibration

frequency is Ω = ΓS/5. The modulation index a is 0 (solid line), 2 (dotted line), 3 (dashed line),

and 6 (dash-dotted line) in a. The modulation index a is 0 (solid line) and 6 (dotted line) in b.

The optical thickness of the absorber is Ta = α(0)l = 5.2. The linewidth of the absorber ΓA and

spectral components of the source ΓS are equal to Γ0, which is defined by the lifetime of the excited

state nucleus (141 ns).

D2m+1 = 0, where m is integer. They become nonzero for nonresonant excitation. For high

finesse combs the ratio of the amplitudes of the first and second harmonics D1/D2 is linearly

proportional to the resonant detuning ∆ = ωA−ωS if the value of the modulation index a is

not large and the resonant detuning does not exceed the linewidth (ΓA+ΓS)/2 [12, 13]. This
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dependence helps to measure the value of small resonant detuning with high accuracy [18].

For HFC the optimal value of the modulation index providing the best signal to noise ratio

is a = 1.08 when the amplitude of the first harmonic D1 takes maximum. This is because

for HFC D1 is proportional to the product of the amplitudes of zero and first components

of the comb, i.e., to J0(a)J1(a), which has global maximum when a = 1.08.

If one of the sidebands of the comb (ωS±nΩ) is in resonance with the absorber (ωS±nΩ =

ωA, n 6= 0), then time dependence of the radiation field shows large amplitude pulses of

short duration [16, 17]. High sensitivity of HFC to resonance of its central frequency with

a single line absorber and formation of short pulses if the sidebands are in resonance are

explained by the interference of the spectral components of the comb, which are changed

after passing through the absorber. In this paper we show that LFC is much more sensitive

to the resonance of the central component of the comb with the single line absorber. Such

a sensitivity can be explained by the following arguments.

Since the radiation intensity is I(t) = E(t)E∗(t), which is the product of the complex

conjugated amplitudes E(t) containing the exponential phase factor exp[iϕ(t)], the time de-

pendent phase ϕ(t) of the field amplitude does not lead to the additional time dependence of

the intensity. This fact, resulting from the simple relation eiϕ(t)e−iϕ(t) = 1, can be explained

by a particular interference of the spectral components of our specific frequency comb. For

example, only zero frequency spectral component is present in the intensity, I(t) = I0,

since all zero frequency spectral components, resulting from the products einΩte−inΩt with

n = 0,±1,±2..., are summed up with their weights as

+∞
∑

n=−∞

J2
n(a) = 1, (3)

while the first harmonic I1(t)e
iΩt is zero because the sum of the products of the contributing

spectral components of the field amplitude gives

+∞
∑

n=−∞

Jn(a)Jn−1(a) = 0. (4)

The same is true for all higher frequency components of the intensity oscillations. This fragile

balance between the spectral components of the comb is easily broken after passing through

the single line absorber. We found that for LFC the absorber of thickness l satisfying the

relation α(0)l = 1 is already capable to produce noticeable time oscillations of the intensity.
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These oscillations are also described by Eq. (2) whose coefficients can be calculated by the

method developed in [13, 16] (see details in Sec. III). In contrast to HFC (Ω ≫ ΓS), LFC

(Ω ≪ ΓS) becomes sensitive to exact resonance if effective halfwidth of the comb aΩ is nearly

equal to the width of the absorption line ΓA. Since for LFS a ≫ 1, much more spectral

components [Jn(a)Jn+1(a) with n = 0,±1, ...,±a] participate in the interference compared

with HFC. Thus, the spectral content of the intensity oscillations becomes more sensitive to

the resonant detuning.

III. THEORETICAL MODEL

The propagation of gamma radiation through a resonant Mössbauer medium vibrating

with frequency Ω may be treated classically [22]. In this approach the radiation field from

the source nucleus after passing through a small diaphragm is approximated as a plane

wave propagating along the direction x. In the coordinate system rigidly bounded to the

absorbing sample, the field, seen by the absorber nuclei, is described by

ES(t− t0) ∝ θ(t− t0)e
−(iωS+Γ0/2)(t−t0)+ikx+iϕ(t), (5)

where ωS and k are the carrier frequency and the wave number of the radiation field, 1/Γ0 is

the lifetime of the excited state of the emitting source nucleus, t0 is the instant of time when

the excited state is formed, Θ(t − t0) is the Heaviside step-function, ϕ(t) = 2πxd(t)/λ =

a sin(Ωt) is a time dependent phase of the field due to a piston-like periodical displacement

of the absorber with respect to the source, xd(t), and λ is the radiation wavelength.

It can be easily shown that radiation intensity at the exit of the vibrating absorber is the

same if the source is vibrated instead of absorber. For simplicity we consider the vibration of

the source with respect to the absorber and not vice versa, since both cases are equivalent.

Then the radiation field from the source can be expressed as follows

ES(t− t0) = EC(t− t0)e
−iωS(t−t0)+ikx

+∞
∑

n=−∞

Jn(a)e
inΩt, (6)

where EC(t− t0) = E0θ(t− t0)e
−Γ0(t−t0)/2 is the common part of the field components, E0 is

the field amplitude, and Jn(a) is the Bessel function of the nth order. The Fourier transform

of this field is

ES(ω) = E0

+∞
∑

n=−∞

Jn(a)e
inΩt0

Γ0/2 + i(ωS − nΩ− ω)
, (7)
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where for shortening of notations the exponential factor with ikx is omitted. From this ex-

pression, it is clear that the vibrating absorber ‘sees’ the incident radiation as an equidistant

frequency comb with spectral components ωS − nΩ whose amplitudes are proportional to

the Bessel function Jn(a). Below, for briefness we use the shortened notation Jn(a) = Jn.

According to Eq. (5) the intensity of the field

I(t− t0) = |ES(t− t0)|2 = I0θ(t− t0)e
−Γ0(t−t0), (8)

where I0 = E2
0 , does not oscillate in time. The same result must be obtained from Eq. (6),

which gives

|ES(t− t0)|2 = |EC(t− t0)|2
+∞
∑

n=−∞

+∞
∑

m=−∞

JnJme
i(n−m)Ωt, (9)

where |EC(t− t0)|2 = I0(t− t0) according to the definition. Therefore, the identity

+∞
∑

n=−∞

+∞
∑

m=−∞

JnJme
i(n−m)Ωt = 1 (10)

is to be satisfied. It is consistent with the well known relations between the Bessel functions

(see, for example, [23]). They are

+∞
∑

n=−∞

J2
n = J2

0 + 2

+∞
∑

n=1

J2
n = 1 (11)

for zero harmonic (n = m), which is the only harmonic giving nonzero contribution into the

radiation intensity in Eq. (9) due to Eq. (10), and

+∞
∑

n=−∞

JnJn+2 = −J2
1 + 2

+∞
∑

n=0

JnJn+2 = 0, (12)

for the second harmonic (−2Ω) with m = n+ 2 in Eq. (9), and

+∞
∑

n=−∞

JnJn+4 = J2
2 − 2J1J3 + 2

+∞
∑

n=0

JnJn+4 = 0, (13)

for the fourth harmonic (−4Ω) with m = n + 4. It can be easily shown that all even

harmonics do not contribute since their amplitudes are zero. As regards the odd harmonics,

they have zero amplitudes because of the cancelation of the symmetric pairs in their content

as, for example, for the first harmonic (−Ω) with m = n + 1,

+∞
∑

n=−∞

JnJn+1 = (J0J1 + J−1J0) + (J1J2 + J−2J−1) + ... = 0, (14)
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and the third harmonic (−3Ω) with m = n+ 3,

+∞
∑

n=−∞

JnJn+3 = (J0J3 + J−3J0) + (J1J4 + J−4J−1) + ... = 0. (15)

Here the property of the Bessel function, J−n = (−1)nJn (where n is positive), is taken into

account.

If such a field with balanced amplitudes and phases of its harmonics, Eq. (6), passes

through a thick resonant absorber, one may expect that this balance will be broken and the

intensity of the field at the exit of the absorber will be oscillating.

A. The transformation of the radiation field after passing through a resonant

absorber

The Fourier transform of the radiation field is changed at the exit of the resonant absorber

as (see [13, 16])

Eout(ω) = E0

+∞
∑

n=−∞

Jn exp
[

inΩt0 − b
ΓA/2+i(ωA−ω)

]

Γ0/2 + i(ωS − nΩ− ω)
, (16)

where ωA and ΓA are the frequency and linewidth of the absorber, b = TAΓ0/4 is the

parameter depending on the effective thickness of the absorber TA = fnAσ, f is the Debye-

Waller factor, nA is the number of 57Fe nuclei per unit area of the absorber, and σ is the

resonance absorption cross section. The source linewidth ΓS can be different from Γ0 due to

the contribution of the environment of the emitting nucleus in the source. In this case Γ0

can be simply substituted by ΓS in Eq. (16).

Time dependence of the amplitude of the output radiation field is found by inverse Fourier

transformation

Eout(t− t0) =
1

2π

∫ +∞

−∞

Eout(ω)e
−iω(t−t0)dω. (17)

Then, the intensity of the field is

Iout(t− t0) =
1

(2π)2

∫ +∞

−∞

dω1

∫ +∞

−∞

dω2Eout(ω1)E
∗

out(ω2)e
i(ω2−ω1)(t−t0). (18)

In time domain experiments the phase of the vibrations is fixed but emission time of gamma-

photons is random. Therefore, the observed radiation intensity is averaged over t0

〈Iout(t− t0)〉t0 = lim
T→∞

∫ t

−T

Iout(t− t0)dt0. (19)
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Calculation of this integral gives for the number of gamma-photon counts at the exit of the

absorber, Nout(t) ∝ 〈Iout(t− t0)〉t0 , the following expression (see [16])

Nout(t)/N0 =

+∞
∑

n,m=−∞

JnJme
i(n−m)ΩtBnm(∆), (20)

where N0 is the number of counts far from resonance and

Bnm(∆) =
ΓS

2π

∫ +∞

−∞

e
−

b
ΓA/2+i(∆+nΩ−ω)

−
b

ΓA/2−i(∆+mΩ−ω)

(ΓS/2)2 + ω2
dω, (21)

where ∆ = ωA − ωS is the resonance detuning of the source and absorber. In derivation of

Eq. (21) the substitution ω′ = ω − ωS + nΩ is used in Eqs. (16) and (18). Then the prime

is omitted.

B. Intensity oscillations

To analyze the oscillations of the radiation intensity after passing through the vibrated

absorber it is convenient to group the terms in Eq. (20) as follows

Nout(t)/N0 = I0(∆) + 2Re

+∞
∑

n=1

In(∆)e−inΩt, (22)

where In(∆) is the nth-harmonic amplitude of the radiation intensity oscillations at the

exit of the absorber. The amplitudes of the harmonics are defined by the products of the

radiation amplitudes of the frequency comb (16), transformed by the absorber. For example,

the amplitude of zero harmonic is

I0(∆) = J2
0B00(∆) +

+∞
∑

n=1

J2
n

[

Bnn(∆) +B(−n)(−n)(∆)
]

, (23)

where the coefficients B00(∆), Bnn(∆), and B(−n)(−n)(∆) are transmitted intensities of 0, n,

and −n components of the incident comb (6). They are

B00(∆) =
ΓS

2π

∫ +∞

−∞

e
−

bΓA
(ΓA/2)2+(∆−ω)2

(ΓS/2)2 + ω2
dω, (24)

B(±n)(±n)(∆) =
ΓS

2π

∫ +∞

−∞

e
−

bΓA
(ΓA/2)2+(∆±nΩ−ω)2

(ΓS/2)2 + ω2
dω. (25)

Thus, I0(∆) is just the sum of the transmitted intensities of all spectral components of the

frequency comb (6).
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The first harmonic

I1(∆) =

+∞
∑

n=0

JnJn+1

[

Bn(n+1)(∆)−B(−n−1)(−n)(∆)
]

, (26)

contains the difference of two terms originating from the interference of two neighboring

components of the frequency comb ±n and ±(n + 1). They are red (for sign +) and blue

(for sign −) detuned from resonance. This difference is

Bn(n+1)(∆)− B(−n−1)(−n)(∆) =

ΓS

2π

∫ +∞

−∞

e
−

b
ΓA/2+i(∆+nΩ−ω)

−
b

ΓA/2−i[∆+(n+1)Ω−ω] − e
−

b
ΓA/2+i[∆−(n+1)Ω−ω]

−
b

ΓA/2−i(∆−nΩ−ω)

(ΓS/2)2 + ω2
dω. (27)

It is easy to show (by substitution ω = −ω′ in the second exponent) that the difference of

the interference terms is zero if ∆ = 0.

The second and third harmonics are described by equations

I2(∆) = −J2
1B−11(∆) +

+∞
∑

n=0

JnJn+2

[

Bn(n+2)(∆) +B(−n−2)(−n)(∆)
]

, (28)

I3(∆) = −J1J2[B−12(∆)−B−21(∆)] +
+∞
∑

n=0

JnJn+3

[

Bn(n+3)(∆)− B(−n−3)(−n)(∆)
]

, (29)

which contain the interference terms of the frequency-comb amplitudes with m− n = 2 for

I2(∆) and m− n = 3 for I3(∆) [see Eq. (21)]. The third harmonic is zero if ∆ = 0 because

it contains the difference of the interference terms, while the second harmonic is not zero

since it is the sum of the interference terms.

The coefficients Dn in Eq. (2), describing the number of count oscillations in time,

are related to the harmonics In(∆) as D0 = I0(∆), D2n = 2 |I2n(∆)|, and D2n+1 =

2S(∆) |I2n+1(∆)|, where S(∆) = ∆/ |∆|. The phases of the harmonics are defined as

Ωtn = arctan [Im In(∆)/Re In(∆)].

C. High finesse frequency comb

If the modulation frequency is much larger than the absorption linewidth (Ω ≫ ΓA) and

the central frequency of the comb ωS is close to the resonant frequency of the absorber ωA

(|∆| < ΓA), then only the central frequency of the comb is changed after passing through a

thick absorber. Therefore, one may expect that in Eq. (20) only the components B00, B0n
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and Bn0 become different from 1, while others are almost unity since for them the exponents

in the integral (21) are unity if the condition nΩ ≫ b is satisfied. In this case we can use

approximate equations

I0(∆) ≈ 1− J2
0 [1−B00(∆)], (30)

I1(∆) ≈ J0J1 [B01(∆)−B−10(∆)] , (31)

I2(∆) ≈ J0J2 [B02(∆) +B−20(∆)− 2] , (32)

which are derived taking into account the relations (11), (12), and (13). The product

J0J1 = J0(a)J1(a) in Eq. (31) has global maximum when the modulation index is a = 1.08.

Therefore, for nonresonant excitation (∆ 6= 0 and |∆| < ΓA) the first harmonic of the

intensity oscillations has maximum amplitude for this value of the modulation index. Since

it is not large, we may approximate the intensity oscillations taking into account only three

harmonics n = 0, 1, 2 in Eq. (22).

However, to achieve high accuracy we have to take into account also the contribution of

two spectral components of the comb, neighboring the resonant component (see [17]). This

is because far wings of the Lorentzian line give small, but noticable contribution. In our case,

when the central component of the comb is in resonance, these nearest components are +Ω

and −Ω. Then, for example, I0(∆) is modified due to this small nonresonant contribution

as

I0(∆) = 1− J2
0 [1−B00(∆)]− J2

1 [2−B11(∆)− B−1−1(∆)]. (33)

The value of the correction due to the additional terms is about 2% if Ω = 10Γ0, ∆ = 0.2Γ0,

and TA = 5.

In conclusion of this subsection, we show in Fig. 2 two examples of the intensity oscilla-

tions (not approximated) for ΓA = ΓS = Γ0 = 1.13 MHz, TA = 5.2, Ω = 10 MHz, a = 1.08,

and ∆ = ±200 kHz. The dependence of D1/D2 on ∆ (not approximated) is shown in Fig.

5.

D. Low finesse comb

For the low finesse comb the modulation frequency is much smaller than the absorption

linewidth (Ω ≪ ΓA). If the central frequency of the comb ωS is close to the resonant

frequency of the absorber ωA (|∆| < ΓA), then many spectral components of the comb are
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FIG. 2: Oscillations of the intensity of high finesse frequency comb, transmitted through the

absorber. Phase modulation frequency is Ω = 10 MHz. Intensity oscillations are shown by solid

lines for the detuning from resonance ∆ = −200 kHz (a) and ∆ = 200 kHz (b). Dotted line shows

the level of I0(∆). The value of the parameters are given in the text.

changed after passing through a thick absorber. Therefore, to describe the oscillation of the

output radiation intensity we have to take many terms in the equations (23), (26), (28), and

(29) for In(∆), n = 0, 1, 2, 3.

Intuitively, one may expect that LFC sensitivity is maximal if all noticeable components

of the comb are modified after passing through the absorber. This takes place if the product

aΩ, which specifies the total spectral width of the comb or the frequency range, covered by

the comb components with noticeable amplitudes, is close to the width of the absorption

line. Mathematically, this expectation can be verified by plotting the amplitude D1 =

2S(∆) |I1(∆)| versus modulation index a for a fixed values of the modulation frequency Ω
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FIG. 3: The dependence of the first-harmonic amplitude D1 of the intensity oscillations on the

modulation index a. The modulation frequency and resonant detuning are Ω = ∆ = 200 kHz.

and resonant detuning ∆. Figure 3 shows the dependence of D1 on the modulation index a

for Ω = ∆ = 200 kHz and TA = 5.2. The amplitude D1 takes maximum value when a = 7.

For this value the product aΩ is close to the linewidth of the absorber ΓA.

IV. EXPERIMENT

We demonstrated LFC sensitivity in the experiments with the radiation source, which is

a radioactive 57Co incorporated into rhodium matrix. The source emits 14.4 keV photons

with the spectral width ΓS = 1.13 MHz, which is mainly defined by the lifetime of 14.4

keV excited state of 57Fe, the intermediate state in the cascade decay of 57Co to the ground

state 57Fe. The absorber is a 25-µm-thick stainless-steel foil with a natural abundance (∼
2%) of 57Fe. Optical depth of the absorber is TA = α(0)l = 5.18. The stainless-steel foil is

glued on the polyvinylidene fluoride piezo-transducer that transforms the sinusoidal signal

from radio-frequency generator into the uniform vibration of the foil. The frequency and

amplitude of the sinusoidal voltage were adjusted to have Ω = 200 kHz and a = 5.7, so

that relation aΩ ≈ ΓA was satisfied. The source is attached to the holder of the Mössbauer
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transducer causing Doppler shift of the radiation field to tune the source in resonance or out

of resonance with the single line absorber. The time measurements were performed by means

of the time–amplitude converter (TAC) working in the start–stop mode. The start pulses

for the converter were synchronized with radio-frequency generator and the stop pulses were

formed from the signal of 14.4 keV gamma counter at the instant of photon detection time.

A detailed description of the experimental setup is given in [16, 17].

The experimental results demonstrating the oscillations of the radiation intensity in time

for different values of the resonant detunings ∆ are shown in Fig. 4. Time dependence of

the number of counts is fitted to Eq. (2) (see details in Sec. III). At exact resonance (∆ = 0)

only even harmonics are not zero. Time delay of the second harmonic with respect to the

vibration phase is t2 = 61 ns. This delay is caused by the contribution of dispersion, which

produces a phase shift 2Ωt2. The Fourier analysis of the oscillations allows to reconstruct the

dependence of the ratio D1/D2 on ∆, which is shown in Fig. 5, left panel. This dependence

is compared with that for HFC, generated by the vibration with high frequency Ω = 10

MHz and optimal value of the modulation index a = 1.08. We see that LFC is at least two

times more sensitive to resonance than HFC since the slope of the dependence of D1/D2 on

∆ is two times steeper.

Figure 5, right panel, shows the Fourier content of the oscillations of the radiation in-

tensity for LFC when ∆ = 0.3Γ0. The spectrum of these oscillations contains noticable

contributions of the first, second, and third harmonics. The width of these spectral compo-

nents is defined by the length of the time window where the oscillations are measured. In our

experiments the spectral width of each Fourier component is close to 10 kHz. Thus, we may

conclude that within a moderate time of experiment the proposed method is able to measure

the resonant detuning for 57Fe with the accuracy of 10 kHz, which is 100 times smaller than

the absorption linewidth. This is essentially better accuracy than in the method, used in

the gravitational red-shift measurements [19, 20], which employs four known values of the

calibrated, controllable resonant detunings: two very large, comparable with the halfwidth

of the absorption line, and two very small, comparable but appreciably exceeding the mea-

sured detuning. In time domain measurements, by extending considerably the length of

the time window where the oscillations are collected, one can reach even higher accuracy of

10−18 with a quite simple technique. In these experiments the regular signal grows as N ,

while the noise level rises as
√
N , where N is the number of detected photons. Therefore,
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FIG. 4: (color on line) Time dependence of the photon counts N(t) for different values of the

resonant detuning. The number of counts (in relative units) are normalized to the mean value at

exact resonance. The value of the detuning in units of Γ0 is indicated in each panel. The dots are

experimental points and solid line is a theoretical fitting.
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FIG. 5: Left panel: Comparison of the dependence of D1/D2 on ∆ for LFC and HFC. Experimental

data for LFC are shown by dots. Right panel: Fourier content of the intensity oscillations for

∆ = 0.3Γ0. Other parameters are defined in the text. Dots correspond to the data, obtained from

the Fourier analysis of the experimentally observed intensity oscillations. Solid line is the analytical

approximation by the set of Lorentzians.

to detect a very small detuning, which gives a regular signal with the amplitude of 1%, we

have to collect 104 counts in each time bin of our data acquisition system. This condition

sets a limit on the accuracy of our method since experiments cannot last infinite time. The

other technical limitations are well described in [19–21] and they are related to the stability

of temperature and fine calibration of the mechanical parts of the experimental setup.

V. CONCLUSION

We demonstrate a method how with LFC one can measure precisely the resonant fre-

quency of the absorber with the accuracy equal to a tiny fraction of the homogeneous

absorption width. This method is also applicable in optical domain. Modulation of the

resonant frequency of atoms or impurity ions by Stark/Zeeman effects or modulation of the

frequency of the laser beam by acousto-optical modulator are equivalent to creation of a

frequency comb in a particular reference frame. The interference of the scattered radiation
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field with the incident field is capable to produce the output intensity oscillations. By a

proper choice of the modulation frequency and modulation index one can make this oscilla-

tions to be very sensitive to exact resonance or to measure the frequency difference between

the incident radiation and resonance frequency of atoms with the accuracy not limited by

the value of the homogeneous linewidth.
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